Academic literature on the topic 'Betalactamasa'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Betalactamasa.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Betalactamasa"
Urbina-Daza, Adrian, Cira Anaya-Ortega, Maicol Ahumedo-Monterrosa, Ricardo Gaitan-Ibarra, and Jorge Anaya-Gil. "Estudio teórico de compuestos derivados de cefalosporinas con potencial actividad inhibitoria frente a proteína de unión a penicilina (PBP) y resistencia a enzimas betalactamasa de espectro extendido (BLEE) producidas por Escherichia coli." Revista Colombiana de Ciencias Químico-Farmacéuticas 48, no. 1 (January 1, 2019): 44–60. http://dx.doi.org/10.15446/rcciquifa.v48n1.80064.
Full textMartinez, Maria Valeria. "Prevalencia y factores epidemiológicos de infecciones del tracto urinario causadas por Escherichia coli productora de betalactamasa de espectro extendido en el Sanatorio Adventista del Plata." FABICIB 21 (May 7, 2018): 15–21. http://dx.doi.org/10.14409/fabicib.v21i0.6575.
Full textVela, M. C., C. I. De Vargas, and Castañeda E. "Determinación de la betalactamasa en cepas de Neisseria gonorrhoeae." Biomédica 14, no. 1 (March 1, 1994): 16. http://dx.doi.org/10.7705/biomedica.v14i1.2081.
Full textKazelián, Lucia, Miguel Albornoz, María Lespada, Tomás Ciancuilli, and Roberto Neme. "Endocarditis Nosocomial por Klebsiella Pneumoniae productora de betalactamasa de espectro extendido." Revista Argentina de Cardiología 82, no. 4 (October 2014): 336–37. http://dx.doi.org/10.7775/rac.es.v82.i4.3214.
Full textVelandia, Diana Paola López, Maria Inés Torres Caycedo, Luz Maribel Castañeda Orduz, and Carlos Fernando Prada Quiroga. "Determinación de genes que codifican la resistencia de betalactamasas de espectro extendido en bacilos Gram negativos aislados de urocultivos." Revista Investigación en Salud Universidad de Boyacá 3, no. 2 (December 1, 2016): 107. http://dx.doi.org/10.24267/23897325.182.
Full textGuevara, José M., Rosaluz Aróstegui, Wini Agurto, Iliana Sobrevilla, Esther Valencia, and Nazario Silva. "Susceptibilidad a antimicrobianos de patógenos respiratorios en niños provenientes de la comunidad." Anales de la Facultad de Medicina 65, no. 1 (March 11, 2013): 14. http://dx.doi.org/10.15381/anales.v65i1.1364.
Full textResurrección-Delgado, Cristhian, Juan José Montenegro-Idrogo, Alfredo Chiappe-Gonzalez, Renzo Vargas-Gonzales, Carolina Cucho-Espinoza, Dick Henry Mamani-Condori, and Luz María Huaroto-Valdivia. "Klebsiella pneumoniae nueva Delhi metalo-betalactamasa en el hospital nacional Dos de Mayo. Lima, Perú." Revista Peruana de Medicina Experimental y Salud Pública 34, no. 2 (June 30, 2017): 261. http://dx.doi.org/10.17843/rpmesp.2017.342.2615.
Full textYauri-Condor, Katherine, Milagros Zavaleta Apestegui, Carlos Raúl Sevilla-Andrade, Julia Piscoya Sara, Claudia Villoslado Espinoza, William Vicente Taboada, and Edgar Gonzales-Escalante. "Enterobacterales productores de betalactamasa de espectro extendido portadores del gen mcr-1 en Lima, Perú." Revista Peruana de Medicina Experimental y Salud Pública 37, no. 4 (November 5, 2020): 711–5. http://dx.doi.org/10.17843/rpmesp.2020.374.5832.
Full textGonzález Donapetry, Patricia, Paula Pescador Martín, Rosa Gómez-Gil Mira, and Guillermo Ruiz Carrascoso. "Caso importado de infección por Shigella sonnei portadora de betalactamasa de espectro extendido CTX-M-15." Enfermedades Infecciosas y Microbiología Clínica 37, no. 2 (February 2019): 141. http://dx.doi.org/10.1016/j.eimc.2018.03.006.
