Academic literature on the topic 'BGE 142 III 466'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'BGE 142 III 466.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "BGE 142 III 466"

1

Wenger, Werner. "Polyvalente Schieds(gutachtens)klauseln – Anmerkungen zu BGE 142 III 220." ASA Bulletin 34, Issue 4 (2016): 914–23. http://dx.doi.org/10.54648/asab2016078.

Full text
Abstract:
In the decision reported above, the Swiss Federal Supreme Court dealt with a clause inserted by two co-owners in the rules of administration relating to the building they owned. The clause provided for the appointment of a neutral in the event that the two owners could not reach a unanimous decision in matters relating to their co-ownership; in such event, the neutral’s decision was to stand in lieu of the co-owners’ resolution. Based on such clause, co-owner B initiated arbitration proceedings against co-owner A with regard to the former’s request that the co-ownership initiate court proceedings against the tenant of the building, a company E of which co-owner A was the controlling shareholder. Although the wording of the clause appears at first glance to be restricted to a neutral’s intervention in a function based on contract law similar to that of a third party mandated to amend or adapt the contents of the parties’ contract rather than as an arbitrator acting under the CPC or the PILS, the Federal Court ruled that the clause was to be understood in a broader sense, covering also the essential elements of an arbitration clause with respect to the legal dispute arisen between the two co-owners. In addition, the Federal Court held that arbitration clauses in by-laws are not only binding on the original members of the legal entity, but also on successive members of the corporate body or the community of co-owners.
APA, Harvard, Vancouver, ISO, and other styles
2

Hashim, Laila, Muhammad Salman Faisal, Zahoor Ahmed, et al. "Efficacy of Venetoclax Based Regimens in Relapsed Refractory Multiple Myeloma: A Systematic Review and Meta-Analysis." Blood 136, Supplement 1 (2020): 39–40. http://dx.doi.org/10.1182/blood-2020-142054.

Full text
Abstract:
Background: Clonal plasma cells in multiple myeloma (MM) over express b-cell lymphoma-2 protein (BCL2). Which is the target for venetoclax (VEN). VEN has a promising efficacy and a favorable safety profile in MM patients. This review highlights the efficacy of VEN for the treatment of relapsed refractory (RR) MM. Methodology: We performed a comprehensive database search on four major databases(PubMed, Embase, Cochrane, and Clinical trials.gov). Our search strategy included MeSH terms and keywords for multiple myeloma and VEN, including trade names and generic names, from the date of inception of the database to April 2020.The initial search revealed 782 articles. After excluding review articles, duplicates, and non-relevant articles,we included six studies(four clinical trials and two retrospective studies), which reported an overall response rate (ORR) in RRMM patients. Proportions along with 95% Confidence Interval (CI) were extracted to compute pooled analysis using the 'meta' package by Schwarzer et al. in the R programming language (version 4.0.2) to report the efficacy of VEN. We pooled the results of the experimental arms of included trials using the inverse variance method and logit transformation. Between studies,the variance was calculated using Der Simonian-Laird Estimator. Results: We identified 568 patients from four clinical trials [Moreau et al.2019, the BELLINI trial, (n=291, venetoclax arm= 194, placebo arm= 97)], Costa et al. 2018 (n=42), Kumar et al. 2017(n=66), and Moreau et al. 2017 (n=66)] and two retrospective studies (Kambhampati et al. 2020 (n= 47) and Sidiqi et al.2019 (n=56)). Among which 563 patients were evaluable for the treatment outcomes. One hundred and forty two patients (25%) had t(11:14)mutation. The median age of the patients ranged from 64-66 years, and the median number of prior therapies was ≥2. The median dose of venetoclax ranged from 50 mg/day to 1200 mg/day in dose-escalation cohorts of clinical trials while in the retrospective study by Kambhampati, S et al., the median dose of venetoclax was 800 mg/day. The pooled overall response rate (ORR) for all patients who received venetoclax (n=466) was 57% (95% confidence interval (CI) 0.34-0.77, p<0.01; I2=95%), with the highest rates of 84% and 79% being reported from phase III trial using VEN + bortezomib (V) + dexamethasone (d) by Moreau et al.(2019), and VEN + carfilzomib + d in phase II clinical trial by Costa et al. (2018), respectively (Figure 1A). A minimum ORR of 21% was observed in a retrospective study by Siddiqi et al. (2019). Among 142 patients with positive t(11:14) in all studies, ORR was 56% (95% CI 0.44-0.68, p<0.11; I2=44%) (Figure 1B) with the highest rate of 100% being reported from Costa et al., though the number of patients was small. Among 362 patients with no t(11:14) ,ORR was 33% (95% CI 0.16-0.55, p<0.01: I2=89%), with the highest rate of 56% being reported from Moreau et al. in a phase III trial using VEN-Vd (Figure 1C). The highest median duration of response (DOR) (23.4 months) was reported with combination therapy of VEN-Vd. Two hundred and thirty eight (42%) of the patients discontinued VEN, among whom 132 (55%) were reported to have progressive disease. The most common grade≥3 hematological adverse effects were neutropenia, thrombocytopenia, and anemia. The gastrointestinal distress was the most common non-hematological toxicity reported in all the studies. Sixty four (33%) patients died on VEN arm vs. 24 (25%) on placebo in the BELLINI trial, the trend of OS is non-significantly better in VEN arm in t(11:14) while OS is non-significantly worse in non t(11:14) group. Conclusion: VEN is an effective treatment option for relapsed and refractory multiple myeloma patients with t(11:14) translocation. The overall response rate and the duration of response are better in patients with t(11:14). The CANOVA trial is ongoing now to better answer the debatable question of VEN efficacy in t(11;14) MM patients. Disclosures Anwer: Incyte, Seattle Genetics, Acetylon Pharmaceuticals, AbbVie Pharma, Astellas Pharma, Celegene, Millennium Pharmaceuticals.: Honoraria, Research Funding, Speakers Bureau. Fazal:Jansen: Speakers Bureau; Stemline: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Novartis: Consultancy, Speakers Bureau; Gilead/Kite: Consultancy, Speakers Bureau; Glaxosmith Kline: Consultancy, Speakers Bureau; Agios: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Incyte Corporation: Consultancy, Honoraria, Speakers Bureau; Karyopham: Speakers Bureau; Celgene: Speakers Bureau; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Jazz Pharma: Consultancy, Speakers Bureau.
APA, Harvard, Vancouver, ISO, and other styles
3

Contreras Cortés, Francisco, and Alberto Dorado Alejos. "Datos para el estudio de la poliorcética durante la Edad del Cobre y la Edad de Bronce en el mediodía de la península ibérica." Vínculos de Historia Revista del Departamento de Historia de la Universidad de Castilla-La Mancha, no. 11 (June 22, 2022): 33–62. http://dx.doi.org/10.18239/vdh_2022.11.02.

