Contents
Academic literature on the topic 'Béton léger – Propriétés mécaniques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Béton léger – Propriétés mécaniques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Béton léger – Propriétés mécaniques"
Mohamed Larbi, Benmalek, and Bederina Madani. "Les performances mécaniques et thermiques d’un béton léger à base de déchets industriels solides et de granulats de bois." MATEC Web of Conferences 11 (2014): 01040. http://dx.doi.org/10.1051/matecconf/20141101040.
Full textHelson, Olivier, Javad Eslami, Anne-Lise Beaucour, Albert Noumowe, and Philippe Gotteland. "Étude parametrique de matériaux modèles : aide au dimensionnement des ouvrages souterrains issus de mélanges sol-ciment." Revue Française de Géotechnique, no. 162 (2020): 2. http://dx.doi.org/10.1051/geotech/2020004.
Full textNdione, J., S. Gaye, V. Sambou, M. Adj, D. Azilinon, and A. Vianou. "Optimisation des propriétés thermiques et mécaniques du béton à base de pierre ponce." Journal des Sciences Pour l'Ingénieur 6, no. 1 (2006). http://dx.doi.org/10.4314/jspi.v6i1.30026.
Full textAnagonou, Augias, Thierry Godjo, Victor Songmene, and Yvette Tankpinou. "Étude des propriétés physico-mécaniques d’un béton hydraulique contenant des cendres de coques d’anacarde de tailles micrométriques et nanométriques substituant partiellement le ciment." Déchets, sciences et techniques, N°83 (2020). http://dx.doi.org/10.4267/dechets-sciences-techniques.4284.
Full textDissertations / Theses on the topic "Béton léger – Propriétés mécaniques"
Calais, Thomas. "PROPRIÉTÉS MÉCANIQUES ET DURABILITÉ D’UN BÉTON LÉGER. Application en régions froides." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/27826/27826.pdf.
Full textOver the years, lightweight aggregate concrete (LWAC) has been used in many building projects, notably in the USA and Nordic countries, but only in a few in Quebec. The aim of this project is to establish a better understanding of the fundamental properties of LWAC for a possible use in repairs and new structural projects. Several experimental phases were conducted in order to evaluate the mechanical properties, the cracking risk, the resistance of rapid freezing and thawing and the scaling resistance of a LWAC made with expanded shale coarse aggregate. We focused on two factors: the LWA water content and the evaluation of the quantity of water from LWA counted in the water/binder ratio. The experimental results show that, even if the understanding of the movements of water around the LWA is not yet total, mechanical properties and durability meeting structural standards can be obtained. For many properties like the cracking risk and the freezing resistance, LWAC are even better than usual concrete.
Calais, Thomas. "Propriétés mécaniques et durabilité d'un béton léger : application en régions froides." Master's thesis, Université Laval, 2013. http://hdl.handle.net/20.500.11794/24023.
Full textOver the years, lightweight aggregate concrete (LWAC) has been used in many building projects, notably in the USA and Nordic countries, but only in a few in Quebec. The aim of this project is to establish a better understanding of the fundamental properties of LWAC for a possible use in repairs and new structural projects. Several experimental phases were conducted in order to evaluate the mechanical properties, the cracking risk, the resistance of rapid freezing and thawing and the scaling resistance of a LWAC made with expanded shale coarse aggregate. We focused on two factors: the LWA water content and the evaluation of the quantity of water from LWA counted in the water/binder ratio. The experimental results show that, even if the understanding of the movements of water around the LWA is not yet total, mechanical properties and durability meeting structural standards can be obtained. For many properties like the cracking risk and the freezing resistance, LWAC are even better than usual concrete.
Cérézo, Véronique. "Propriétés mécaniques, thermiques et acoustiques d'un matériau à base de particules végétales : approche expérimentale et modélisation théorique." Lyon, INSA, 2005. http://theses.insa-lyon.fr/publication/2005ISAL0037/these.pdf.