Full textGiraldo, Javier Mauricio, Edwin Beltrán, Elder Barranco, and Leonardo Rojas. "Lesión cardiaca en paciente con sepsis pulmonar secundaria a E. coli productora de betalactamasa de espectro extendido." Acta Colombiana de Cuidado Intensivo 16, no. 4 (October 2016): 294–99. http://dx.doi.org/10.1016/j.acci.2016.06.004.
Full textDissertations / Theses on the topic "Betalactamasa"
García, Fernández Aurora. "Caracterització de l'entorn genètic de la Betalactamasa CTX-M-9." Doctoral thesis, Universitat Autònoma de Barcelona, 2006. http://hdl.handle.net/10803/3894.
Full textRodríguez, Navarro Judith. "Diversidad plasmídica en cepas de Escherichia coli y Klebsiella pneumoniae: Comparación entre aislados comensales y clínicos." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/671304.
Full textLos plásmidos son moléculas de ADN circular extracromosómicas con capacidad de replicación autónoma y, se describen como principales promotores de la diseminación de genes de resistencia a antimicrobianos. Escherichia coli y Klebsiella pneumoniae, son frecuentes agentes causales de infecciones, importantes por su carácter multirresistente. En estas bacterias, las betalactamasas constituyen uno de los mecanismos de resistencia más difundidos mediante plásmidos. Mediante el estudio y comparación del contenido plasmídico en bacterias de individuos sanos y de pacientes, el objetivo fue determinar las diferencias o similitudes de estos plásmidos entre ambas poblaciones, con el fin de inferir en su origen y evolución en las cepas causantes de infección. Para ello, se aislaron cepas de E. coli (n=244) y K. pneumoniae (n=115) de 150 muestras fecales de individuos sanos y de 202 pacientes con bacteriemia. Se realizó un estudio de sensibilidad a antimicrobianos mediante disco difusión, se identificaron las cepas multirresistentes y se caracterizó, por PCR y secuenciación, los genes codificantes de BLEE, AmpC y carbapenemasas. El estudio de plásmidos se realizó utilizando la técnica de PBRT y, se subtipificaron los plásmidos IncF, IncI1 e IncN mediante pMLST para su diferenciación dentro de un mismo grupo de incompatibilidad. La localización de los genes de resistencia y la definición de la fórmula FAB de los plásmidos IncF, se realizó mediante la técnica de Southern-blot e hibridación. Un 29,2% de las cepas de muestra clínica frente a un 10,8% en individuos sanos resultaron multirresistentes. La prevalencia de cepas de E. coli clínicas productoras de BLEE fue de 17,2% y 5% de AmpC y, en K. pneumoniae, de 16,5% y 1%, respectivamente, además de un 1,9% de carbapenemasas. Por otro lado, se observó una prevalencia del 4,7% de portadores sanos de E. coli productoras de BLEE y un 2,7% de AmpC. Ambas poblaciones han sufrido un aumento en la detección de cepas productoras de estas enzimas siendo también, en ambos casos, la CTX-M-15 y la CMY-2 las betalactamasas más frecuentes. Los resultados del PBRT mostraron como el contenido plasmídico de ambas poblaciones seguía una misma tendencia sin diferencias significativas destacables. La excepción se observó en los replicones L, M, A/C y N, los cuales solo se detectaron en las cepas de muestra clínica. Además, algunos de estos plásmidos con replicón L o N fueron detectados en asociación a genes blaBLEE. La subtipificación de los plásmidos, nos permitió observar cómo dentro de un mismo grupo de incompatibilidad existe una gran diversidad de secuenciotipos. Dentro de los plásmidos IncI1 se observó una gran diferencia entre los ST identificados en las cepas de individuos sanos y pacientes. Solo los ST12 y ST36 se identificaron en ambas poblaciones de E. coli, y todos los ST12 en asociación con el gen blaCMY-2. Por el contrario, a pesar de que también se detectó una gran diversidad de RST entre los plásmidos IncF, aquellos detectados con mayor frecuencia, estuvieron presentes en ambas poblaciones y, no se identificó ninguna fórmula FAB destacable por su asociación a genes bla. En conclusión, el contenido plasmídico en la población de cepas clínicas es un reflejo del contenido en cepas de individuos sanos, pero hay ciertos plásmidos, que solo se detectan en cepas causantes de infección, sugiriendo una mejor adaptación a ambientes sometidos a presión selectiva. Secuenciotipos IncI1 como el ST12 pueden ser considerados plásmidos epidémicos por su alta prevalencia y frecuencia en asociación con genes blaCMY-2. En cambio, los plásmidos IncF parecen haber adquirido distintos genes de resistencia a antimicrobianos de forma aleatoria, sin ningún RST destacable por ello; sugiriendo que toda la familia de plásmidos IncF es potencialmente susceptible a adquirir y diseminar genes de resistencia.