Full text
Abstract:
El uso de murallas desde los primeros momentos de la sedentarización ha buscado el cierre de asentamientos y, aunque generalmente estas construcciones procuraban la protección de sus habitantes, pudieron jugar también un papel importante en aspectos como la demostración de fuerza o de independencia política, jurídica e incluso como ornamento. En el presente trabajo realizamos una visión diacrónica de las estructuras en piedra, con especial interés de aquellas estudiadas en el marco de los proyectos de investigación desarrollados por el Departamento de Prehistoria y Arqueología de la Universidad de Granada, mostrándose nuevos datos procedentes de nuestros archivos recientemente digitalizados y que permiten observar de una manera más detallada la fábrica de algunas de ellas, lo que demuestra los cambios de hábitos constructivos y su adaptación a los cambios culturales. Palabras Clave: Estructuras defensivas, Edad del Cobre, Edad del Bronce, Bronce FinalTopónimos: Península IbéricaPeriodo: Edad del Cobre, Edad del Bronce ABSTRACTThe use of walls from the earliest moments of sedentarisation has sought to enclose settlements and, although the goal of these constructions has generally been the protection of their inhabitants, they may have played an important role in aspects such as the demonstration of strength or political and legal independence, and even as ornamentation. This paper presents a diachronic view of stone wall structures, with particular focus on those studied within the framework of the research projects carried out by the Department of Prehistory and Archaeology of the University of Granada. New data from our recently digitalised archives are included, enabling us to observe in greater detail the construction of some of these structures, evidencing changes in building habits and their adaptation to cultural changes. Keywords: Defensive structures, Copper Age, Bronze Age, Argar Culture, Late Bronze Age.Place names: Iberian PeninsulaPeriod: Chalcolithic, Bronze Age REFERENCIASAguayo de Hoyos, P. (1977), “Construcciones defensivas de la Edad Del Cobre peninsular. El Cerro de los Castellones (Laborcillas, Granada)”, Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 2, pp. 87-104. https://doi.org/10.30827/cpag.v2i0.722.Altamirano García, M. (2014), “Not only bones. Hard animal tissues as a source of raw material in 3rd millenium BC south-eastern Iberia”, Menga: Revista de prehistoria de Andalucía, 5, pp. 43-67.Aranda Jiménez, G. (2001), El análisis de la relación forma-contenido de los conjuntos cerámicos del yacimiento arqueológico del Cerro de la Encina (Granada, España), BAR International Series 957, Oxford, Archaeopress.Aranda Jiménez, G., Montón-Subías, S. y Sánchez Romero, M. (2015), The Archaeology of Bronze Age Iberia. Argaric Societies, New York, Routleadge.Arribas Palau, A. (1977), “El Ídolo de El Malagón (Cullar Baza, Granada)”. Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 2, pp. 63-86. https://doi.org/10.30827/cpag.v2i0.721Arribas Palau, A. (2011), “El ídolo de El Malagón (Cúllar-Baza, Granada)”, Péndulo. Papeles de Bastitania, 12, pp. 33-48.Arribas, A., Molina, F., Saez, L., De La Torre, F., Aguayo, P. y Nájera, T. (1981), “Excavaciones en Los Millares (Santa Fe de Mondújar, Almería). Campana de 1981”, Cuadernos de Prehistoria de la Universidad de Granada, 6, pp. 91-121. https://doi.org/10.30827/cpag.v6i0.1182— (1979), “Excavaciones en Los Millares (Santa Fe de Mondújar, Almería)”, Cuadernos de Prehistoria de la Universidad de Granada, 4, pp. 61-109. https://doi.org/10.30827/cpag.v6i0.1182Arribas, A., Pareja, E., Molina González, F., Arteaga, O. y Molina Fajardo, F. (1974), Excavaciones en el poblado de la Edad del Bronce del Cerro de la Encina (Monachil, Granada). El corte estratigráfico nº 3, Excavaciones Arqueológicas en España 81, Madrid, Ministerio de Educación.Arribas, A., Molina, F., Carrión, F., Contreras, F., Martínez, G., Ramos, A., Sáez, L., De la Torre, F., Blanco, I. y Martínez, J. (1987), “Informe preliminar de los resultados obtenidos durante la VI Campaña de excavaciones en el poblado de Los Millares (Santa Fe de Mondújar, Almería, 1985)”, Anuario Arqueológico de Andalucía 1985, II, Sevilla, Junta de Andalucía, pp. 245-262.Arteaga, O. (1987), “Excavaciones arqueológicas sistemáticas en El Cerro de los Alcores (Porcuna, Jaén). Informe preliminar sobre la campaña de 1985”, Anuario Arqueológico de Andalucía 1985, II, Sevilla, Junta de Andalucía, pp. 279-288.Becker, H. y Brandherm, D. (2010), “Eine Testmessung zur magnetischen Prospektion am Cerro de la Virgen 1998 (Prov. Granada, Spanien)”, en T. Armbruster y M. Hegewish (eds.), Beiträger zur Vor- und Frühgeschichte der Iberischen Halbinsel und Mittleleuropas: Studien in honorem Philine Kalb. Studienzur Archäologie Europas 11, Bonn, pp. 267-272Benítez De Lugo, L., Mejías Moreno, M., López Gutiérrez, J., Álvarez García, H. J., Palomares Zumajo, N., Mata Trujillo, E. Moraleda Sierra, J., Menchén Herreros, G., Fernández Martín, S. Salazar García, D. C., Odriozola Lloret, C., Benito Sánchez, M. y López Sáez, J. A. (2014), “Aportaciones hidrogeológicas al estudio arqueológico de los orígenes del Bronce de La Mancha: la cueva monumentalizada de Castillejo del Bonete (Terrinches, Ciudad Real, España)”, Trabajos de Prehistoria, 71 (1), pp. 76-94. https://doi.org/10.3989/tp.2014.12125Caballero Cobos, A. (2014), Vías de comunicación en las comarcas de Baza y Huéscar: una aproximación histórico-arqueológica desde la prehistoria reciente a la Edad Media. Granada, Universidad de Granada. http://hdl.handle.net/10481/38469Cabré, J. (1922), “Una necrópolis de la Primera Edad de los metales en Monachil, Granada”, Memorias de la Sociedad Española de Antropología, Etnología y Prehistoria I, Madrid.Cámara, J. A. y Molina, F. (2009), “El análisis de la ideología de emulación: el caso de El Argar”, Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 19, pp. 163-194. https://doi.org/10.30827/cpag.v19i0.188— (2013), “Indicadores de conflicto bélico en la Prehistoria Reciente del cuadrante sudeste de la Península Ibérica: el caso del Calcolítico”. Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 23, pp. 99-132. https://doi.org/10.30827/cpag.v23i0.3104Cámara, J. A., Molina, F., Pérez, C. y Spanedda, L. (2018), “Una nueva lectura de las fortificaciones calcolíticas del Cerro de la Virgen (Orce, Granada, España)”, Ophiussa. Revista do Centro de Arqueologia da Universidade de Lisboa, 2, pp. 25-37.Castro, P. V., Lull, V. y Micó, R. (1996), Cronología de la Prehistoria Reciente de la Península Ibérica y Baleares (c. 2800-900 cal ANE), BAR International Series 652, Oxford, Archeopress.Contreras, F. (1982), “Una aproximación a la urbanística del Bronce Final en la Alta Andalucía: El Cerro de Cabezuelos (Úbeda, Jaén)”, Cuadernos de Prehistoria de la Universidad de Granada, 7, 307-329. https://doi.org/10.30827/cpag.v7i0.1204Contreras, F., Capel, J., Esquivel, J. A., Molina, F. y De La Torre, F. (1987-88), “Los ajuares cerámicos de la necrópolis argárica de la Cuesta del Negro (Purullena, Granada). Avance al estudio analítico y estadístico”, Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 12-13, pp. 135-155. https://doi.org/10.30827/cpag.v12i0.1278De La Torre, F., Molina, F., Carrión, F., Contreras, F, Blanco, L., Moreno, M. A., Ramos, A. y De La Torre, M. A. (1984), “Segunda campaña de excavaciones (1983) en el poblado de la Edad del Cobre de «El Malagón» (Cúllar-Baza, Granada)”, Cuadernos de Prehistoria de la Universidad de Granada, 9, pp. 131-146. https://doi.org/10.30827/cpag.v9i0.1231Delibes de Castro, G., Fernández-Miranda Árbol, M., Fernández-Posse, M.D. y Martín Morales, C. (1986), “El poblado de Amizaraque”, en O. Arteaga (ed.), Homenaje a Luis Siret (1934-1984), Sevilla, Junta de Andalucía, pp. 167-177.Delibes de Castro, G., Fernández-Miranda, M., Martín, C. y Fernández-Posse, M. D. (1985), “Almizaraque (Cuevas de Almanzora, Almería)”, XVII Congreso Nacional de Arqueología. Zaragoza, pp. 221-232.Dorado, A. (2019), Caracterización de las producciones cerámicas de Andalucía Oriental y el Sudeste de la Península Ibérica: del Bronce Tardío al Hierro Antiguo (1550/1500 – 550 cal AC), Granada, Universidad de Granada. http://hdl.handle.net/10481/55777Dorado, A., Molina, F., Cámara, J. A. y Gámiz, J. (2017), “La cerámica campaniforme del Cerro de la Encina (Monachil, Granada). Nuevas aportaciones al complejo cultural del Sureste”, en V. S. Gonçalves (coord.), Sinos e taças junto ao oceano e mais longe: aspectos da presença campaniforme na Peninsula Ibérica (Estudos Memórias 10), Lisboa, Universidade de Lisboa, pp. 268-279.Dorado, A., Molina, F., Contreras, F., Nájera, T., Carrión, F., Sáez, L., De La Torre, F. y Gámiz, J. (2015), “El Cerro de Cabezuelos (Jódar, Jaén): Un asentamiento del Bronce Final en el Alto Guadalquivir”, Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 25, pp. 257-347. https://doi.org/10.30827/cpag.v25i0.5368Dorado, A., Sol, J. F. y Adroher, A. M. (2020), “La transformación de las estructuras defensivas entre el Bronce Final y los primeros momentos de la Edad del Hierro en el sudeste de la Península Ibérica”, en A. Guerrero Martín (ed.), Imperialismo y Ejércitos, Granada, Universidad de Granada, pp. 39-60Fernández Martín, S. (2010), Los complejos cerámicos del yacimiento arqueológico de la Motilla del Azuer (Daimiel, Ciudad Real). Universidad de Granada, Granada. http://hdl.handle.net/10481/6643Fernández-Posse, M. D., Gilman, A. y Martín, C. (1996), “Consideraciones cronológicas sobre la Edad del Bronce en La Mancha”, Complutum Extra, 6 (2), pp. 111-137. https://revistas.ucm.es/index.php/CMPL/article/view/CMPL9696330111AGonzález Quintero, P., Mederos Martín, A., Díaz Cantón, A., Bashore Acero, C., Chamón Fernández, J. y Moreno Benítez, M. A. (2018), “El poblado fortificado metalúrgico del Calcolítico Medio y final de