Academic literature on the topic 'Beta Distribution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Beta Distribution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Beta Distribution"
Wood, A., and K. J. Beven. "On runoff generation and the distribution of storage deficits." Hydrology Research 44, no. 4 (March 14, 2013): 673–89. http://dx.doi.org/10.2166/nh.2013.119.
Full textGupta, Arjun K., and Daya K. Nagar. "Matrix-variate beta distribution." International Journal of Mathematics and Mathematical Sciences 24, no. 7 (2000): 449–59. http://dx.doi.org/10.1155/s0161171200002398.
Full textGupta, Arjun K., and Saralees Nadarajah. "Beta Bessel distributions." International Journal of Mathematics and Mathematical Sciences 2006 (2006): 1–14. http://dx.doi.org/10.1155/ijmms/2006/16156.
Full textNagar, Daya K., and Arjun K. Gupta. "Matrix-variate Kummer-Beta distribution." Journal of the Australian Mathematical Society 73, no. 1 (August 2002): 11–26. http://dx.doi.org/10.1017/s1446788700008442.
Full textAwodutire, Phillip Oluwatobi, Oluwafemi Samson Balogun, Akintayo Kehinde Olapade, and Ethelbert Chinaka Nduka. "The modified beta transmuted family of distributions with applications using the exponential distribution." PLOS ONE 16, no. 11 (November 18, 2021): e0258512. http://dx.doi.org/10.1371/journal.pone.0258512.
Full textDíaz-García, José A. "Riesz and beta-Riesz distributions." Austrian Journal of Statistics 45, no. 2 (February 29, 2016): 35–51. http://dx.doi.org/10.17713/ajs.v45i2.55.
Full textMakubate, Boikanyo, Broderick O. Oluyede, Gofaone Motobetso, Shujiao Huang, and Adeniyi F. Fagbamigbe. "The Beta Weibull-G Family of Distributions: Model, Properties and Application." International Journal of Statistics and Probability 7, no. 2 (January 18, 2018): 12. http://dx.doi.org/10.5539/ijsp.v7n2p12.
Full textOkubo, Tomoya, and Shin-ichi Mayekawa. "Approximating score distributions using mixed-multivariate beta distribution." Behaviormetrika 44, no. 2 (March 20, 2017): 369–84. http://dx.doi.org/10.1007/s41237-017-0019-7.
Full textPolosin, V. G. "Shape measures for the generalized beta exponential distribution." Journal of Physics: Conference Series 2094, no. 2 (November 1, 2021): 022022. http://dx.doi.org/10.1088/1742-6596/2094/2/022022.
Full textAdeleke, Maradesa. "Beta-Hyperhalfnormal Distribution and Its Application." BASRA JOURNAL OF SCIENCE 38, no. 2 (April 1, 2020): 131–56. http://dx.doi.org/10.29072/basjs.202021.
Full textDissertations / Theses on the topic "Beta Distribution"
Owen, Claire Elayne Bangerter. "Parameter Estimation for the Beta Distribution." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2670.pdf.
Full textUrashkin, Alexander. "Beta dose distribution for randomly packed microspheres." Texas A&M University, 2006. http://hdl.handle.net/1969.1/4854.
Full textJonsson, Fredrik. "Statistical studies of the Beta Gumbel distribution." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-220547.
Full textFeng, Jingyu. "Modeling Distributions of Test Scores with Mixtures of Beta Distributions." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1068.pdf.
Full textPaz, Rosineide Fernando da. "Alternative regression models to beta distribution under bayesian approach." Universidade Federal de São Carlos, 2017. https://repositorio.ufscar.br/handle/ufscar/9146.
Full textApproved for entry into archive by Ronildo Prado (producaointelectual.bco@ufscar.br) on 2017-10-10T18:16:14Z (GMT) No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5)
Approved for entry into archive by Ronildo Prado (producaointelectual.bco@ufscar.br) on 2017-10-10T18:16:22Z (GMT) No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5)
Made available in DSpace on 2017-10-10T18:23:04Z (GMT). No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5) Previous issue date: 2017-08-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models.