Plasmids are extracromosomal circular DNA molecules that can replicate autonomously. They are globally described as primary promoters for the dissemination of antimicrobial resistance genes. Escherichia coli and Klebsiella pneumoniae have been described as critical propriety microorganisms due to their increasing detection as multiresistant bacteria. In these bacteria, beta-lactamases constitute one of the most disseminated resistance-providing mechanisms through plasmids. Through the study and comparison of the plasmid content in the commensal microbiota from healthy individuals and patients with bacteriemia, the aim was to determine the differences and similarities of the plasmid content between these two populations, with the purpose to shed light on the origin and evolution of bacteria-causing infection. To achieve that goal, E. coli (n=244) and K. pneumoniae (n=115) strains from 150 faecal samples from healthy individuals and 202 patients with bacteraemia where isolated. An antimicrobial susceptibility testing was performed through the disc diffusion technique, the multiresistant strains were identified and, the blaESBL, blaAmpC and blacarbapenemase genes were characterised by PCR and sequencing approaches. The plasmid study was performed by using the PBRT technique. Plasmids IncF, Incl1 and IncN plasmids, were subtyped by pMLST, to differentiate each of them within the same incompatibility group. The location of the resistance genes was performed by using the Southern blot and hybridisation techniques. The same methodology was used to generate the FAB formula of the IncF plasmids. From the clinical samples, 29.2% of the strains turned out to be multiresistant against 10.8% from healthy individuals. The prevalence of clinical ESBL-producing and AmpC-producing E. coli strains was 17.2% and 5%, respectively. The prevalence of clinical ESBL-producing, AmpC-producing and carbapenemase-producing K. pneumoniae strains was 16.5%, 1% and 1.9%, respectively. Furthermore, 4.7% of the healthy individuals were carriers of ESBL-producing E. coli and 2.7% were carriers of AmpC-producing E. coli. Both populations have suffered an increased detection of strains that produce those enzymes and, in both cases, the beta-lactamases CTX-M-15 and CMY-2 were the most frequent. The PBRT results showed how the plasmid content in both populations kept the same trend without significant differences. The exception was observed in the replicons L, M, A/C and N, which were only detected in strains from clinical samples. What is more, some of these plasmids with L or N repliclon were detected in association with blaESBL genes. The plasmid subtyping, allowed us to observe a great diversity of sequence types (ST) within the same group of incompatibility. Within the Incl1-plasmids, a huge difference between the identified ST in healthy individuals and patient strains was observed. Only ST12 and ST36 were identified in both populations of E. coli. Noticeably, all the ST12 were found in association with the blaCMY-2 gene. In contrast, even though a great diversity of RSTs was detected within the IncF plasmids, those detected at higher rates were present in both populations. Furthermore, no formula was distinguishable by its association with bla genes. In conclusion, the replicon content of clinical strains mirrored that of comensal strains. Nevertheless, there are certain plasmids only detected in infection-causing strains, suggesting a better adaptation to an enviroment subjected to selective presure. IncI1 sequencetypes such as ST12 can be considered epidemic plasmids due to their high prevalence and frequency in association with blaCMY-2. On the other hand, the IncF plasmids have acquired multiple antimicrobial resistace genes randomly, with no evidence that the persitance of a single IncF is responsible for their dissemination. Therfore, the entire IncF family of plasmids is potentially capable of acquiring and propagating resitance genes.