Puente de Santa Bárbara (Huércal-Overa, Almería)”, Zephyrvs, 81, pp. 71-91. https://doi.org/10.14201/zephyrus2018817191Hernández Pérez, M. S., López, J. A. y Jover, F. J. (2021), “En los orígenes de El Argar: la cerámica decorada como indicador arqueológico de su espacio social inicial”, Trabajos de Prehistoria, 78 (1), pp. 86-103. https://doi.org/10.3989/tp.2021.12266Jakowski, A. E., Schröder-Ritzrau, A., Frank, N. y Alonso Blanco, J. M. (2021), “Nuevas investigaciones sobre el «Acueducto» de Los Millares (Santa Fe de Mondújar, Almería)”, Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 31, pp. 255-284. https://doi.org/10.30827/cpag.v31i0.17848Kalb, Ph. (1969), “El poblado del Cerro de la Virgen de Orce (Granada)”, X Congreso Nacional de Arqueología (Mahón, 1967), Zaragoza, pp. 216-225.Lenguazco, R. (2016a), Ocupación del territorio y aprovechamiento de recursos en el Bronce de La Mancha: Las Motillas y su territorio de explotación directa, Madrid, Universidad Autónoma de Madrid. http://hdl.handle.net/10486/671726— (2016b), “El concepto de motilla en la bibliografía arqueológica: ¿qué entendemos por motilla como yacimiento arqueológico? ¿cuántas se conocen hasta la fecha?”, Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 26, pp. 379-406. https://doi.org/10.30827/cpag.v26i0.7407Lizcano, R., Cámara, J. A., Contreras, F., Pérez, C. y Burgos, A. (2004), “Continuidad y cambio en comunidades calcolíticas del Alto Guadalquivir”, en Simposios de Prehistoria Cueva de Nerja. II. La problemática del Neolítico en Andalucía. III. Las primeras sociedades metalúrgicas en Andalucía, Fundación Cueva de Nerja, Nerja, pp. 159-175.Lull, V., Micó, R., Rihuete, C. y Risch, R. (2013), “La fortificación de La Bastida y los orígenes de la violencia militarizada en Europa”, Cuadernos de La Santa Totana (Murcia), 14, pp. 247-254.Lull, V., Micó, R., Rihuete, C., Risch, R., Celdrán, E., Fregeiro, M. I., Oliart, C. y Velasco, C. (2015), La Almoloya (Pliego, Murcia), Ruta Argárica. Guías Arqueológicas 2, Integral, Sociedad para el Desarrollo Rural, Murcia.Martín, C., Fernández Miranda, M., Fernández-Posse, M. D. y Gilman, A. (1993), “The Bronze Age of La Mancha”, Antiquity, 67, pp. 23-45.Martínez, C. y Botella, M. (1980), El Peñón de la Reina (Alboloduy, Almería), Excavaciones Arqueológicas en España 112. Madrid, Ministerio de Cultura.Mederos Martin, A. Schuhmacher, T. X., Falkenstein, F., Ostermeier, N., Bashore, C., Vargas, J. M., Ruppert, M. (2021), “El poblado de la Edad del Cobre de Valencina de la Concepción (Sevilla): nuevos datos sobre sus recintos y espacios domésticos. Campaña de 2018”, Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 31, pp. 285-331. https://doi.org/10.30827/cpag.v31i0.18024Molina, F. y Pareja, E. (1975), Excavaciones en la Cuesta del Negro (Purullena, Granada). Campaña de 1971, Excavaciones Arqueológicas en España 86, Madrid, Ministerio de Educación y Ciencia.Molina, F., Afonso, J. A., Cámara, J. A., Dorado, A., Martínez Sánchez, R. M. y Spanedda, L. (2020), “The chronology of the defensive systems at Los Millares (Santa Fe de Mondújar, Almería, Spain)”, en D. Delfino, F. Coimbra, G. Cruz y D. Cardoso (eds.), Late Prehistoric Fortifications in Europe: Defensive, symbolic and territorial aspects from the Chalcolithic to the Iron Age. Proceeding of ‘FortMetalAges’, International Colloquium, Guimarães, Portugal, London, Archaeopress Archaeology, pp. 31-43.Molina, F., Aguayo, P., Fresneda, E. y Contreras, F. (1986), “Nuevas investigaciones en yacimientos de la Edad del Bronce en Granada”, en Homenaje a L. Siret (1934-1984), Sevilla, Junta de Andalucía, pp. 353-360.Molina, F., Aguayo, P., Carrasco, J., Nájera, T., y Dorado, A. (2018), “Cerro de los Castellones (Laborcillas, Granada)”, en F. Contreras y A. Dorado (coords.) (2018), Yacimientos arqueológicos y artefactos. Las colecciones del Departamento de Prehistoria y Arqueología (I), Cuaderno Técnico de la Universidad de Granada 7, Granada, Universidad de Granada, pp. 46-49Molina, F., Cámara, J. A., Afonso, J. A. y Spaneda, L. (2019), “Análisis estadístico de las dataciones radiocarbónicas de la Motilla del Azuer (Daimiel, Ciudad Real)”, Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 29, pp. 309-351. https://doi.org/10.30827/cpag.v29i0.9780Molina, F., Camara, J. A., Capel, J., Najera, T. y Saez, L. (2004), “Los Millares y la periodización de la Prehistoria Reciente del Sudeste”, en Simposios de Prehistoria Cueva de Nerja. II. La problemática del Neolítico en Andalucía. III. Las primeras sociedades metalúrgicas en Andalucía, Nerja, Fundación Cueva de Nerja, pp. 142-158Molina, F., Carrion, F., Blanco, I. y Contreras, F. (1983), “La Motilla de la Isla de las Cañas (Daimiel, Ciudad Real)”, Cuadernos de Prehistoria de la Universidad de Granada, 8, pp. 301-324. https://doi.org/10.30827/cpag.v8i0.1217Molina, F., De La Torre, F. y Moreno, A. (2018), “El Malagón (Cúllar, Granada)”, en F. Contreras Cortés y A. Dorado Alejos (coords.), Yacimientos arqueológicos y artefactos. Las colecciones del Departamento de Prehistoria y Arqueología (I), Cuaderno Técnico de la Universidad de Granada, 7, Granada, Universidad de Granada, pp. 38-40Molina, F., Nájera, T., Aranda, G., Sánchez, M. y Haro, M. (2005), “Recent field-work at the Bronze Age fortified site of Motilla del Azuer (Daimiel, Spain)”, Antiquity, 79, pp. 306.Molina, F., Cámara, J. A., Dorado, A. y Villarroya, M. (2017), “El fenómeno campaniforme en el Sudeste de la Península Ibérica: el caso del Cerro de la Virgen (Orce, Granada)”, en V. S. Gonçalves (coord.), Sinos e taças junto ao oceano e mais longe: aspectos da presença campaniforme na Peninsula Ibérica (Estudos Memórias 10), Lisboa, Universidade de Lisboa, pp. 112-129.Moreno, M. A. y Haro, M. (2008), “Castellón Alto (Galera, Granada). Puesta En Valor De Un Yacimiento Argárico”, Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 18, pp. 371-395. https://doi.org/10.30827/cpag.v18i0.751Morgado, A. (2018), “Poblado Amurallado de Villavieja (Fuentes De Cesna-Algarinejo, Granada)”, en F. Contreras Cortés y A. Dorado Alejos (coords.), Yacimientos arqueológicos y artefactos. Las colecciones del Departamento de Prehistoria y Arqueología (I), Cuaderno Técnico de la Universidad de Granada, 7, Granada, Universidad de Granada, pp. 34-37.Morgado, A., García, A., Bueno, J. A., López, R., Santamaría, U., Garzón, J., Aguiló, C., Bermúdez, R., Marín, T. R., Navero, M., Pérez, D., Piriz, A., Soto, T., De La Torre, A. y Vivar, D. (2020), “Prehistoria del subbético de Granada el conjunto arqueológico de los Tajos de Marchales (Colmera-Montillana, Granada)”, Antiquitas, 32, pp. 7-22.Muñoz Amilibia, A. M. (1986), “Las fortificaciones eneolíticas en la Península Ibérica. El Cabezo del Plomo (Mazarrón, Murcia)”, Congreso de Historia Militar, T. I, Zaragoza, pp. 53-62.— (1993), “Neolítico Final-Calcolítico en el Sureste Peninsular. El Cabezo del Plomo (Mazarrón-Murcia)”, Espacio, Tiempo y Forma, Prehistoria, 6, pp. 133-180.Nájera, T. (1982), La Edad del Bronce en La Mancha Occidental, Tesis doctoral. Granada, Universidad de Granada. http://hdl.handle.net/10481/32595Nájera, T. y Molina, F. (1977), “La Edad del Bronce en La Mancha. Excavaciones en las motillas del Azuer y de Los Palacios (Campaña de 1974)”, Cuadernos de Prehistoria de la Universidad de Granada, 2, pp. 251-300. https://doi.org/10.30827/cpag.v2i0.727— (2004a), “La Edad del Bronce en La Mancha: problemática y perspectivas de la investigación”, en L. Hernández y M. Hernández (eds.), La Edad del Bronce en tierras levantinas y limítrofes, Villena, Instituto de Cultura Juan Gil-Albert, pp. 531-540.— (2004b), “Las Motillas. Un modelo de asentamiento con fortificación central en la Llanura de La Mancha”, en M. R. García Huerta y J. Morales Hervás (eds.), La Península Ibérica en el II milenio a.C.: Poblados y fortificaciones, Cuenca, Ediciones de la Universidad de Castilla-La Mancha, pp. 173-214.Nicas Perales, J. y Cámara Serrano, J. A. (2017), “Fortificación y ritual en el yacimiento calcolítico de Marroquíes (Jaén). Los fosos del Paseo de la Estación”, Antiquitas, 29, pp. 39-57.Nocete, F., Crespo, J. M. y Zafra, N. (1986), “El Cerro del Salto. Historia de una periferia”, Cuadernos de Prehistoria de la Universidad de Granada, 11, pp. 171-198. https://doi.org/10.30827/cpag.v11i0.1264Schubart, H., Pingel, V. y Arteaga, O. (2000), Fuente Álamo. Las excavaciones arqueológicas 1977-1991 en el poblado de la Edad del Bronce, Arqueología Monografías 8, Sevilla, Junta de Andalucía.Schüle, W. (1980), Orce und Galera. Zwei Siedlungen aus dem 3. bis l. Jahrtausend v. Chr. im Südosten der Iberischen Halbinsel. I Übersicht über die Ausgrabungen 1962-1970, Philipp von Zabern. Mainz am Rheim.Schüle, W. y Pellicer, M. (1966), El Cerro de la Virgen, Orce (Granada), Excavaciones Arqueológicas en España 46. Madrid, Ministerio de Educación.Siret, E. y Siret, L. (1890), Las primeras edades del metal en el Sudeste de España. Resultados obtenidos en las excavaciones hechas por los autores desde 1881 á 1887, Barcelona.Sol Plaza, J. F., Dorado Alejos, A., Adroher Auroux. A. M. y Molina González, F. (2020), “¿Sólo indígenas? Reinterpretando algunos artefactos del Cerro de los Infantes a la luz de las nuevas investigaciones”, Antiquitas, 32, pp. 37-55.Spanedda, L., Cámara, J. A., Molina, F., Nájera, T. y Dorado, A. (2020), “Pianificazione e specializzazione negli insediamenti della preistoria recente nel sud-est della Penisola Iberica (3300-1350 cal a.C.)”, en Archeologia dell’abitare. Insediamenti e organizzazione sociale prima della città. Dai monumenti ai comportamenti. Ricerche e scavi (Vol I). Milan, Centro Studi di Preistoria e Archeologia, pp. 457-466.Tarradell, M. (1947-1948), “Investigaciones arqueológicas en la provincia de Granada”, Ampurias, IX-X, pp. 223-236. https://raco.cat/index.php/Empuries/article/view/97671
APA, Harvard, Vancouver, ISO, and other styles
4