A distribuição beta é uma distribuição com suporte limitado que tem dominado a modelagem de variáveis aleatórias que assumem valores entre 0 e 1. Distribuições com suporte limitado surgem em várias situações como em taxas, proporções e índices. Motivados por uma análise de porcentagens de votos eleitorais, em que foi assumida uma distribuição com suporte nos números reais positivos quando uma distribuição com suporte limitado seira mais apropriada, focamos em modelos alternativos a distribuição beta com enfase em modelos de regressão. Neste trabalho, apresentamos, inicialmente, um modelo de mistura de distribuições Simplex como um modelo flexível para modelar a distribuição de variáveis aleatórias que assumem valores em um intervalo limitado, em seguida estendemos o modelo para o contexto de modelos de regressão com a inclusão de covariáveis. A estimação dos parâmetros foi discutida para ambos os modelos, considerando o método bayesiano. Aplicamos os dois modelos a dados simulados para investigarmos a performance dos estimadores usados. Os resultados obtidos foram satisfatórios para todos os casos investigados. Finalmente, introduzimos a distribuição L-Logistica no contexto de modelos de regressão e posteriormente estendemos este modelo para o contexto de misturas de modelos de regressão mista.
Yan, Huey. "A Comparison of Estimation Procedures for the Beta Distribution." DigitalCommons@USU, 1991. https://digitalcommons.usu.edu/etd/7126.
Full textRibom, Henrik, and Mathias Sjöberg. "Intraday Analysis & Prediction of Volume Distribution on the Stockholm Stock Exchange : An exploratory study of volume distribution and automated trading." Thesis, KTH, Matematisk statistik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170148.
Full textSyftet med denna rapport är att skapa en model för prediction av höglikvida aktiers volym fördelingen på stockholmsbörsen. Detta görs på ett utforskande sätt och agerar som konceptvalidering och bevis att grunda vidare forsking på. Genom att titta på all marknadsdata på stockholmsbörsen kommer den kumulativa volym fördelingen av induviduela aktier skapas. För att sedan bli matchad mot en mixture beta fördeling och skalas med en prediktion erhållen från en linjär regrission. Modelen som presenteras i rapporten fungerar bättre som prediktion än det flytande medelet. Det finns dock dagar som av sin natur är omöjliga att förutspå, exempelvis när en stor nyhet blir känd. För att kompensera för detta expanderas modelen genom att använda data från samma dag som ska prediceras och detta förbättrar modelen för den resterande tiden av dagen.
SANTOS, Rosilda Sousa. "Estudo sobre algumas famílias de distribuições de probabilidades generalizadas." Universidade Federal de Campina Grande, 2012. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1358.
Full textMade available in DSpace on 2018-08-06T14:18:54Z (GMT). No. of bitstreams: 1 ROSILDA SOUSA SANTOS - DISSERTAÇÃO PPGMAT 2012..pdf: 864926 bytes, checksum: 9d85b58c8bca6174ef968354411068a1 (MD5) Previous issue date: 2012-09
Capes
A proposta desta dissertação está relacionada com o estudo das principais famílias de distribuições de probabilidade generalizadas. Particularmente, estudamos as distribuições Beta Pareto, Beta Exponencial Generalizada, Beta Weibull Modificada, Beta Fréchet e a Kw-G. Para cada uma delas foram obtidas expressões para as funções densidades de probabilidade, funcões de distribuição acumuladas, funções de taxa de falha, funções geratrizes de momentos, bem como foram obtidos os estimadores dos parâmetros pelo método da máxima verossimilhança. Finalmente, para cada distribuição foram feitas aplicações com dados reais.
The purpose of this dissertation is to study the main families of generalized probability distributions. Particularly we study the distributions Beta Pareto, generalized Beta Exponential, Beta Modified Weibull, Beta Fréchet and Kw-G. For each one of these distributions we obtain expressions for the probability density function, cumulative distribution function, hazard function and moment generating function as well as parameter estimates by the method of maximum likelihood. Finally, we make real data applications for each one of the studied distributions.