Ruiz, Paredes José Ivan. "Factores clínicos y epidemiológicos asociados a infecciones del tracto urinario por bacterias betalactamasa de espectro extendido, hospital san josé 2014-2015." Bachelor's thesis, Universidad Ricardo Palma, 2017. http://cybertesis.urp.edu.pe/handle/urp/900.
Full textAlonso, Louro Noemí. "Caracterización molecular de los genes blaAmpC cromosómicos y adquiridos en aislados clínicos de Escherichia coli en el área de Barcelona." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/285112.
Full textEscherichia coli has a chromosomal blaAmpC gene that is expressed constitutively at low level due to the presence of a weak promoter and an attenuator. Under these conditions, this gene does not confer resistance to beta-lactams. However, this chromosomal gene may be overproduced due to mutations in the promoter/attenuator region (cAmpC). Additionally, E. coli may also acquire blaAmpC genes (aAmpC), namely CMY, DHA, ACC, FOX, MOX, ACT, MIR, LAT and CFE. Both mechanisms (cAmpC and aAmpC) confer resistance to penicillins, cephalosporins, cephamycins and aztreonam. In contrast to the range of phenotypic methods available for extended-spectrum beta-lactamases (ESBLs), no standardized methods are available to detect AmpC beta-lactamases. There is a paucity of reports on the epidemiology and clinical features associated with infections caused by AmpC-producing E. coli. Furthermore, these isolates frequently present co-resistance to other families of antibiotics, converting treatment of these infections into a clinical challenge. A multicentric study was performed to analyse E. coli isolates with a resistance pattern compatible with the production of AmpC. Isolates were obtained from Consorci Sanitari de Terrassa, Hospital Universitario Mútua de Terrassa and Hospital de la Santa Creu i Sant Pau (Barcelona, Spain) between June 2010 and November 2011. The aims of this study were: 1) to determine the prevalence of AmpC-producing E. coli isolates; 2), to identify acquired blaAmpC genes and the mutations involved in the overproduction of the chromosomal blaAmpC gene; and 3) to describe the population structure and patterns of resistance. A total of 240 strains were analysed. Of these, 75% were aAmpC-carriers and the remaining were cAmpC-overproducers. CMY-2 was the predominant enzyme, followed by DHA-1. Most cAmpC-overproducers had mutations that yielded an alternate displaced promoter and caused an increase of blaAmpC expression (average increase of expression 72.5). Two other different mutational patterns were found: a modified spacer region in the promoter and a modified attenuator (the average increase of expression was 19.9 and 5.8, respectively). Analysis of the phylogenetic groups allowed to gain knowledge of the population structure. Of all aAmpC isolates, 60% belonged to the phylogenetic groups B2, D, E and F. Among cAmpC overproducers, 82% of the isolates bearing a displaced promoter belonged to groups A, B1 and C. All the isolates with modified attenuator regions and 67% of the isolates with modified spacer regions belonged to groups B2, D, E and F. As it happens in ESBL-carrying strains, the plasmids carrying blaAmpC genes may also carry other genes, conferring resistance to other families of antibiotics. In the present study, the percentage of resistance to nalidixic acid, streptomycin, ciprofloxacin and trimethoprim-sulfamethoxazole was 79%, 62%, 57.5% and 44%, respectively. Plasmid-mediated quinolone resistance determinants (PMQR) were detected in 30% of the aAmpC isolates and 11% of the cAmpC isolates. Among aAmpC isolates, the most predominant PMQR was qnrB4 (always in blaDHA-1 carriers), followed by aac(6’)-Ib-cr. Among cAmpC isolates, the predominant PMQR was aac(6’)-Ib-cr. The increase in the prevalence of these enzymes is due to the spread of genes through horizontal transfer. The analysis of plasmids showed that IncI1 and IncF were the main replicons involved. IncI1 and IncF were related to blaCMY-2 and blaDHA-1, respectively. The pMLST analysis of plasmids revealed a large genetic variability. IncI1/ST12 was the predominant sequence type. Other sequence types belonging to the same incompatibility group were IncI1/ST26, IncI1/ST55, IncI1/ST94 and IncI1/ST134, the latter being first described in this study. Regarding IncF, each plasmid corresponded to a different sequence type.
