Academic literature on the topic 'Bézout’s theorum'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bézout’s theorum.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bézout’s theorum"

1

KIRBY, DAVID. "ON BÉZOUT'S THEOREM." Quarterly Journal of Mathematics 39, no. 4 (1988): 469–81. http://dx.doi.org/10.1093/qmath/39.4.469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McKean, Stephen. "An arithmetic enrichment of Bézout’s Theorem." Mathematische Annalen 379, no. 1-2 (2021): 633–60. http://dx.doi.org/10.1007/s00208-020-02120-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shub, Michael, and Steve Smale. "Complexity of Bézout’s theorem. I. Geometric aspects." Journal of the American Mathematical Society 6, no. 2 (1993): 459. http://dx.doi.org/10.1090/s0894-0347-1993-1175980-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rams, Sławomir, Piotr Tworzewski, and Tadeusz Winiarski. "A note on Bézout's theorem." Annales Polonici Mathematici 87 (2005): 219–27. http://dx.doi.org/10.4064/ap87-0-18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alonso, M. Emilia, and Henri Lombardi. "Local Bézout Theorem." Journal of Symbolic Computation 45, no. 10 (2010): 975–85. http://dx.doi.org/10.1016/j.jsc.2010.06.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mori, I., and S. Paul Smith. "Bézout's theorem for non-commutative projective spaces." Journal of Pure and Applied Algebra 157, no. 2-3 (2001): 279–99. http://dx.doi.org/10.1016/s0022-4049(00)00012-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gamanda, Maroua, Henri Lombardi, Stefan Neuwirth, and Ihsen Yengui. "The syzygy theorem for Bézout rings." Mathematics of Computation 89, no. 322 (2019): 941–64. http://dx.doi.org/10.1090/mcom/3466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alonso, M. Emilia, and Henri Lombardi. "Local Bézout theorem for Henselian rings." Collectanea Mathematica 68, no. 3 (2016): 419–32. http://dx.doi.org/10.1007/s13348-016-0184-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pruschke, Thilo. "Notes on questions of W. Vogel concerning the converse to Bézout's theorem." Proceedings of the Edinburgh Mathematical Society 36, no. 3 (1993): 427–45. http://dx.doi.org/10.1017/s0013091500018526.

Full text
Abstract:
Lazarsfeld proved a bound for the excess dimension of an intersection of irreducible and reduced schemes. Flenner and Vogel gave another approach for reduced, non-degenerate schemes which are connected in codimension one, using the intersection algorithm of Stückrad and Vogel and defining a new multiplicity k. Renschuch and Vogel considered a condition to ensure that there is no degeneration for more than two schemes. We define an integer which enables us to unify these methods. This allows us to generalize the result of Flenner and Vogel to non-reduced schemes by comparing the multiplicities
APA, Harvard, Vancouver, ISO, and other styles
10

McGovern, Warren W. "Bézout SP-Domains." Communications in Algebra 35, no. 5 (2007): 1777–81. http://dx.doi.org/10.1080/00927870601169291.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bézout’s theorum"

1

Hilmar, Jan. "Intersection of algebraic plane curves : some results on the (monic) integer transfinite diameter." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/3843.

Full text
Abstract:
Part I discusses the problem of determining the set of intersection points, with corresponding multiplicities, of two algebraic plane curves. We derive an algorithm based on the Euclidean Algorithm for polynomials and show how to use it to find the intersection points of two given curves. We also show that an easy proof of Bézout’s Theorem follows. We then discuss how, for curves with rational coefficients, this algorithm can bemodified to find the intersection points with coordinates expressed in terms of algebraic extensions of the rational numbers. Part II deals with the problem of determi
APA, Harvard, Vancouver, ISO, and other styles
2

Cohen, Camron Alexander Robey. "CURVING TOWARDS BÉZOUT: AN EXAMINATION OF PLANE CURVES AND THEIR INTERSECTION." Oberlin College Honors Theses / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin159345184740689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Monteza, David Alberto Saldaña. "Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092017-141837/.

Full text
Abstract:
Seja p um primo, considere q = pe com e ≥ 1 inteiro. Dado o polinômio f (x) = x4+ax3+bx2+ cx+d ∈ Fq[x], consideremos o polinômio F(T) = T4 +aT3 +bT2 +cT + d - y ∈ Fq(y)[T], com y = f (x) sobre Fq(y). O objetivo desse trabalho é determinar o número de polinômios f (x) que tem seu grupo de galois associado GF isomorfo a cada subgrupo transitivo (prefixado) de S4. O trabalho foi baseado no artigo: Galois closures of quartic sub-fields of rational function fields, usando equações auxiliares associadas ao polinômio minimal F(T) de graus 3 e 2 (DUMMIT, 1994); bem como uma caraterização
APA, Harvard, Vancouver, ISO, and other styles
4

Zell, Thierry. "Etude quantitative des ensembles semi-pfaffiens." Phd thesis, Université Rennes 1, 2003. http://tel.archives-ouvertes.fr/tel-00008488.

Full text
Abstract:
Dans la présente thèse, on établit des bornes supérieures sur les nombres de Betti des ensembles définis à l'aide de fonctions pfaffiennes, en fonction de la complexité pfaffienne (ou format) de ces ensembles. Les fonctions pfaffiennes ont été définies par Khovanskii, comme solutions au comportement quasi-polynomial de certains systèmes polynomiaux d'équations différentielles. Les ensembles semi-pfaffiens satisfont une condition de signe booléene sur des fonctions pfaffiennes, et les ensembles sous-pfaffiens sont projections de semi-pfaffiens. Wilkie a démontré que les fonctions pfaffiennes en
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bézout’s theorum"

1

Blum, Lenore, Felipe Cucker, Michael Shub, and Steve Smale. "Bézout’s Theorem." In Complexity and Real Computation. Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0701-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marchisotto, Elena Anne Corie. "A Case Study in Reuben Hersh’s Philosophy: Bézout’s Theorem." In Humanizing Mathematics and its Philosophy. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61231-7_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Bézout's theorem." In Algebraic Geometry. Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-056-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Chapter 5. Bézout’s Theorem." In Elliptic Tales. Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400841714.82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!