Hens, Luc, Nguyen An Thinh, Tran Hong Hanh, et al. "Sea-level rise and resilience in Vietnam and the Asia-Pacific: A synthesis." VIETNAM JOURNAL OF EARTH SCIENCES 40, no. 2 (2018): 127–53. http://dx.doi.org/10.15625/0866-7187/40/2/11107.

Full text
Abstract:
Climate change induced sea-level rise (SLR) is on its increase globally. Regionally the lowlands of China, Vietnam, Bangladesh, and islands of the Malaysian, Indonesian and Philippine archipelagos are among the world’s most threatened regions. Sea-level rise has major impacts on the ecosystems and society. It threatens coastal populations, economic activities, and fragile ecosystems as mangroves, coastal salt-marches and wetlands. This paper provides a summary of the current state of knowledge of sea level-rise and its effects on both human and natural ecosystems. The focus is on coastal urban areas and low lying deltas in South-East Asia and Vietnam, as one of the most threatened areas in the world. About 3 mm per year reflects the growing consensus on the average SLR worldwide. The trend speeds up during recent decades. The figures are subject to local, temporal and methodological variation. In Vietnam the average values of 3.3 mm per year during the 1993-2014 period are above the worldwide average. Although a basic conceptual understanding exists that the increasing global frequency of the strongest tropical cyclones is related with the increasing temperature and SLR, this relationship is insufficiently understood. Moreover the precise, complex environmental, economic, social, and health impacts are currently unclear. SLR, storms and changing precipitation patterns increase flood risks, in particular in urban areas. Part of the current scientific debate is on how urban agglomeration can be made more resilient to flood risks. Where originally mainly technical interventions dominated this discussion, it becomes increasingly clear that proactive special planning, flood defense, flood risk mitigation, flood preparation, and flood recovery are important, but costly instruments. Next to the main focus on SLR and its effects on resilience, the paper reviews main SLR associated impacts: Floods and inundation, salinization, shoreline change, and effects on mangroves and wetlands. The hazards of SLR related floods increase fastest in urban areas. This is related with both the increasing surface major cities are expected to occupy during the decades to come and the increasing coastal population. In particular Asia and its megacities in the southern part of the continent are increasingly at risk. The discussion points to complexity, inter-disciplinarity, and the related uncertainty, as core characteristics. An integrated combination of mitigation, adaptation and resilience measures is currently considered as the most indicated way to resist SLR today and in the near future.References Aerts J.C.J.H., Hassan A., Savenije H.H.G., Khan M.F., 2000. Using GIS tools and rapid assessment techniques for determining salt intrusion: Stream a river basin management instrument. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 265-273. Doi: 10.1016/S1464-1909(00)00014-9. Alongi D.M., 2002. Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331-349. Doi: 10.1017/S0376892902000231 Alongi D.M., 2015. The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1, 30-39. Doi: 10.1007/s404641-015-0002-x. Anderson F., Al-Thani N., 2016. Effect of sea level rise and groundwater withdrawal on seawater intrusion in the Gulf Coast aquifer: Implications for agriculture. Journal of Geoscience and Environment Protection, 4, 116-124. Doi: 10.4236/gep.2016.44015. Anguelovski I., Chu E., Carmin J., 2014. Variations in approaches to urban climate adaptation: Experiences and experimentation from the global South. Global Environmental Change, 27, 156-167. Doi: 10.1016/j.gloenvcha.2014.05.010. Arustienè J., Kriukaitè J., Satkunas J., Gregorauskas M., 2013. Climate change and groundwater - From modelling to some adaptation means in example of Klaipèda region, Lithuania. In: Climate change adaptation in practice. P. Schmidt-Thomé, J. Klein Eds. John Wiley and Sons Ltd., Chichester, UK., 157-169. Bamber J.L., Aspinall W.P., Cooke R.M., 2016. A commentary on “how to interpret expert judgement assessments of twenty-first century sea-level rise” by Hylke de Vries and Roderik S.W. Van de Wal. Climatic Change, 137, 321-328. Doi: 10.1007/s10584-016-1672-7. Barnes C., 2014. Coastal population vulnerability to sea level rise and tropical cyclone intensification under global warming. BSc-thesis. Department of Geography, University of Lethbridge, Alberta Canada. Be T.T., Sinh B.T., Miller F., 2007. Challenges to sustainable development in the Mekong Delta: Regional and national policy issues and research needs. The Sustainable Mekong Research Network, Bangkok, Thailand, 1-210. Bellard C., Leclerc C., Courchamp F., 2014. Impact of sea level rise on 10 insular biodiversity hotspots. Global Ecology and Biogeography, 23, 203-212. Doi: 10.1111/geb.12093. Berg H., Söderholm A.E., Sönderström A.S., Nguyen Thanh Tam, 2017. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong delta, Vietnam. Sustainability Science, 12, 137-154. Doi: 10.1007/s11625-016-0409-x. Bilskie M.V., Hagen S.C., Medeiros S.C., Passeri D.L., 2014. Dynamics of sea level rise and coastal flooding on a changing landscape. Geophysical Research Letters, 41, 927-934. Doi: 10.1002/2013GL058759. Binh T.N.K.D., Vromant N., Hung N.T., Hens L., Boon E.K., 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau penisula, Vietnam. Environment, Development and Sustainability, 7, 519-536. Doi: 10.1007/s10668-004-6001-z. Blankespoor B., Dasgupta S., Laplante B., 2014. Sea-level rise and coastal wetlands. Ambio, 43, 996- 005.Doi: 10.1007/s13280-014-0500-4. Brockway R., Bowers D., Hoguane A., Dove V., Vassele V., 2006. A note on salt intrusion in funnel shaped estuaries: Application to the Incomati estuary, Mozambique.Estuarine, Coastal and Shelf Science, 66, 1-5. Doi: 10.1016/j.ecss.2005.07.014. Cannaby H., Palmer M.D., Howard T., Bricheno L., Calvert D., Krijnen J., Wood R., Tinker J., Bunney C., Harle J., Saulter A., O’Neill C., Bellingham C., Lowe J., 2015. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore. Ocean Sci. Discuss, 12, 2955-3001. Doi: 10.5194/osd-12-2955-2015. Carraro C., Favero A., Massetti E., 2012. Investment in public finance in a green, low carbon economy. Energy Economics, 34, S15-S18. Castan-Broto V., Bulkeley H., 2013. A survey ofurban climate change experiments in 100 cities. Global Environmental Change, 23, 92-102. Doi: 10.1016/j.gloenvcha.2012.07.005. Cazenave A., Le Cozannet G., 2014. Sea level rise and its coastal impacts. GeoHealth, 2, 15-34. Doi: 10.1002/2013EF000188. Chu M.L., Guzman J.A., Munoz-Carpena R., Kiker G.A., Linkov I., 2014. A simplified approach for simulating changes in beach habitat due to the combined effects of long-term sea level rise, storm erosion and nourishment. Environmental modelling and software, 52, 111-120. Doi.org/10.1016/j.envcsoft.2013.10.020. Church J.A. et al., 2013. Sea level change. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of Intergovernmental Panel on Climate Change. Eds: Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., Cambridge University Press, Cambridge, UK. Connell J., 2016. Last days of the Carteret Islands? Climate change, livelihoods and migration on coral atolls. Asia Pacific Viewpoint, 57, 3-15. Doi: 10.1111/apv.12118. Dasgupta S., Laplante B., Meisner C., Wheeler, Yan J., 2009. The impact of sea level rise on developing countries: A comparative analysis. Climatic Change, 93, 379-388. Doi: 10.1007/s 10584-008-9499-5. Delbeke J., Vis P., 2015. EU climate policy explained, 136p. Routledge, Oxon, UK. DiGeorgio M., 2015. Bargaining with disaster: Flooding, climate change, and urban growth ambitions in QuyNhon, Vietnam. Public Affairs, 88, 577-597. Doi: 10.5509/2015883577. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, 2015. Enhancement of coastal protection under the context of climate change: A case study of Hai Hau coast, Vietnam. Proceedings of the 10th Asian Regional Conference of IAEG, 1-8. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, Lan Nguyen Chau, 2017. Climate change impacts on a large-scale erosion coast of Hai Hau district, Vietnam and the adaptation. Journal of Coastal Conservation, 21, 47-62. Donner S.D., Webber S., 2014. Obstacles to climate change adaptation decisions: A case study of sea level rise; and coastal protection measures in Kiribati. Sustainability Science, 9, 331-345. Doi: 10.1007/s11625-014-0242-z. Driessen P.P.J., Hegger D.L.T., Bakker M.H.N., Van Renswick H.F.M.W., Kundzewicz Z.W., 2016. Toward more resilient flood risk governance. Ecology and Society, 21, 53-61. Doi: 10.5751/ES-08921-210453. Duangyiwa C., Yu D., Wilby R., Aobpaet A., 2015. Coastal flood risks in the Bangkok Metropolitan region, Thailand: Combined impacts on land subsidence, sea level rise and storm surge. American Geophysical Union, Fall meeting 2015, abstract#NH33C-1927. Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marba N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961-968. Doi: 10.1038/nclimate1970. Erban L.E., Gorelick S.M., Zebker H.A., 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9, 1-20. Doi: 10.1088/1748-9326/9/8/084010. FAO - Food and Agriculture Organisation, 2007.The world’s mangroves 1980-2005. FAO Forestry Paper, 153, Rome, Italy. Farbotko C., 2010. Wishful sinking: Disappearing islands, climate refugees and cosmopolitan experimentation. Asia Pacific Viewpoint, 51, 47-60. Doi: 10.1111/j.1467-8373.2010.001413.x. Goltermann D., Ujeyl G., Pasche E., 2008. Making coastal cities flood resilient in the era of climate change. Proceedings of the 4th International Symposium on flood defense: Managing flood risk, reliability and vulnerability, 148-1-148-11. Toronto, Canada. Gong W., Shen J., 2011. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China.Continental Shelf Research, 31, 769-788. Doi: 10.1016/j.csr.2011.01.011. Gosian L., 2014. Protect the world’s deltas. Nature, 516, 31-34. Graham S., Barnett J., Fincher R., Mortreux C., Hurlimann A., 2015. Towards fair outcomes in adaptation to sea-level rise. Climatic Change, 130, 411-424. Doi: 10.1007/s10584-014-1171-7. COASTRES-D-12-00175.1. Güneralp B., Güneralp I., Liu Y., 2015. Changing global patterns of urban expoàsure to flood and drought hazards. Global Environmental Change, 31, 217-225. Doi: 10.1016/j.gloenvcha.2015.01.002. Hallegatte S., Green C., Nicholls R.J., Corfee-Morlot J., 2013. Future flood losses in major coastal cities. Nature Climate Change, 3, 802-806. Doi: 10.1038/nclimate1979. Hamlington B.D., Strassburg M.W., Leben R.R., Han W., Nerem R.S., Kim K.-Y., 2014. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nature Climate Change, 4, 782-785. Doi: 10.1038/nclimate2307. Hashimoto T.R., 2001. Environmental issues and recent infrastructure development in the Mekong Delta: Review, analysis and recommendations with particular reference to large-scale water control projects and the development of coastal areas. Working paper series (Working paper No. 4). Australian Mekong Resource Centre, University of Sydney, Australia, 1-70. Hibbert F.D., Rohling E.J., Dutton A., Williams F.H., Chutcharavan P.M., Zhao C., Tamisiea M.E., 2016. Coral indicators of past sea-level change: A global repository of U-series dated benchmarks. Quaternary Science Reviews, 145, 1-56. Doi: 10.1016/j.quascirev.2016.04.019. Hinkel J., Lincke D., Vafeidis A., Perrette M., Nicholls R.J., Tol R.S.J., Mazeion B., Fettweis X., Ionescu C., Levermann A., 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111, 3292-3297. Doi: 10.1073/pnas.1222469111. Hinkel J., Nicholls R.J., Tol R.S.J., Wang Z.B., Hamilton J.M., Boot G., Vafeidis A.T., McFadden L., Ganapolski A., Klei R.J.Y., 2013. A global analysis of erosion of sandy beaches and sea level rise: An application of DIVA. Global and Planetary Change, 111, 150-158. Doi: 10.1016/j.gloplacha.2013.09.002. Huong H.T.L., Pathirana A., 2013. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci., 17, 379-394. Doi: 10.5194/hess-17-379-2013. Hurlimann A., Barnett J., Fincher R., Osbaldiston N., Montreux C., Graham S., 2014. Urban planning and sustainable adaptation to sea-level rise. Landscape and Urban Planning, 126, 84-93. Doi: 10.1016/j.landurbplan.2013.12.013. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, 2011. Climate change vulnerability and risk assessment study for Ca Mau and KienGiang provinces, Vietnam. Hanoi, Vietnam Institute of Meteorology, Hydrology and Environment (IMHEN), 250p. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, Ca Mau PPC, 2011. Climate change impact and adaptation study in The Mekong Delta - Part A: Ca Mau Atlas. Hanoi, Vietnam: Institute of Meteorology, Hydrology and Environment (IMHEN), 48p. IPCC-Intergovernmental Panel on Climate Change, 2014. Fifth assessment report. Cambridge University Press, Cambridge, UK. Jevrejeva S., Jackson L.P., Riva R.E.M., Grinsted A., Moore J.C., 2016. Coastal sea level rise with warming above 2°C. Proceedings of the National Academy of Sciences, 113, 13342-13347. Doi: 10.1073/pnas.1605312113. Junk W.J., AN S., Finlayson C.M., Gopal B., Kvet J., Mitchell S.A., Mitsch W.J., Robarts R.D., 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquatic Science, 75, 151-167. Doi: 10.1007/s00027-012-0278-z. Jordan A., Rayner T., Schroeder H., Adger N., Anderson K., Bows A., Le Quéré C., Joshi M., Mander S., Vaughan N., Whitmarsh L., 2013. Going beyond two degrees? The risks and opportunities of alternative options. Climate Policy, 13, 751-769. Doi: 10.1080/14693062.2013.835705. Kelly P.M., Adger W.N., 2000. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Climatic Change, 47, 325-352. Doi: 10.1023/A:1005627828199. Kirwan M.L., Megonigal J.P., 2013. Tidal wetland stability in the face of human impacts and sea-level rice. Nature, 504, 53-60. Doi: 10.1038/nature12856. Koerth J., Vafeidis A.T., Hinkel J., Sterr H., 2013. What motivates coastal households to adapt pro actively to sea-level rise and increased flood risk? Regional Environmental Change, 13, 879-909. Doi: 10.1007/s10113-12-399-x. Kontgis K., Schneider A., Fox J;,Saksena S., Spencer J.H., Castrence M., 2014. Monitoring peri urbanization in the greater Ho Chi Minh City metropolitan area. Applied Geography, 53, 377-388. Doi: 10.1016/j.apgeogr.2014.06.029. Kopp R.E., Horton R.M., Little C.M., Mitrovica J.X., Oppenheimer M., Rasmussen D.J., Strauss B.H., Tebaldi C., 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2, 383-406. Doi: 10.1002/2014EF000239. Kuenzer C., Bluemel A., Gebhardt S., Quoc T., Dech S., 2011. Remote sensing of mangrove ecosystems: A review.Remote Sensing, 3, 878-928. Doi: 10.3390/rs3050878. Lacerda G.B.M., Silva C., Pimenteira C.A.P., Kopp Jr. R.V., Grumback R., Rosa L.P., de Freitas M.A.V., 2013. Guidelines for the strategic management of flood risks in industrial plant oil in the Brazilian coast: Adaptive measures to the impacts of sea level rise. Mitigation and Adaptation Strategies for Global Change, 19, 104-1062. Doi: 10.1007/s11027-013-09459-x. Lam Dao Nguyen, Pham Van Bach, Nguyen Thanh Minh, Pham Thi Mai Thy, Hoang Phi Hung, 2011. Change detection of land use and river bank in Mekong Delta, Vietnam using time series remotely sensed data. Journal of Resources and Ecology, 2, 370-374. Doi: 10.3969/j.issn.1674-764x.2011.04.011. Lang N.T., Ky B.X., Kobayashi H., Buu B.C., 2004. Development of salt tolerant varieties in the Mekong delta. JIRCAS Project, Can Tho University, Can Tho, Vietnam, 152. Le Cozannet G., Rohmer J., Cazenave A., Idier D., Van de Wal R., de Winter R., Pedreros R., Balouin Y., Vinchon C., Oliveros C., 2015. Evaluating uncertainties of future marine flooding occurrence as sea-level rises. Environmental Modelling and Software, 73, 44-56. Doi: 10.1016/j.envsoft.2015.07.021. Le Cozannet G., Manceau J.-C., Rohmer J., 2017. Bounding probabilistic sea-level projections with the framework of the possible theory. Environmental Letters Research, 12, 12-14. Doi.org/10.1088/1748-9326/aa5528.Chikamoto Y., 2014. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888-892. Doi: 10.1038/nclimate2330. Lovelock C.E., Cahoon D.R., Friess D.A., Gutenspergen G.R., Krauss K.W., Reef R., Rogers K., Saunders M.L., Sidik F., Swales A., Saintilan N., Le Xuan Tuyen, Tran Triet, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526, 559-563. Doi: 10.1038/nature15538. MA Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Current state and trends. Island Press, Washington DC, 266p. Masterson J.P., Fienen M.N., Thieler E.R., Gesch D.B., Gutierrez B.T., Plant N.G., 2014. Effects of sea level rise on barrier island groundwater system dynamics - ecohydrological implications. Ecohydrology, 7, 1064-1071. Doi: 10.1002/eco.1442. McGanahan G., Balk D., Anderson B., 2007. The rising tide: Assessing the risks of climate changes and human settlements in low elevation coastal zones.Environment and urbanization, 19, 17-37. Doi: 10.1177/095624780707960. McIvor A., Möller I., Spencer T., Spalding M., 2012. Reduction of wind and swell waves by mangroves. The Nature Conservancy and Wetlands International, 1-27. Merryn T., Pidgeon N., Whitmarsh L., Ballenger R., 2016. Expert judgements of sea-level rise at the local scale. Journal of Risk Research, 19, 664-685. Doi.org/10.1080/13669877.2015.1043568. Monioudi I.N., Velegrakis A.F., Chatzipavlis A.E., Rigos A., Karambas T., Vousdoukas M.I., Hasiotis T., Koukourouvli N., Peduzzi P., Manoutsoglou E., Poulos S.E., Collins M.B., 2017. Assessment of island beach erosion due to sea level rise: The case of the Aegean archipelago (Eastern Mediterranean). Nat. Hazards Earth Syst. Sci., 17, 449-466. Doi: 10.5194/nhess-17-449-2017. MONRE - Ministry of Natural Resources and Environment, 2016. Scenarios of climate change and sea level rise for Vietnam. Publishing House of Environmental Resources and Maps Vietnam, Hanoi, 188p. Montz B.E., Tobin G.A., Hagelman III R.R., 2017. Natural hazards. Explanation and integration. The Guilford Press, NY, 445p. Morgan L.K., Werner A.D., 2014. Water intrusion vulnerability for freshwater lenses near islands. Journal of Hydrology, 508, 322-327. Doi: 10.1016/j.jhydrol.2013.11.002. Muis S., Güneralp B., Jongman B., Aerts J.C.H.J., Ward P.J., 2015. Science of the Total Environment, 538, 445-457. Doi: 10.1016/j.scitotenv.2015.08.068. Murray N.J., Clemens R.S., Phinn S.R., Possingham H.P., Fuller R.A., 2014. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and Environment, 12, 267-272. Doi: 10.1890/130260. Neumann B., Vafeidis A.T., Zimmermann J., Nicholls R.J., 2015a. Future coastal population growth and exposure to sea-level rise and coastal flooding. A global assessment. Plos One, 10, 1-22. Doi: 10.1371/journal.pone.0118571. Nguyen A. Duoc, Savenije H. H., 2006. Salt intrusion in multi-channel estuaries: a case study in the Mekong Delta, Vietnam. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 10, 743-754. Doi: 10.5194/hess-10-743-2006. Nguyen An Thinh, Nguyen Ngoc Thanh, Luong Thi Tuyen, Luc Hens, 2017. Tourism and beach erosion: Valuing the damage of beach erosion for tourism in the Hoi An, World Heritage site. Journal of Environment, Development and Sustainability. Nguyen An Thinh, Luc Hens (Eds.), 2018. Human ecology of climate change associated disasters in Vietnam: Risks for nature and humans in lowland and upland areas. Springer Verlag, Berlin.Nguyen An Thinh, Vu Anh Dung, Vu Van Phai, Nguyen Ngoc Thanh, Pham Minh Tam, Nguyen Thi Thuy Hang, Le Trinh Hai, Nguyen Viet Thanh, Hoang Khac Lich, Vu Duc Thanh, Nguyen Song Tung, Luong Thi Tuyen, Trinh Phuong Ngoc, Luc Hens, 2017. Human ecological effects of tropical storms in the coastal area of Ky Anh (Ha Tinh, Vietnam). Environ Dev Sustain, 19, 745-767. Doi: 10.1007/s/10668-016-9761-3. Nguyen Van Hoang, 2017. Potential for desalinization of brackish groundwater aquifer under a background of rising sea level via salt-intrusion prevention river gates in the coastal area of the Red River delta, Vietnam. Environment, Development and Sustainability. Nguyen Tho, Vromant N., Nguyen Thanh Hung, Hens L., 2008. Soil salinity and sodicity in a shrimp farming coastal area of the Mekong Delta, Vietnam. Environmental Geology, 54, 1739-1746. Doi: 10.1007/s00254-007-0951-z. Nguyen Thang T.X., Woodroffe C.D., 2016. Assessing relative vulnerability to sea-level rise in the western part of the Mekong River delta. Sustainability Science, 11, 645-659. Doi: 10.1007/s11625-015-0336-2. Nicholls N.N., Hoozemans F.M.J., Marchand M., Analyzing flood risk and wetland losses due to the global sea-level rise: Regional and global analyses.Global Environmental Change, 9, S69-S87. Doi: 10.1016/s0959-3780(99)00019-9. Phan Minh Thu, 2006. Application of remote sensing and GIS tools for recognizing changes of mangrove forests in Ca Mau province. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Ho Chi Minh City, Vietnam, 9-11 November, 1-17. Reise K., 2017. Facing the third dimension in coastal flatlands.Global sea level rise and the need for coastal transformations. Gaia, 26, 89-93. Renaud F.G., Le Thi Thu Huong, Lindener C., Vo Thi Guong, Sebesvari Z., 2015. Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre province, Mekong Delta. Climatic Change, 133, 69-84. Doi: 10.1007/s10584-014-1113-4. Serra P., Pons X., Sauri D., 2008. Land cover and land use in a Mediterranean landscape. Applied Geography, 28, 189-209. Shearman P., Bryan J., Walsh J.P., 2013.Trends in deltaic change over three decades in the Asia-Pacific Region. Journal of Coastal Research, 29, 1169-1183. Doi: 10.2112/JCOASTRES-D-12-00120.1. SIWRR-Southern Institute of Water Resources Research, 2016. Annual Report. Ministry of Agriculture and Rural Development, Ho Chi Minh City, 1-19. Slangen A.B.A., Katsman C.A., Van de Wal R.S.W., Vermeersen L.L.A., Riva R.E.M., 2012. Towards regional projections of twenty-first century sea-level change based on IPCC RES scenarios. Climate Dynamics, 38, 1191-1209. Doi: 10.1007/s00382-011-1057-6. Spencer T., Schuerch M., Nicholls R.J., Hinkel J., Lincke D., Vafeidis A.T., Reef R., McFadden L., Brown S., 2016. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model. Global and Planetary Change, 139, 15-30. Doi:10.1016/j.gloplacha.2015.12.018. Stammer D., Cazenave A., Ponte R.M., Tamisiea M.E., 2013. Causes of contemporary regional sea level changes. Annual Review of Marine Science, 5, 21-46. Doi: 10.1146/annurev-marine-121211-172406. Tett P., Mee L., 2015. Scenarios explored with Delphi. In: Coastal zones ecosystems services. Eds., Springer, Berlin, Germany, 127-144. Tran Hong Hanh, 2017. Land use dynamics, its drivers and consequences in the Ca Mau province, Mekong delta, Vietnam. PhD dissertation, 191p. VUBPRESS Brussels University Press, ISBN 9789057186226, Brussels, Belgium. Tran Thuc, Nguyen Van Thang, Huynh Thi Lan Huong, Mai Van Khiem, Nguyen Xuan Hien, Doan Ha Phong, 2016. Climate change and sea level rise scenarios for Vietnam. Ministry of Natural resources and Environment. Hanoi, Vietnam. Tran Hong Hanh, Tran Thuc, Kervyn M., 2015. Dynamics of land cover/land use changes in the Mekong Delta, 1973-2011: A remote sensing analysis of the Tran Van Thoi District, Ca Mau province, Vietnam. Remote Sensing, 7, 2899-2925. Doi: 10.1007/s00254-007-0951-z Van Lavieren H., Spalding M., Alongi D., Kainuma M., Clüsener-Godt M., Adeel Z., 2012. Securing the future of Mangroves. The United Nations University, Okinawa, Japan, 53, 1-56. Water Resources Directorate. Ministry of Agriculture and Rural Development, 2016. Available online: http://www.tongcucthuyloi.gov.vn/Tin-tuc-Su-kien/Tin-tuc-su-kien-tong-hop/catid/12/item/2670/xam-nhap-man-vung-dong-bang-song-cuu-long--2015---2016---han-han-o-mien-trung--tay-nguyen-va-giai-phap-khac-phuc. Last accessed on: 30/9/2016. Webster P.J., Holland G.J., Curry J.A., Chang H.-R., 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846. Doi: 10.1126/science.1116448. Were K.O., Dick O.B., Singh B.R., 2013. Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage Basin, Kenya. Applied Geography, 41, 75-86. Williams G.A., Helmuth B., Russel B.D., Dong W.-Y., Thiyagarajan V., Seuront L., 2016. Meeting the climate change challenge: Pressing issues in southern China an SE Asian coastal ecosystems. Regional Studies in Marine Science, 8, 373-381. Doi: 10.1016/j.rsma.2016.07.002. Woodroffe C.D., Rogers K., McKee K.L., Lovdelock C.E., Mendelssohn I.A., Saintilan N., 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8, 243-266. Doi: 10.1146/annurev-marine-122414-034025.
APA, Harvard, Vancouver, ISO, and other styles
5