Isik, Mehmet. "Thermally Stimulated Current Study Of Traps Distribution In Beta-tlins2 Layered Crystals." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609667/index.pdf.
Full textOLIVEIRA, Cícero Carlos Felix de. "Uma priori beta para distribuição binomial negativa." Universidade Federal Rural de Pernambuco, 2011. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4537.
Full textMade available in DSpace on 2016-05-25T16:16:39Z (GMT). No. of bitstreams: 1 Cicero Carlos Felix de Oliveira.pdf: 934310 bytes, checksum: 4f4332b0b319f6bf33cdc1d615c36324 (MD5) Previous issue date: 2011-07-08
This dissertation is being dealt with a discrete distribution based on Bernoulli trials, which is the Negative Binomial distribution. The main objective is to propose a new non-informative prior distribution for the Negative Binomial model, which is being termed as a possible prior distribution Beta(0; 0), which is an improper distribution. This distribution is also known for the Binomial model as Haldane prior, but for the Negative Binomial model there are no studies to date. The study of the behavior of this prior was based on Bayesian and classical contexts. The idea of using a non-informative prior is the desire to make statistical inference based on the minimum of information prior subjective as possible. Well, makes it possible to compare the results of classical inference that uses only sample information, for example, the maximum likelihood estimator. When is compared the Beta(0; 0) distribution with the Bayes-Laplace prior and Jeffreys prior, based on the Bayesian estimators (posterior mean and posterior mode) and the maximum likelihood estimator, note that the possible Beta(0; 0) prior is less informative than the others prior. It is also verified that is prior possible is a limited distribution in parameter space, thus, an important feature for non-informative prior. The main argument shows that the possible Beta(0; 0) prior is adequate, when it is applied in a predictive posterior distribution for Negative Binomial model, leading the a Beta-Negative Binomial distribution (which corresponds the a hypergeometric multiplied by a probability). All observations citas are strengthened by several studies, such as: basic concepts related to Bayesian Inference and concepts of the negative binomial distribution and Beta-Negative Binomial (a mixture of Beta with the negative binomial) distribution.
Nesta dissertação está sendo abordado uma distribuição discreta baseada em ensaios de Bernoulli, que é a distribuição Binomial Negativa. O objetivo principal é prôpor uma nova distribuição a priori não informativa para o modelo Binomial Negativa, que está sendo denominado como uma possível distribuição a priori Beta(0; 0), que é uma distribuição imprópria. Essa distribuição também é conhecida para o modelo Binomial como a priori de Haldane, mas para o modelo Binomial Negativa não há nenhum estudo até o momento. O estudo do comportamento desta a priori foi baseada nos contextos bayesiano e clássico. A ideia da utilização de uma a priori não informativa é o desejo de fazer inferência estatística baseada no mínimo de informação subjetiva a priori quanto seja possível. Assim, torna possível a comparação com os resultados da inferência clássica que só usa informação amostral, como por exemplo, o estimador de máxima verossimilhança. Quando é comparado a distribuição Beta(0; 0) com a priori de Bayes - Laplace e a priori de Jeffreys, baseado-se nos estimadores bayesiano (média a posteriori e moda a posteriori) e no estimador de máxima verossimilhança, nota-se que a possível a priori Beta(0; 0) é menos informativa do que as outras a priori. É verificado também, que esta possível a priori é uma distribuição limitada no espaço paramétrico, sendo assim, uma característica importante para a priori não informativa. O principal argumento mostra que a possível a priori Beta(0; 0) é adequada, quando ela é aplicada numa distribuição a posteriori preditiva para modelo Binomial Negativa, levando a uma distribuição Beta Binomial Negativa (que corresponde a uma hipergeométrica multiplicada por uma probabilidade). Todas as observações citadas são fortalecidas por alguns estudos feitos, tais como: conceitos básicos associados à Inferência Bayesiana e conceitos das distribuições Binomial Negativa e Beta Binomial Negativa (que uma mistura da Beta com a Binomial Negativa).