Full textThis thesis deals with the measurement of physical properties (mechanical, thermal, acoustical) of various formulations of concrete containing vegetable particles. Such material is made up with hemp shives mixed with lime binders. Shives are very porous considering the ratio of capillaries. That fact explains that particles are lightweight, sensible to water and they can be highly strained. The ductile binder is a mixed between hydraulic and aerated lime with sometimes a volume of sand. Depending on the binder proportion, three microstructures of concrete are determined. Moreover, this material presents a microscopic porosity (shives) and a macroscopic porosity. These networks are connected. Vegetable concrete presents a ductile behavior. . The maximum stress and the Young modulus are limited as compare to other building materials but the bearable level of strain is rhigh. A theoretical model made with self-consistent method allows to calculate the Young modulus as a function of the mixture proportion and the compactness level. A comparison with experimental measurements shows a good accuracy of the results. Then, the dry thermal conductivity of vegetable concrete is studied. Considering its high sensibility to water, the level of sorption and the impact on thermal conductivity are evaluated. A self-consistent method leads to a model of dry and wet conductivity taking into account the physical properties (proportions, compactness) and the hygrometry. Lastly, the sound absorption of vegetable concrete is measured. The values are high. This first step in the study of the acoustical properties shows a behavior, which can be compared to materials with a double porosity
Shink, Mélanie. "Compatibilité élastique, comportement mécanique et optimisation des bétons de granulats légers." Thesis, Université Laval, 2003. http://www.theses.ulaval.ca/2003/20771/20771.pdf.
Full textBidjocka, Cappel. "AConception de bétons légers isolants porteurs : Application aux pouzzolanes naturelles du Cameroun." Lyon, INSA, 1990. http://www.theses.fr/1990ISAL0042.
Full textThis study concerns building materials engineering and Cameroon's natural resources. The use of pozzolans allows to elaborate light concretes both thermal insulating and strong. The study of this new material, about a few point of view (chemical, mineralogical, physical, reactivity with lime, potential reactivity with alkalis) shows that, depending) on whether the deposits, some aggregates are better to be used as an admixture for cement after a mechanical treatment and another ones as ordinary aggregates in elaboration of concrete. The aggregates of natural pozzolans are porous, so the classical theory of concrete composition can't be used. A method based on vacuum factor with a triangular diagram of mixture fillers, sand, aggregates, allows to optimize the formulation in getting building material according to the three set tests, lightness, mechanical strength and thermal insulation
Nguyen, Le Hung. "Béton de structure à propriétés d'isolation thermique améliorées : approche expérimentale et modélisation numérique." Phd thesis, Université de Cergy Pontoise, 2013. http://tel.archives-ouvertes.fr/tel-00931711.
Full textArnaud, Laurent. "Pâte crue de béton cellulaire, approches théorique et expérimentale : l'homogénéisation, le vibroscope." Châtenay-Malabry, Ecole centrale de Paris, 1993. http://www.theses.fr/1993ECAP0291.
Full textMohaine, Siyimane. "Etude des propriétés thermiques et mécaniques des bétons isolants structurels incorporant des cénosphères." Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0030/document.
Full textIn the field of building thermal insulation, regulatory (RT2012) and standards (NF BPE: Béton à Propriétés Thermiques, September 2016) evolutions are encouraging the use of insulating structural concrete (BIS). The control of their thermal conductivity is essential. It is possible, in addition to using lightweight aggregates, to modify the composition of the cement paste by using hollow inclusions (fly ash cenospheres) to bring an additional thermal insulating potential. In a context of improved workability, to these properties is added the criterion of self-compacting concrete. The validation of these new formulas required the characterization of materials at different scales (from inclusion scale to building scale) by implementing experimental and numerical approaches. Their properties at fresh and hardened state were analyzed. The measured thermal conductivities place these new concretes in the Category of Structural Insulating Concrete in the sense of the new standard. The developed numerical model allowed approaching the experimental measurements correctly. The effect of cenospheres’ incorporation into cement paste on several durability indicators was also characterized
Zambon, Agnès. "Formulation et caractérisation physique d'un béton léger de mousse et à base d'argile : valorisation des sédiments fins de dragage." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0295/document.