De, Mattia Willy, Susanne Reier, and Elisabeth Haring. "Morphological investigation of genital organs and first insights into the phylogeny of the genus Siciliaria Vest, 1867 as a basis for a taxonomic revision (Mollusca, Gastropoda, Clausiliidae)." ZooKeys 1077 (December 14, 2021): 1–175. https://doi.org/10.3897/zookeys.1077.67081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Müller, Karin (Author), Alice (Author) Käch, and Simon (Author) Leu. "Ausgewählte Entscheide im Gesellschaftsrecht der Jahre 2015/2016 in Kürze." Jusletter, January 20, 2017. https://doi.org/10.5281/zenodo.1309187.

Full text
Abstract:
Im Beitrag finden Sie eine Zusammenstellung von in der amtlichen Sammlung publizierten und weiteren wichtigen (nicht amtlich publizierten) Entscheiden des Bundesgerichts im Gesellschaftsrecht von November 2015 bis Oktober 2016. Dem Praktiker soll damit eine rasche Übersicht über die Entwicklungen in der bundesgerichtlichen Rechtsprechung gegeben werden. Die Zusammenfassungen der Urteile sind mit Bemerkungen versehen.
APA, Harvard, Vancouver, ISO, and other styles
7

Müller, Karin (Author), and Simon (Autor/in) Leu. "Aktuelle Rechtsprechung des Bundesgerichts im Gesellschaftsrecht – Teil 2." Jusletter, May 7, 2018. https://doi.org/10.5281/zenodo.1305177.

Full text
Abstract:
Im Beitrag finden Sie eine Zusammenstellung von in der amtlichen Sammlung publizierten und weiteren wichtigen (nicht amtlich publizierten) Entscheiden des Bundesgerichts im Gesellschaftsrecht von Oktober 2016 bis Oktober 2017 (vgl. für Teil 1: Jusletter 30. April 2018). Dem Praktiker soll damit eine rasche Übersicht über die Entwicklungen in der bundesgerichtlichen Rechtsprechung gegeben werden. Die Zusammenfassungen der Urteile sind mit Bemerkungen versehen.
APA, Harvard, Vancouver, ISO, and other styles
8

Dolomatov, S.I., та W. Zukow. "Эпигенетика почек = Kidneys epigenetics". 7 липня 2019. https://doi.org/10.5281/zenodo.3270754.

