Academic literature on the topic 'Bézier triangles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bézier triangles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bézier triangles"
Goldman, Ronald N., and Daniel J. Filip. "Conversion from Bézier rectangles to Bézier triangles." Computer-Aided Design 19, no. 1 (1987): 25–27. http://dx.doi.org/10.1016/0010-4485(87)90149-7.
Full textPrautzsch, H. "On convex Bézier triangles." ESAIM: Mathematical Modelling and Numerical Analysis 26, no. 1 (1992): 23–36. http://dx.doi.org/10.1051/m2an/1992260100231.
Full textLee, Chang-Ki, Hae-Do Hwang, and Seung-Hyun Yoon. "Bézier Triangles with G2 Continuity across Boundaries." Symmetry 8, no. 3 (2016): 13. http://dx.doi.org/10.3390/sym8030013.
Full textYan, Lanlan. "Construction Method of Shape Adjustable Bézier Triangles." Chinese Journal of Electronics 28, no. 3 (2019): 610–17. http://dx.doi.org/10.1049/cje.2019.03.016.
Full textGregory, John A., and Jianwei Zhou. "Convexity of Bézier nets on sub-triangles." Computer Aided Geometric Design 8, no. 3 (1991): 207–11. http://dx.doi.org/10.1016/0167-8396(91)90003-t.
Full textFeng, Yu-Yu. "Rates of convergence of Bézier net over triangles." Computer Aided Geometric Design 4, no. 3 (1987): 245–49. http://dx.doi.org/10.1016/0167-8396(87)90016-1.
Full textBelbis, Bertrand, Lionel Garnier, and Sebti Foufou. "Construction of 3D Triangles on Dupin Cyclides." International Journal of Computer Vision and Image Processing 1, no. 2 (2011): 42–57. http://dx.doi.org/10.4018/ijcvip.2011040104.
Full textWalz, Guido. "Trigonometric Bézier and Stancu polynomials over intervals and triangles." Computer Aided Geometric Design 14, no. 4 (1997): 393–97. http://dx.doi.org/10.1016/s0167-8396(96)00061-1.
Full textFilip, Daniel J. "Adaptive subdivision algorithms for a set of Bézier triangles." Computer-Aided Design 18, no. 2 (1986): 74–78. http://dx.doi.org/10.1016/0010-4485(86)90153-3.
Full textHermes, Danny. "Helper for Bézier Curves, Triangles, and Higher Order Objects." Journal of Open Source Software 2, no. 16 (2017): 267. http://dx.doi.org/10.21105/joss.00267.
Full textDissertations / Theses on the topic "Bézier triangles"
BOSCHIROLI, MARIA ALESSANDRA. "Local parametric bézier interpolants for triangular meshes: from polynomial to rational schemes." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/27853.
Full textUbach, de Fuentes Pere-Andreu. "BEST : Bézier-Enhanced Shell Triangle : a new rotation-free thin shell finite element." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/670369.
Full textMorávek, Andrej. "Geomorfologická interpolace vrstevnic nad nepravidelnou trojúhelníkovou sítí." Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-306708.
Full textBooks on the topic "Bézier triangles"
Reiter, Jesse Chain. Textured surface modeling using Bézier triangles. National Library of Canada, 1996.
Find full textBook chapters on the topic "Bézier triangles"
Farin, Gerald. "Bézier Triangles." In Curves and Surfaces for CAGD. Elsevier, 2002. http://dx.doi.org/10.1016/b978-155860737-8/50017-x.
Full textFarin, Gerald. "Bézier Triangles." In Curves and Surfaces for Computer-Aided Geometric Design. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-12-249052-1.50023-4.
Full textFarin, Gerald. "Practical Aspects of Bézier Triangles." In Curves and Surfaces for CAGD. Elsevier, 2002. http://dx.doi.org/10.1016/b978-155860737-8/50018-1.
Full textLischinski, Dani. "Converting Rectangular Patches into Bézier Triangles." In Graphics Gems. Elsevier, 1994. http://dx.doi.org/10.1016/b978-0-12-336156-1.50037-9.
Full textLischinski, Dani. "CONVERTING BÉZIER TRIANGLES INTO RECTANGULAR PATCHES." In Graphics Gems III (IBM Version). Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-08-050755-2.50058-0.
Full textBelbis, Bertrand, Lionel Garnier, and Sebti Foufou. "Construction of 3D Triangles on Dupin Cyclides." In Intelligent Computer Vision and Image Processing. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-3906-5.ch009.
Full textSeidel, H. P. "A General Subdivision Theorem for Bézier Triangles." In Mathematical Methods in Computer Aided Geometric Design. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-12-460515-2.50046-9.
Full textLischinski, Dani. "CONVERTING BÉZIER TRIANGLES INTO RECTANGULAR PATCHES: (page 256)." In Graphics Gems III (IBM Version). Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-08-050755-2.50117-2.
Full textFoley, Thomas A., and Karsten Opitz. "Hybrid Cubic Bézier Triangle Patches." In Mathematical Methods in Computer Aided Geometric Design II. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-12-460510-7.50024-0.
Full textConference papers on the topic "Bézier triangles"
Wang, Cunfu, Songtao Xia, Xilu Wang, and Xiaoping Qian. "Isogeometric Shape Optimization on Triangulations." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59611.
Full textMorera, Dimas Martínez, Paulo Cezar Carvalho, and Luiz Velho. "Geodesic Bézier curves on triangle meshes." In ACM SIGGRAPH 2006 Research posters. ACM Press, 2006. http://dx.doi.org/10.1145/1179622.1179723.
Full textSong, Yang, and Elaine Cohen. "Making Trimmed B-Spline B-Reps Watertight With a Hybrid Representation." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97485.
Full text