Academic literature on the topic 'Bézout’s theorum'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bézout’s theorum.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bézout’s theorum"
KIRBY, DAVID. "ON BÉZOUT'S THEOREM." Quarterly Journal of Mathematics 39, no. 4 (1988): 469–81. http://dx.doi.org/10.1093/qmath/39.4.469.
Full textMcKean, Stephen. "An arithmetic enrichment of Bézout’s Theorem." Mathematische Annalen 379, no. 1-2 (2021): 633–60. http://dx.doi.org/10.1007/s00208-020-02120-3.
Full textShub, Michael, and Steve Smale. "Complexity of Bézout’s theorem. I. Geometric aspects." Journal of the American Mathematical Society 6, no. 2 (1993): 459. http://dx.doi.org/10.1090/s0894-0347-1993-1175980-4.
Full textRams, Sławomir, Piotr Tworzewski, and Tadeusz Winiarski. "A note on Bézout's theorem." Annales Polonici Mathematici 87 (2005): 219–27. http://dx.doi.org/10.4064/ap87-0-18.
Full textAlonso, M. Emilia, and Henri Lombardi. "Local Bézout Theorem." Journal of Symbolic Computation 45, no. 10 (2010): 975–85. http://dx.doi.org/10.1016/j.jsc.2010.06.022.
Full textMori, I., and S. Paul Smith. "Bézout's theorem for non-commutative projective spaces." Journal of Pure and Applied Algebra 157, no. 2-3 (2001): 279–99. http://dx.doi.org/10.1016/s0022-4049(00)00012-8.
Full textGamanda, Maroua, Henri Lombardi, Stefan Neuwirth, and Ihsen Yengui. "The syzygy theorem for Bézout rings." Mathematics of Computation 89, no. 322 (2019): 941–64. http://dx.doi.org/10.1090/mcom/3466.
Full textAlonso, M. Emilia, and Henri Lombardi. "Local Bézout theorem for Henselian rings." Collectanea Mathematica 68, no. 3 (2016): 419–32. http://dx.doi.org/10.1007/s13348-016-0184-0.
Full textPruschke, Thilo. "Notes on questions of W. Vogel concerning the converse to Bézout's theorem." Proceedings of the Edinburgh Mathematical Society 36, no. 3 (1993): 427–45. http://dx.doi.org/10.1017/s0013091500018526.
Full textMcGovern, Warren W. "Bézout SP-Domains." Communications in Algebra 35, no. 5 (2007): 1777–81. http://dx.doi.org/10.1080/00927870601169291.
Full textDissertations / Theses on the topic "Bézout’s theorum"
Hilmar, Jan. "Intersection of algebraic plane curves : some results on the (monic) integer transfinite diameter." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/3843.
Full textCohen, Camron Alexander Robey. "CURVING TOWARDS BÉZOUT: AN EXAMINATION OF PLANE CURVES AND THEIR INTERSECTION." Oberlin College Honors Theses / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin159345184740689.
Full textMonteza, David Alberto Saldaña. "Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092017-141837/.
Full textZell, Thierry. "Etude quantitative des ensembles semi-pfaffiens." Phd thesis, Université Rennes 1, 2003. http://tel.archives-ouvertes.fr/tel-00008488.
Full textBook chapters on the topic "Bézout’s theorum"
Blum, Lenore, Felipe Cucker, Michael Shub, and Steve Smale. "Bézout’s Theorem." In Complexity and Real Computation. Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0701-6_10.
Full textMarchisotto, Elena Anne Corie. "A Case Study in Reuben Hersh’s Philosophy: Bézout’s Theorem." In Humanizing Mathematics and its Philosophy. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61231-7_23.
Full text"Bézout's theorem." In Algebraic Geometry. Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-056-8_6.
Full text"Chapter 5. Bézout’s Theorem." In Elliptic Tales. Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400841714.82.
Full text