Journal articles on the topic 'Bézier triangles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 41 journal articles for your research on the topic 'Bézier triangles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Goldman, Ronald N., and Daniel J. Filip. "Conversion from Bézier rectangles to Bézier triangles." Computer-Aided Design 19, no. 1 (1987): 25–27. http://dx.doi.org/10.1016/0010-4485(87)90149-7.
Full textPrautzsch, H. "On convex Bézier triangles." ESAIM: Mathematical Modelling and Numerical Analysis 26, no. 1 (1992): 23–36. http://dx.doi.org/10.1051/m2an/1992260100231.
Full textLee, Chang-Ki, Hae-Do Hwang, and Seung-Hyun Yoon. "Bézier Triangles with G2 Continuity across Boundaries." Symmetry 8, no. 3 (2016): 13. http://dx.doi.org/10.3390/sym8030013.
Full textYan, Lanlan. "Construction Method of Shape Adjustable Bézier Triangles." Chinese Journal of Electronics 28, no. 3 (2019): 610–17. http://dx.doi.org/10.1049/cje.2019.03.016.
Full textGregory, John A., and Jianwei Zhou. "Convexity of Bézier nets on sub-triangles." Computer Aided Geometric Design 8, no. 3 (1991): 207–11. http://dx.doi.org/10.1016/0167-8396(91)90003-t.
Full textFeng, Yu-Yu. "Rates of convergence of Bézier net over triangles." Computer Aided Geometric Design 4, no. 3 (1987): 245–49. http://dx.doi.org/10.1016/0167-8396(87)90016-1.
Full textBelbis, Bertrand, Lionel Garnier, and Sebti Foufou. "Construction of 3D Triangles on Dupin Cyclides." International Journal of Computer Vision and Image Processing 1, no. 2 (2011): 42–57. http://dx.doi.org/10.4018/ijcvip.2011040104.
Full textWalz, Guido. "Trigonometric Bézier and Stancu polynomials over intervals and triangles." Computer Aided Geometric Design 14, no. 4 (1997): 393–97. http://dx.doi.org/10.1016/s0167-8396(96)00061-1.
Full textFilip, Daniel J. "Adaptive subdivision algorithms for a set of Bézier triangles." Computer-Aided Design 18, no. 2 (1986): 74–78. http://dx.doi.org/10.1016/0010-4485(86)90153-3.
Full textHermes, Danny. "Helper for Bézier Curves, Triangles, and Higher Order Objects." Journal of Open Source Software 2, no. 16 (2017): 267. http://dx.doi.org/10.21105/joss.00267.
Full textde Cássia Jerônimo da Silva, Rita, Thiago de Aguiar Leal Domingues, Marlos Antônio Pinheiro Rolim, Suzan Diniz, and Silvio de Barros Melo. "Efficient Slicing of rational Bézier triangles for additive manufacturing." Additive Manufacturing 78 (September 2023): 103876. http://dx.doi.org/10.1016/j.addma.2023.103876.
Full textLiu, Zhi, Jie-qing Tan, Xiao-yan Chen, and Li Zhang. "The conditions of convexity for Bernstein–Bézier surfaces over triangles." Computer Aided Geometric Design 27, no. 6 (2010): 421–27. http://dx.doi.org/10.1016/j.cagd.2010.05.004.
Full textChang, Hanjiang, Cheng Liu, Qiang Tian, Haiyan Hu, and Aki Mikkola. "Three new triangular shell elements of ANCF represented by Bézier triangles." Multibody System Dynamics 35, no. 4 (2015): 321–51. http://dx.doi.org/10.1007/s11044-015-9462-y.
Full textChan, E. S., and B. H. Ong. "Range restricted scattered data interpolation using convex combination of cubic Bézier triangles." Journal of Computational and Applied Mathematics 136, no. 1-2 (2001): 135–47. http://dx.doi.org/10.1016/s0377-0427(00)00580-x.
Full textLorente-Pardo, J., P. Sablonnière, and M. C. Serrano-Pérez. "Subharmonicity and convexity properties of Bernstein polynomials and Bézier nets on triangles." Computer Aided Geometric Design 16, no. 4 (1999): 287–300. http://dx.doi.org/10.1016/s0167-8396(98)00050-8.