Books on the topic "Beta Distribution"
Letschert, J. P. W. Beta section Beta: Biogeographical patterns of variation, and taxonomy. Wageningen, the Netherlands: Wageningen Agricultural University, 1993.
Find full textBoyle, G. E. A simple measure of B(beta)-convergence. Maynooth, Co Kildare: Maynooth College, Department of Economics, 1995.
Find full textBolton, David W. Occurrence and distribution of radium, gross alpha-particle activity, and gross beta-particle activity in ground water in the Magothy Formation and Potomac Group aquifers, Upper Chesapeake Bay area, Maryland. [Baltimore, Md.]: Dept. of Natural Resources, Resource Assessment Service, Maryland Geological Survey, 2000.
Find full textKotz, Samuel. Beyond beta: Other continuous families of distributions with bounded support and applications. Singapore: World Scientific, 2005.
Find full textLetchert, J. P. W. Beta Section Beta (Wageningen Agricultural University Papers). Backhuys Publishers, 1994.
Find full textNadarajah, Saralees, and Arjun K. Gupta. Handbook of Beta Distribution and Its Applications. Taylor & Francis Group, 2004.
Find full textK, Gupta A., and Saralees Nadarajah. Handbook of Beta Distribution and Its Applications. Taylor & Francis Group, 2020.
Find full textNadarajah, Saralees, and Arjun K. Gupta. Handbook of Beta Distribution and Its Applications. Taylor & Francis Group, 2004.
Find full text1938-, Gupta A. K., and Nadarajah Saralees, eds. Handbook of beta distribution and its applications. New York: Marcel Dekker, 2004.
Find full textNadarajah, Saralees, and Arjun K. Gupta. Handbook of Beta Distribution and Its Applications. Taylor & Francis Group, 2004.
Find full textBook chapters on the topic "Beta Distribution"
Singh, Vijay P. "Beta Distribution." In Entropy-Based Parameter Estimation in Hydrology, 275–83. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1431-0_16.
Full textGupta, Arjun K. "Beta Distribution." In International Encyclopedia of Statistical Science, 144–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-04898-2_144.
Full textBiancardi, Enrico, Leonard W. Panella, and Robert T. Lewellen. "Range of Distribution." In Beta maritima, 75–84. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0842-0_2.
Full textFrese, Lothar, and Brian Ford-Lloyd. "Range of Distribution." In Beta maritima, 49–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28748-1_2.
Full textPosten, H. O. "Algorithms for the Beta Distribution Function." In COMPSTAT, 309–19. Heidelberg: Physica-Verlag HD, 1986. http://dx.doi.org/10.1007/978-3-642-46890-2_46.
Full textBaillie, D. H. "Normal Approximations to the Distribution Function of the Symmetric Beta Distribution." In Frontiers in Statistical Quality Control 5, 52–65. Heidelberg: Physica-Verlag HD, 1997. http://dx.doi.org/10.1007/978-3-642-59239-3_5.
Full textThuswaldner, Jörg M. "Discrepancy Bounds for β $$\boldsymbol{\beta }$$ -adic Halton Sequences." In Number Theory – Diophantine Problems, Uniform Distribution and Applications, 423–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55357-3_22.
Full textSalinas-Gutiérrez, Rogelio, Ángel Eduardo Muñoz-Zavala, José Antonio Guerrero-Díaz de León, and Arturo Hernández-Aguirre. "Estimation of Distribution Algorithms Based on the Beta Distribution for Bounded Search Spaces." In Advances in Soft Computing, 162–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62428-0_13.
Full textMameli, Valentina, and Monica Musio. "Some New Results on the Beta Skew-Normal Distribution." In Topics in Theoretical and Applied Statistics, 25–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27274-0_3.
Full textNakano, Takenori. "Distribution of Dust in the Disk Around Beta Pictoris." In Origin and Evolution of Interplanetary Dust, 421–24. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3640-2_86.
Full textConference papers on the topic "Beta Distribution"
Shubnikov, Eugene I. "Beta distribution and image correlation." In Second International Conference on Optical Information Processing, edited by Zhores I. Alferov, Yuri V. Gulyaev, and Dennis R. Pape. SPIE, 1996. http://dx.doi.org/10.1117/12.262577.