BARAILLES, FREDERIC-CHARLES. "Apport de la cinetique de bactericidie au traitement antibiotique des enterobacteries productrices de beta-lactamases a spectre elargi." Lille 2, 1992. http://www.theses.fr/1992LIL2M352.
Full textPORCHER, THIERRY. "Resistance des enterobacteries secretrices de betalactamase a spectre elargi au sulbactam : comparaison de deux methodes de determination au laboratoire." Aix-Marseille 2, 1994. http://www.theses.fr/1994AIX20909.
Full textFERRARI, PANAIN PATRICIA. "Epidemiologie des beta-lactamases a spectre elargi au c. H. R. De nice : approche biochimique et moleculaire." Nice, 1992. http://www.theses.fr/1992NICE6568.
Full textBermudes-Lavalle, Hélène. "Beta-lactamases derivees de tem et de shv : epidemiologie moleculaire et caracterisation moleculaire de beta-lactamases, a spectre elargi ou resistantes aux inhibiteurs (doctorat : microbiologie)." Paris 11, 1999. http://www.theses.fr/1999PA114810.
Full textMALAURE, ODENT HELENE. "Les betalactamase a spectre elargi aux cephalosporines de troisieme generation chez les enterobacteries." Clermont-Ferrand 1, 1991. http://www.theses.fr/1991CLF13825.
Full textZhou, Xiang Yang. "Inhibiteurs de bêta-lactamases : interaction avec des céphalosporinases et description d'enzymes de type TEM devenues résistantes à leurs activités inhibitrices." Paris 11, 1994. http://www.theses.fr/1994PA114837.
Full textBook chapters on the topic "Betalactamasa"
Torres, Maria José, Cristobalina Mayorga, and Miguel Blanca. "Urticaria and Anaphylaxis due to Betalactams (Penicillins and Cephalosporins)." In Drug Hypersensitivity, 190–203. Basel: KARGER, 2007. http://dx.doi.org/10.1159/000104200.
Full text"Penicillins and other Betalactams." In Antibiotics and Antibiotic Resistance, 69–94. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118075609.ch4.
Full textMaísa Fabiana Menck, Costa, Baptista Ana Angelita Sampaio, Justino Larissa, Santos Beatriz Queiroz dos, and Kobayashi Renata KatsukoTakayama. "CARACTERIZAÇÃO DE Escherichia coliISOLADAS DE SUABES DE FRANGO DE CORTE E DE Alphitobius diaperinusEM PERÍODO PRE ABATE." In CIÊNCIA, TECNOLOGIA E INOVAÇÃO: DO CAMPO À MESA, 234–46. Instituto Internacional Despertando Vocações, 2020. http://dx.doi.org/10.31692/978-65-88970-00-3.v.2.234-246.
Full textConference papers on the topic "Betalactamasa"
Domingues, Lohraine Talia, Mariana Kely Diniz Gomes De Lima, Paulo Schumann Neto, Isabela Reis Manzoli, and Diego Bezerra Soares. "MECANISMOS DE RESISTÊNCIA AOS ANTIBIÓTICOS BETALACTÂMICOS PELOS STAPHYLOCOCCUS AUREUS." In II Congresso Brasileiro de Saúde On-line. Revista Multidisciplinar em Saúde, 2021. http://dx.doi.org/10.51161/rems/1446.
Full textIzquierdo, E., A. Lazaro-Cebas, A. Carreño-Ocaña, N. Blanca-Lopez, FJ Ruano-Perez, A. Such-Diaz, P. Tejedor-Prado, et al. "5PSQ-032 Administration protocol for penicillin G in a patient with a severe reaction to betalactams and abdominal actinomycosis." In 24th EAHP Congress, 27th–29th March 2019, Barcelona, Spain. British Medical Journal Publishing Group, 2019. http://dx.doi.org/10.1136/ejhpharm-2019-eahpconf.465.
Full text