Full textLópez, Jorge, Cosmin Anitescu, Navid Valizadeh, Timon Rabczuk, and Naif Alajlan. "Structural shape optimization using Bézier triangles and a CAD-compatible boundary representation." Engineering with Computers 36, no. 4 (2019): 1657–72. http://dx.doi.org/10.1007/s00366-019-00788-z.
Full textBez, H. E. "The invariant functions and invariant-image conditions of the rational Bézier triangles." Applicable Algebra in Engineering, Communication and Computing 23, no. 3-4 (2012): 195–205. http://dx.doi.org/10.1007/s00200-012-0174-8.
Full textBastl, Bohumír, Bert Jüttler, Miroslav Lávička, Josef Schicho, and Zbyněk Šír. "Spherical quadratic Bézier triangles with chord length parameterization and tripolar coordinates in space." Computer Aided Geometric Design 28, no. 2 (2011): 127–34. http://dx.doi.org/10.1016/j.cagd.2010.11.001.
Full textAbdul Karim, Samsul Ariffin Abdul, Azizan Saaban, and Van Thien Nguyen. "Scattered Data Interpolation Using Quartic Triangular Patch for Shape-Preserving Interpolation and Comparison with Mesh-Free Methods." Symmetry 12, no. 7 (2020): 1071. http://dx.doi.org/10.3390/sym12071071.
Full textLiu, Ning, and Ann E. Jeffers. "Feature-preserving rational Bézier triangles for isogeometric analysis of higher-order gradient damage models." Computer Methods in Applied Mechanics and Engineering 357 (December 2019): 112585. http://dx.doi.org/10.1016/j.cma.2019.112585.
Full textWang, Zheng-bin, and Qi-ming Liu. "An improved condition for the convexity and positivity of Bernstein-Bézier surfaces over triangles." Computer Aided Geometric Design 5, no. 4 (1988): 269–75. http://dx.doi.org/10.1016/0167-8396(88)90008-8.
Full textYu, Kai-Ming, Yu Wang, and Charlie C. L. Wang. "Smooth geometry generation in additive manufacturing file format: problem study and new formulation." Rapid Prototyping Journal 23, no. 1 (2017): 34–43. http://dx.doi.org/10.1108/rpj-06-2015-0067.
Full textChau, Hau Hing, Alison McKay, Christopher F. Earl, Amar Kumar Behera, and Alan de Pennington. "Exploiting lattice structures in shape grammar implementations." Artificial Intelligence for Engineering Design, Analysis and Manufacturing 32, no. 2 (2018): 147–61. http://dx.doi.org/10.1017/s0890060417000282.
Full textRiso, Marzia, Giacomo Nazzaro, Enrico Puppo, Alec Jacobson, Qingnan Zhou, and Fabio Pellacini. "BoolSurf." ACM Transactions on Graphics 41, no. 6 (2022): 1–13. http://dx.doi.org/10.1145/3550454.3555466.
Full textAlbrecht, Gudrun, and Wendelin L. F. Degen. "Construction of Bézier rectangles and triangles on the symmetric Dupin horn cyclide by means of inversion." Computer Aided Geometric Design 14, no. 4 (1997): 349–75. http://dx.doi.org/10.1016/s0167-8396(97)00002-2.
Full textLiu, Shibo, Yang Ji, Jia-Peng Guo, Ligang Liu, and Xiao-Ming Fu. "Smooth Bijective Projection in a High-order Shell." ACM Transactions on Graphics 43, no. 4 (2024): 1–13. http://dx.doi.org/10.1145/3658207.
Full textŠimák, Jan. "A software tool for blade design." EPJ Web of Conferences 269 (2022): 01055. http://dx.doi.org/10.1051/epjconf/202226901055.
Full textLasser, Dieter. "Tensor product Bézier surfaces on triangle Bézier surfaces." Computer Aided Geometric Design 19, no. 8 (2002): 625–43. http://dx.doi.org/10.1016/s0167-8396(02)00145-0.