Full text
Abstract:
<strong>Dolomatov S.I., Zukow W. </strong><strong>Эпигенетика почек</strong><strong> = Kidney</strong><strong>s</strong><strong> epigenetics</strong><strong>. </strong><strong>RSW. Radom,</strong><strong> 144 </strong><strong>p. ISBN </strong><strong>9780359774524</strong><strong>.</strong><strong> DOI </strong><strong>http://dx.doi.org/10.5281/zenodo.3270699</strong><strong> PBN Poland </strong><strong>https://pbn.nauka.gov.pl/sedno-webapp/works/917606</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <strong>Radomska Szkoła Wyższa w Radomiu, Radom, Poland</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <strong>С.И. Доломатов, В.А. Жуков </strong> <strong>S.I. </strong><strong>Dolomatov, </strong><strong>W. </strong><strong>Zukow</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <strong>Эпигенетика почек</strong> <strong>Kidneys epigenetics</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <strong>Radom, 2019</strong> <strong>Dolomatov S.I., Zukow W. </strong><strong>Эпигенетика почек</strong><strong> = Kidneys epigenetics</strong><strong>. </strong><strong>RSW. Radom,</strong><strong> 144 </strong><strong>p. ISBN </strong><strong>9780359774524</strong><strong>.</strong><strong> DOI </strong><strong>http://dx.doi.org/10.5281/zenodo.3270699</strong><strong> PBN Poland </strong><strong>https://pbn.nauka.gov.pl/sedno-webapp/works/917606</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <strong>Radomska Szkoła Wyższa w Radomiu, Radom, Poland</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <strong>С.И. Доломатов, В.А. Жуков </strong> <strong>S.I. </strong><strong>Dolomatov, </strong><strong>W. </strong><strong>Zukow</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <strong>Эпигенетика почек</strong> <strong>Kidneys epigenetics</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <strong>Radom, 2019</strong> <strong>Dolomatov S.I., Zukow W. </strong><strong>Эпигенетика почек</strong><strong> = Kidneys epigenetics</strong><strong>. </strong><strong>RSW. Radom,</strong><strong> 144 </strong><strong>p. ISBN </strong><strong>9780359774524</strong><strong>.</strong><strong> DOI </strong><strong>http://dx.doi.org/10.5281/zenodo.3270699</strong><strong> PBN Poland </strong><strong>https://pbn.nauka.gov.pl/sedno-webapp/works/917606</strong> &nbsp; <strong>Reviewers:</strong> <strong>dr hab. </strong><strong>R</strong><strong>. </strong><strong>Muszkieta, prof. nadzw.</strong><strong> (</strong><strong>Poland</strong><strong>)</strong> <strong>dr hab. M</strong><strong>. </strong><strong>Napierała, prof. nadzw</strong><strong> (</strong><strong>Poland</strong><strong>)</strong> &nbsp; <strong>АННОТАЦИЯ</strong> В книге представлены сведения о роли эпигенетических механизмов в системе контроля функции почек в норме и при патологии. Результаты анализа роли эпигенетического контроля экспрессии генов транспортных и регуляторных белков почки в норме указывают, во-первых, на высокую пластичность процессов изменения экспрессии генов. Во-вторых, иллюстрируют их способность адекватно реагировать на изменения параметров гомеостатических функций почек, что, в свою очередь, позволяет рассматривать данные процессы в качестве еще одного звена управления деятельностью органа наряду с нейро-эндокринными и внутриорганными уровнями гуморального контроля водно-солевого баланса организма. Приведены факты, подчеркивающие вовлеченность гуморальных факторов системного действия и внутрипочечных систем гуморального контроля в процессы эпигенетической перестройки экспрессии генов ренальной паренхимы в норме и при патологии. Также анализируется роль факторов среды в регуляции экспрессии генов. &nbsp; <strong>ANNOTATION</strong> The book provides information about the role of epigenetic mechanisms in the system of monitoring renal function in normal and pathological conditions. The results of the analysis of the role of epigenetic control of gene expression of kidney transport and regulatory proteins normally indicate, firstly, the high plasticity of gene expression change processes. Secondly, they illustrate their ability to adequately respond to changes in the parameters of homeostatic functions of the kidneys, which, in turn, makes it possible to consider these processes as another element in the management of organ activity along with neuro-endocrine and intraorgan levels of the humoral control of the body&rsquo;s water-salt balance. The facts that emphasize the involvement of humoral factors of systemic action and intrarenal systems of humoral control in the processes of epigenetic rearrangement of the expression of renal parenchyma genes in normal and pathological conditions are presented. The role of environmental factors in the regulation of gene expression is also analyzed. &nbsp; <strong>Ключевые слова: почки, эпигенетика.</strong> <strong>Key words: kidneys, epigenetics.</strong> &nbsp; &copy; The Author(s) 2019. This monograph is published with Open Access. Open Access This monograph is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. &nbsp; &nbsp; Attribution &mdash; You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial &mdash; You may not use this work for commercial purposes. Share Alike &mdash; If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. &nbsp; Zawartość jest objęta licencją Creative Commons Uznanie autorstwa-Użycie niekomercyjne-Na tych samych warunkach 4.0 &nbsp; <strong>ISBN 9780359774524</strong> &nbsp; <strong>DOI </strong><strong>http://dx.doi.org/10.5281/zenodo.</strong><strong>3270699</strong> &nbsp; <strong>PBN Poland </strong><strong>https://pbn.nauka.gov.pl/sedno-webapp/works/917606</strong> &nbsp; Radomska Szkoła Wyższa w Radomiu, Polska ul. 1905 roku 26/28 26-600 Radom Tel: 048 383 66 05 mail: med@rsw.edu.pl &nbsp; <strong>144</strong><strong> p. Number of characters: 2</strong><strong>50</strong><strong> 000 (with abstracts). Number of images:</strong><strong> 4 </strong><strong>x 1000 characters (lump sum) =</strong><strong> 4 </strong><strong>000 characters.</strong> <strong>Total: Number of characters: 2</strong><strong>54</strong><strong> 000 (with abstracts, summaries and graphics) = 6,</strong><strong>35</strong><strong> sheet publications.</strong> <strong>СОДЕРЖАНИЕ</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <strong>ВВЕДЕНИЕ</strong> <strong>7</strong> <strong>ОБЩИЕ СВЕДЕНИЯ ОБ ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМАХ</strong> <strong>8</strong> <strong>INTRODUCTION</strong> <strong>11</strong> <strong>GENERAL INFORMATION ON EPIGENETIC MECHANISMS</strong> <strong>13</strong> <strong>СПИСОК ЛИТЕРАТУРЫ К ГЛАВЕ &laquo;ВВЕДЕНИЕ И ОБЩИЕ СВЕДЕНИЯ ОБ ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМАХ&raquo;</strong> <strong>16</strong> &nbsp; &nbsp; <strong>ГЛАВА 1. </strong><strong>ЭПИГЕНЕТИЧЕСКИЕ</strong><strong> </strong><strong>МЕХАНИЗМЫ В СИСТЕМЕ КОНТРОЛЯ</strong><strong> </strong><strong>ФУНКЦИИ</strong><strong> </strong><strong>ПОЧЕК</strong><strong> </strong><strong>В</strong><strong> </strong><strong>НОРМЕ</strong> <strong>2</strong><strong>1</strong> <strong>1.1. ПЛАСТИЧНОСТЬ СИСТЕМ ЭПИГЕНЕТИЧЕСКОЙ МОДУЛЯЦИИ ЭКСПРЕССИИ ГЕНОВ РЕНАЛЬНОЙ ПАРЕНХИМЫ</strong> <strong>23</strong> <strong>1.2. ЭНДОКРИННЫЕ ФАКТОРЫ РЕГУЛЯЦИИ ВОДНО-СОЛЕВОГО БАЛАНСА ОРГАНИЗМА В СИСТЕМЕ ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМОВ КОНТРОЛЯ ГОМЕОСТАЗА</strong> <strong>27</strong> <strong>1.2.1. АРГИНИН-ВАЗОПРЕССИН (АВП)</strong> <strong>27</strong> <strong>1.2.2. НАТРИЙУРЕТИЧЕСКИЕ ПЕПТИДЫ</strong> <strong>30</strong> <strong>СПИСОК ЛИТЕРАТУРЫ К ГЛАВЕ &laquo;ЭПИГЕНЕТИЧЕСКИЕ</strong><strong> </strong><strong>МЕХАНИЗМЫ </strong><strong>В СИСТЕМЕ КОНТРОЛЯ ФУНКЦИИ ПОЧЕК В НОРМЕ&raquo;</strong> <strong>33</strong> <strong>ГЛАВА 2. НЕКОТОРЫЕ ФАКТОРЫ АКТИВАЦИИ </strong><strong>ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМОВ</strong> <strong>47</strong> <strong>2.1. ИЗМЕНЕНИЕ ТЕМПЕРАТУРНОГО РЕЖИМА, КАК ФАКТОР ИНДУКЦИИ ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМОВ</strong> <strong>49</strong> <strong>2.2. ГИПОКСИЯ</strong> <strong>50</strong> <strong>2.3. ГИПЕРГЛИКЕМИЯ</strong> <strong>52</strong> <strong>2.4. ТЯЖЕЛЫЕ МЕТАЛЛЫ</strong> <strong>54</strong> <strong>2.5. ЭНДОКРИНОПАТИИ</strong> <strong>57</strong> <strong>2.6. </strong><strong>ЭПИГЕНЕТИЧЕСКИЕ ПРОЦЕССЫ, ИНДУЦИРОВАННЫЕ ПАТОГЕННЫМИ МИКРООРГАНИЗМАМИ</strong> <strong>59</strong> <strong>СПИСОК ЛИТЕРАТУРЫ К ГЛАВЕ &laquo;НЕКОТОРЫЕ ФАКТОРЫ АКТИВАЦИИ ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМОВ&raquo;</strong> <strong>61</strong> &nbsp; &nbsp; <strong>ГЛАВА 3. ФАКТОРЫ ВНУТРИОРГАННОЙ ГУМОРАЛЬНОЙ РЕГУЛЯЦИИ ДЕЯТЕЛЬНОСТИ ПОЧЕК. ИХ МЕСТО И РОЛЬ В ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМАХ НАРУШЕНИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ РЕНАЛЬНОЙ ПАРЕНХИМЫ</strong> <strong>69</strong> <strong>3.1. РЕНИН-АНГИОТЕНЗИНОВАЯ СИСТЕМА (РАС)</strong> <strong>70</strong> <strong>3.2. МИНЕРАЛОКОРТИКОИДЫ.</strong> <strong>76</strong> <strong>3.3. ТРАНСФОРМИРУЮЩИЙ ФАКТОР РОСТА-бета1 </strong> <strong>79</strong> <strong>3.4. МОЛЕКУЛА ОКСИДА АЗОТА (</strong><strong>NO</strong><strong>)</strong> <strong>83</strong> <strong>3.5. ПАТОФИЗИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ЭПИГЕНЕТИЧЕСКОЙ ТРАНСФОРМАЦИИ СИСТЕМЫ ВНУТРИОРГАННОЙ ГУМОРАЛЬНОЙ РЕГУЛЯЦИИ ДЕЯТЕЛЬНОСТИ ПОЧЕК</strong> <strong>87</strong> <strong>СПИСОК ЛИТЕРАТУРЫ К ГЛАВЕ &laquo;ФАКТОРЫ ВНУТРИОРГАННОЙ ГУМОРАЛЬНОЙ РЕГУЛЯЦИИ ДЕЯТЕЛЬНОСТИ ПОЧЕК. ИХ МЕСТО И РОЛЬ В ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМАХ НАРУШЕНИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ РЕНАЛЬНОЙ ПАРЕНХИМЫ&raquo;</strong> <strong>89</strong> &nbsp; &nbsp; <strong>ГЛАВА 4. БЕЛКИ РЕНИН-АНГИОТЕНЗИНОВОЙ СИСТЕМЫ ПРИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ </strong> <strong>105</strong> <strong>4.1. ДИАГНОСТИЧЕСКАЯ ЦЕННОСТЬ АНАЛИЗА ЭКСПРЕССИИ БЕЛКОВ-КОМПОНЕНТОВ РАС В ОНКОЛОГИИ</strong> <strong>107</strong> <strong>4.1.1. Рецепторы к А-</strong><strong>II</strong> <strong>107</strong> <strong>4.1.2. Ангиотензин-</strong><strong>I</strong><strong>-превращающий фермент (АСЕ-1)</strong> <strong>108</strong> <strong>4.1.3. Ангиотензин-</strong><strong>I</strong><strong>-превращающий фермент-2 (АСЕ-2) и ось ACE2/Ang-(1&ndash;7)/M</strong><strong>AS</strong><strong>1</strong> <strong>110</strong> <strong>4.1.4. Ангиотензиноген</strong> <strong>111</strong> <strong>4.1.5. (Про)Ренин</strong> <strong>112</strong> <strong>4.2. ЭПИГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ, КАК ВОЗМОЖНЫЕ РЕГУЛЯТОРЫ ЭКСПРЕССИИ ПРОТЕИНОВ-КОМПОНЕНТОВ РАС ПРИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ</strong> <strong>114</strong> <strong>4.3. ОНКОЛОГИЧЕСКИЕ АСПЕКТЫ ЭКСПРЕССИИ КОМПОНЕНТОВ РАС И ЛОКАЛЬНАЯ РЕНИН-АНГИОТЕНЗИНОВАЯ СИСТЕМА</strong> <strong>116</strong> <strong>СПИСОК ЛИТЕРАТУРЫ К ГЛАВЕ &laquo;БЕЛКИ РЕНИН-АНГИОТЕНЗИНОВОЙ СИСТЕМЫ ПРИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ&raquo;</strong> <strong>120</strong> &nbsp; &nbsp; <strong>ВВЕДЕНИЕ</strong> &nbsp; Заболевание почек является одной из наиболее актуальных глобальных проблем современной