Full textZhao Chenhao, Song Xiangdong, and Zhang Huijuan. "An asymptotic distribution of a specific beta distribution." In International Conference on Automatic Control and Artificial Intelligence (ACAI 2012). Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/cp.2012.0998.
Full textShiraishi, Hiroki, Yohei Havamizu, Hiroyuki Sato, and Keiki Takadama. "Beta Distribution based XCS Classifier System." In 2022 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2022. http://dx.doi.org/10.1109/cec55065.2022.9870314.
Full textJanas, Z., J. Agramunt, A. Algora, L. Batist, B. A. Brown, D. Cano-Ott, R. Collatz, et al. "Beta strength distribution in neutron-deficient nuclei." In EXOTIC NUCLEI AND ATOMIC MASSES. ASCE, 1998. http://dx.doi.org/10.1063/1.57366.
Full textMa, Zhanyu, and Arne Leijon. "Coding bounded support data with beta distribution." In 2010 2nd IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC 2010). IEEE, 2010. http://dx.doi.org/10.1109/icnidc.2010.5657779.
Full textAl-Owaisheq, Eiahl, Areeb Al-Owaisheq, and Ali El-Zaart. "A New Edge Detector Using 2D Beta Distribution." In Communication Technologies: from Theory to Applications (ICTTA). IEEE, 2008. http://dx.doi.org/10.1109/ictta.2008.4530134.
Full textHristova, Hristina, Olivier Le Meur, Rémi Cozot, and Kadi Bouatouch. "Transformation of the Beta Distribution for Color Transfer." In International Conference on Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006610801120121.
Full textZhao, Xin-Shuang, and Yi-Chao Cai. "Research of Weighting Method Based on Beta Distribution." In 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE, 2015. http://dx.doi.org/10.1109/ihmsc.2015.31.
Full textGullco, Robert S., and Malcolm Anderson. "The Beta Distribution and Its Application to Petrophysics." In Latin American & Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/106746-ms.
Full textFente, Javier, Kraig Knutson, and Cliff Schexnayder. "Defining a beta distribution function for construction simulation." In the 31st conference. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/324898.324983.
Full textReports on the topic "Beta Distribution"
Cox, Lawrence J., and Laura Casswell. MCNP(TM) Release 6.1.1 beta: Creating and Testing the Code Distribution. Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1134769.
Full textNelson, W. R., and J. Liu. Sampling the fermi distribution for {beta}-decay energy input to EGS4. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/10165423.
Full textNelson, W. R., and J. Liu. Sampling the fermi distribution for. beta. -decay energy input to EGS4. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/7234613.
Full textDidonato, Armido. An Inverse of the Incomplete Beta Function (F-(Variance Ratio) Distribution Function). Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada467901.
Full textAcosta, D. Measurement of the Moments of the Hadronic Invariant Mass Distribution in Semileptonic Beta Decays. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/842931.
Full textMeot, F., and A. Paris. Concerning effects of low-beta region fringe fields and multipole error distribution on dynamics in LHC. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/573872.
Full textKaplan, P. G. Modeling the uncertainties in the parameter values of a sparse data set using the beta probability distribution. Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/137635.
Full textHwang, D. Q., R. D. Horton, and R. Evans. Diagnostic of the spatial and velocity distribution of alpha particles in tokamak fusion reactor using beat-wave generated lower hybrid wave. Progress report, 1994--1995. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/584955.
Full textHwang, D. Q., R. D. Horton, and R. W. Evans. Final Report (1994 to 1996) Diagnostic of the Spatial and Velocity Distribution of Alpha Particles in Tokamak Fusion Reactor using Beat-wave Generated Lower Hybrid Wave. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/762752.
Full textBlum, Abraham, Henry T. Nguyen, and N. Y. Klueva. The Genetics of Heat Shock Proteins in Wheat in Relation to Heat Tolerance and Yield. United States Department of Agriculture, August 1993. http://dx.doi.org/10.32747/1993.7568105.bard.
Full text