Full textA re-use of dredged sediments as raw material in the process of making of concrete directly onthe site of the dredging is an interesting valorization as regards economy and environment.The present study aims at valuing the thin particles of sediments because they create aproblem in the valorization of dredged sediments. Indeed, the layer structure of the claymakes it prone to react to humidity conditions and confers it an important capacity to retainpolluting agents. To optimize the valued volumes, a total substitution of aggregates in theconcrete by the thin particles of sediments is envisaged. The results from the literature tend tofavor an application in embankment such as the filling between two sheet pile walls, a geotechnical embankment, a quarry embankment. An incorporation of an air-foam made ofanimal protein during the making of the concrete is used to reduce the density of the material(density between 1.1 and 1.3). This material is classified in the category of lightweight foam concrete called by the English abbreviation LWFC (LightWeight Foamed Concrete). In thisstudy the material is named BAMS acronym for “Béton Allégé par l’incorporation d’uneMousse et à base de Sédiments”. The study was realized with a model soil composed of 80%of bentonite clay and 20% of calibrated sand (diameter 0.125mm). The mix design method isbased on the liquidity limit of the soil considering its swelling. The characterization of theBAMS is split into three parts. The first part corresponds to the characterization of the freshstate of the BAMS. It highlights the optimization of the reduction of the density from aquantity of added water with regard to the liquidity limit of the soil. The incorporation of airfoam modifies the characteristics of the fresh state of the material. It improves the workability and delays the setting of cement. The second part corresponds to the mechanical characterization of the BAMS. The added water which optimizes the reduction of the density impacts the mechanical resistance which has to be over 0.5MPa. There is thus an inevitablecompromise between mechanical resistance and density. The possible combinations and themix design to get them have been studied. Non-destructive tests are done to simply check the mechanical performances on construction site. The study of the linear shrinkage highlights an important variation of the dimension of the BAMS. This can be limited by a wet cure. The third part corresponds to the durability by the study of the transfer properties of the BAMS.The results highlight a limited accessibility of the porous network. The release of polluting agents in sediments is estimated by a lixiviation test realized on BAMS made with a model soilartificially polluted (non immersible case). From the results we can conclude on the efficiency of the inerting of polluting agents by the cement treatment and therefore the use of the material is allowed without having an impact on environment (PH14)
Al-Mohamadawi, Ali Abdullah Hassan. "Contribution à l'étude de l'impact de l'environnement vis-à-vis d'éco-matériaux lignocellulosiques." Thesis, Amiens, 2016. http://www.theses.fr/2016AMIE0040/document.
Full textDue to their low cost, lightness and thermal properties, lignocellulosic byproducts received a particular attention, in the recent years, for manufacturing lightweight concretes. However, these byproducts are not fully compatible with the cement matrix, leading to setting delay, significant dimensional variations, and low mechanical strengths of the composites elaborated. To avoid such drawbacks, a coating process of flax shives using different substances has been adopted in this study. It leads to a reduction in treated shive water absorption compared to raw shives. The composites obtained exhibit significant improvements in hydrous behavior and mechanical strengths with moderate increase in the apparent bulk density and thermal conductivity. The phenomena of moisture transfer in the produced composites can significantly influence the durability and performance of them. In fact most of the materials used in the building area are porous, containing water as vapor or liquid. Therefore the water vapour permeability, sorption isotherms and moisture buffering capacity have been determined. The results obtained show the good hygric performance of the eco-composites elaborated. Three leaching tests have been proposed in this study to identify the chemical speciation of the materials and to evaluate their releasing into the environment. The experimental conditions of the leaching tests have been chosen to simulate different states of our composites in external environments in service or end of life. The leaching behaviour of the cement-based products elaborated differs little according to flax shive treatment and the leaching of toxic substances has not been identified