Full textGarnier, Lionel, Lucie Druoton, Jean-Paul Bécar, Laurent Fuchs, and Géraldine Morin. "Subdivisions of Horned or Spindle Dupin Cyclides Using Bézier Curves with Mass Points." WSEAS TRANSACTIONS ON MATHEMATICS 20 (December 31, 2021): 756–76. http://dx.doi.org/10.37394/23206.2021.20.80.
Full textFernández-Jambrina, Leonardo. "Inverse Relations for Blossoms and Parametrisations of Rational Curves and Surfaces." Mathematics 12, no. 18 (2024): 2841. http://dx.doi.org/10.3390/math12182841.
Full textRazdan, Anshuman, and MyungSoo Bae. "Curvature estimation scheme for triangle meshes using biquadratic Bézier patches." Computer-Aided Design 37, no. 14 (2005): 1481–91. http://dx.doi.org/10.1016/j.cad.2005.03.003.
Full textKobayashi, Ken, Naoki Hamada, Akiyoshi Sannai, Akinori Tanaka, Kenichi Bannai, and Masashi Sugiyama. "Bézier Simplex Fitting: Describing Pareto Fronts of´ Simplicial Problems with Small Samples in Multi-Objective Optimization." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 2304–13. http://dx.doi.org/10.1609/aaai.v33i01.33012304.
Full textHongyi, Wu. "Dual functionals of said-bézier type generalized ball bases over triangle domain and their application." Applied Mathematics-A Journal of Chinese Universities 21, no. 1 (2006): 96–106. http://dx.doi.org/10.1007/s11766-996-0028-x.
Full textZhang, Ziyi, Nicolas Roussel, and Wenzel Jakob. "Projective Sampling for Differentiable Rendering of Geometry." ACM Transactions on Graphics 42, no. 6 (2023): 1–14. http://dx.doi.org/10.1145/3618385.
Full textShafieipour, Mohammad, Jonatan Aronsson, Ian Jeffrey, Chen Nui, and Vladimir I. Okhmatovski. "On New Triangle Quadrature Rules for the Locally Corrected Nyström Method Formulated on NURBS-Generated Bézier Surfaces in 3-D." IEEE Transactions on Antennas and Propagation 64, no. 7 (2016): 3027–38. http://dx.doi.org/10.1109/tap.2016.2560958.
Full textWang, Wanyi, Zhonggui Chen, Lincong Fang, and Juan Cao. "Curved Image Triangulation Based on Differentiable Rendering." Computer Graphics Forum, October 24, 2024. http://dx.doi.org/10.1111/cgf.15232.
Full textSilva, Francisco Davyd Pereira, Elias Saraiva Barroso, Gabriel Braga Alves de Matos, Evandro Parente, and João Batista Marques de Sousa. "Isogeometric analysis of functionally graded panels using Bézier triangles." Composite Structures, June 2024, 118310. http://dx.doi.org/10.1016/j.compstruct.2024.118310.
Full textBarroso, Elias Saraiva, John Andrew Evans, Joaquim Bento Cavalcante-Neto, Creto Augusto Vidal, and Evandro Parente. "An efficient automatic mesh generation algorithm for planar isogeometric analysis using high-order rational Bézier triangles." Engineering with Computers, February 9, 2022. http://dx.doi.org/10.1007/s00366-022-01613-w.
Full textSichetti, Federico, Zizhou Huang, Marco Attene, Denis Zorin, Enrico Puppo, and Daniele Panozzo. "High-Order Continuous Geometrical Validity." ACM Transactions on Graphics, June 26, 2025. https://doi.org/10.1145/3745763.
Full textPeters, Jörg, Kyle Shih-Huang Lo, and Kȩstutis Karčiauskas. "Algorithm ⋆: Bi-cubic splines for polyhedral control nets." ACM Transactions on Mathematical Software, October 31, 2022. http://dx.doi.org/10.1145/3570158.
Full textKapl, Mario, Giancarlo Sangalli, and Thomas Takacs. "A family of C1 quadrilateral finite elements." Advances in Computational Mathematics 47, no. 6 (2021). http://dx.doi.org/10.1007/s10444-021-09878-3.
Full text