медицины. Данные медицинской статистики показывают неуклонный рост числа нефрологических пациентов, нуждающихся в диализе и трансплантации органа (Reddy M.A, Natarajan R., 2015; Uwaezuoke S.N. et al., 2016; Zununi Vahed S. et al., 2016). Дополняет драматичность картины тот факт, что данная тенденция демонстрирует актуальность и в отношении детей, включая новорожденных (Woroniecki R. et al., 2011; Uwaezuoke S.N. et al., 2016; Lee-Son K., Jetton J.G., 2016). Проблема носит серьезный характер, но даже привлечение к ее преодолению подходов генетики, основанных на законах моногенного наследования Г. Менделя, не в полной мере решает поставленную задачу. Выводы специалистов по медицинской генетике, изучающих наследование патологических признаков, способствующих повышению рисков возникновения почечной недостаточности, сопровождаются констатацией практической значимости выяснения эпигенетических механизмов поражения ткани почек (K&ouml;ttgen A. et al., 2010; Lee-Son K., Jetton J.G., 2016; Ma R.C.W., 2016). Действительно, обзоры результатов экспериментальных и клинических исследований, указывают на необходимость более глубокого развития научного направления, связанного с эпигенетическими механизмами патогенеза почечной недостаточности (Thomas M.C., 2016; Witasp A. et al., 2017). Вместе с тем, особенность деятельности почки заключается в том, что различные сегменты ее структурно-функциональной единицы &ndash; нефрона, обладают существенными отличиями между собой, связанными с их транспортными возможностями, набором гуморальных факторов регуляции их активности и физико-химическими параметрами среды микроокружения. Действительно, гомеостатические функции разных отделов нефрона, координируются достаточно сложной системой гуморальных факторов, определяющих физиологические и патофизиологические механизмы реакции почек на изменения параметров водных бассейнов организма и внешних неблагоприятных воздействий. К числу таких гуморальных факторов следует отнести ренин-ангиотензин-альдостероновую систему (РААС) (Lee-Son K., Jetton J.G, 2016), оксид азота (Shirodkar A.V., Marsden P.A., 2011), трансформирующий фактор роста-бета (Shi M. et al., 2011) и т.д. Перечисленные гуморальные факторы контроля органогенеза и гомеостатических функций почек требуют более глубокого изучения, поскольку могут также являться медиаторами структурно-функциональных нарушений ренальной паренхимы, связанных, в том числе и с эпигенетическими преобразованиями процессов транскрипции и трансляции в условиях острой и хронической почечной недостаточности. С этих позиций, актуальность эпигенетического подхода обусловлена тем, что, во-первых, сведения об изменениях экспрессии генов, осуществляющих контроль над биосинтезом и экспрессией протеинов ренальной паренхимы, а также системных и внутрипочечных гуморальных факторов регуляции гомеостатической функции почек могут быть использованы в совершенствовании методов современной лабораторной диагностики заболеваний почек (Kobori H. et al., 2008). Во-вторых, выяснение эпигенетических механизмов патогенеза почечной недостаточности открывает перспективу в разработке принципиально новых фармакологических препаратов, в том числе, контролирующих синтез ренальной паренхимой различных физиологически активных молекул (Marumo T. et al., 2008; Reddy M.A, Natarajan R., 2015). В-третьих, выяснение эпигенетических механизмов прогрессирования почечной недостаточности позволяет по-новому оценить спектр применения и нефропротекторных свойств уже известных и широко применяемых препаратов, действие которых основано на коррекции активности гуморальных систем контроля гомеостатических функций органа (Reddy M.A. et al., 2014; Hayashi K. et al., 2015). Таким образом, мы видим свою задачу в том, чтобы попытаться интегрировать современные достижения молекулярной биологии и биохимии в уже существующую систему научных представлений о физиологических механизмах регуляции деятельности почек и патофизиологических процессах патогенеза становления и прогрессирования почечной недостаточности. Следовательно, цель нашей работы сводится к выяснению нескольких вопросов. Во-первых, какова роль эпигенетической трансформации хроматина и микро РНК в физиологических механизмах регуляции деятельности почек? Во-вторых, какова роль эпигенетических процессов нарушения баланса системного и внутрипочечного метаболизма гуморальных факторов регуляции функции почек в становлении и прогрессировании почечной недостаточности? <strong>ОБЩИЕ СВЕДЕНИЯ ОБ ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМАХ</strong> &nbsp; Эпигенетика &mdash; современное научное направление, изучающее механизмы регуляции экспрессии генов. Эпигенетические механизмы не оказывают влияния на первичную структуру нуклеиновых кислот (Beckerman P. et al., 2014) и реализуются процессами метилирования и деметилирования ДНК (van der Wijst M.G.P. et al., 2015), РНК (Saletore Y. et al., 2013) и посттрансляционным процессингом гистоновых белков (Voon H.P.J., Wong L.H., 2016; Jamal A. et al., 2012). По нашему мнению, важно отметить, что процессы синтеза и постранскрипционного процессинга микро РНК находятся под жестким контролем энзимов (Treiber T. et al., 2019; Michlewski G., C&aacute;ceres J.F., 201(). Помимо этого, микро РНК могут выполнять важную функцию в регуляции биосинтеза белка на уровне транскрипции или трансляции (Petrillo F. et al., 2017; Thomas M.J. et al., 2018). По данным авторов цитируемых обзоров, изучение метаболизма микро РНК в различных биологических средах организма способствует разработке принципиально новых методов диагностики и лечения заболеваний почек. Помимо этого, эпигенетические механизмы принимают участие в адаптивных реакциях организма и популяции в ответ на изменения факторов среды через модуляцию экспрессии генов (Zama A.M., Uzumcu M., 2010). Одним из наиболее изученных эпигенетических механизмов регуляции экспрессии генов является процесс метилирования ДНК. Данный процесс заключается в присоединении метиловых групп (CH<sub>3</sub>) к одному из четырех видов нуклеотидов ДНК путем образования между ними ковалентной связи, однако, порядок последовательности нуклеотидов в цепи ДНК при этом не меняется (Lister R. et al., 2009;Woroniecki R. et al., 2011). За присоединение метиловых групп к нуклеотидам отвечает один из четырех изоферментов ядерных ДНК-метилтрансфераз (DNMT) &ndash; а именно DNMT1, DNMT2, DNMT3a или DNMT3b (Reddy M.A., Natarajan R., 2015; Efimova O.A. et al., 2012). DNMT1 распознает полуметилированную ДНК (каждую из её цепей) во время репликации (Bechtel W. et al., 2010). DNMT3a и DNMT3b обеспечивают метилирование ДНК de novo, т. е. повторно, в новых сайтах. Функция DNMT2 до сих пор является предметом дискуссии (Jamal A. et al., 2012). ДНК-метилтрансферазы обладают способностью встраивать особые &laquo;метки&raquo; в нуклеиновые кислоты, что приводит к изменению экспрессии данных генов (van der Wijst M.G.P. et al., 2015). Высказывается предположение о том, что эпигенетические &laquo;метки&raquo; в цепи ДНК блокируют процесс транскрипции более двух третей объема ДНК (Ponnaluri V.K.C. et al., 2016). Таким образом, клетки организма применяют ковалентную модификацию ДНК с целью регуляции экспрессии генов по так называемому принципу &ldquo;on/off&rdquo; (Quarta C. et al., 2016). Метилирование ДНК в большинстве случаев происходит на цитозиновом азотистом основании (С), располагающимся в паре с гуанином (G), на так называемых CpG-участках, или CpG-кластерах (Dwivedi R.S. et al., 2011). В человеческом организме около 70-80% CpG-динуклеотидов находятся в метилированном состоянии (Ziller M.J. et al., 2013). Участки цепи ДНК, где плотность CpG-кластеров особенно высока, называют CpG-островками (Zhang D. et al., 2009). Однако процесс метилирования ДНК осуществляется на участках с пониженной плотностью CpG-динуклеотидов (Ziller M.J. et al., 2013). Наряду с процессом метилирования ДНК большое значение в эпигенетической регуляции экспрессии генов имеет процесс деметилирования (van der Wijst M.G.P. et al., 2015; Yefimova O.A. et al., 2012). Деметилирование ДНК &ndash; процесс высвобождения ДНК от метильных групп, который осуществляется при помощи специальных ферментов демиталаз (Auclair G., Weber M., 2012). Кроме того, к эпигенетическим механизмам относят также модификации белков-гистонов в результате процессов ацетилирования, деацетилирования, фосфорилирования, убиквитинирования и др. (Ganai S.A. et al., 2016; Araki Y., Mimura T., 2017;). Процессы ацетилирования и деацетилирования возможны благодаря ряду специфических ферментов &mdash; гистонацетилазам (ацетилтрансферазам, HAT) и гистондеацетилазам (HDAC) (Gong F. et al., 2016). Фосфорилирование же происходит за счет ферментов киназ (фосфотрансфераз) (Araki Y., Mimura T., 2017; Nathan D. et al., 2012). Ковалентная модификация гистонов, как правило, ослабляет связь гистонового кора нуклеосомы и ДНК, что способствует доступности молекулы ДНК для процесса транскрипции (Rossetto D. et al., 2012). Однако, это правило не носит универсальный характер. Например, ацетилирование лизина в положении 27 гистона H3 (H3K27ac) ведёт к усилению экспрессии генов. Сочетание ацетилированного лизина 14 (H3K14ac) и фосфорилированного серина 10 гистона H3 (H3S10ph) так же говорит о повышенной экспрессии генов (Chen K.W., Chen L., 2017). Наряду с этим другие модификации, а именно ацетилирование лизина H2AK5, H2BK20, H3K14, H4K5 и др. и фосфорилирование треонина H3T3 и серина H3S28 и H4S1 аналогично приводят к активированию гена (Araki Y., Mimura T., 2017; Wang Z. et al., 2008; Rossetto D. et al., 2012). Деацетилирование гистонов, напротив, сопровождается инактивацией гена, поскольку влечет за собой конденсацию ДНК и невозможность протекания транскрипции (Ganai S.A. et al., 2016). Посттранскрипционная экспрессия генов регулируется таким эпигенетическим механизмом как интерференция РНК. Интерференция РНК &mdash; это процесс подавления процесса биосинтеза белка (транскрипция, трансляция) при помощи микро РНК (Nabzdyk C.S. et al., 2017). При этом микро РНК может оказывать непосредственное влияние на состояние трансляции (Dwivedi R.S. et al., 2011; Cui J. et al., 2017). Собственно процесс подавления экспрессии генов именуется сайленсингом (Cui J. et al., 2017). МикроРНК &mdash; это класс коротких одноцепочечных некодирующих РНК длиной в 21-24 нуклеотида (Dwivedi R.S. et al., 2011; Zhang D. et al., 2009). За производство микро РНК ответственны эндогенные некодирующие участки ДНК. Помимо трансляции микро РНК обладает способностью подавлять экспрессию генов на стадии транскрипции (Dwivedi R.S. et al., 2011). Все регуляторные эффекты микро РНК встроены в определенную систему эпигенетического контроля функций данной популяции клеток (Dwivedi R.S. et al., 2011). Анализируя современные данные литературы, можно предположить, что эпигенетические механизмы являются важным элементом адаптации на популяционном и организменном уровне, осуществляющим координацию экспрессии генов адекватно изменениям факторов внешней среды. В нашем сознании понятие &laquo;эпигенетические механизмы&raquo; чаще ассоциируются с феноменом фетального программирования. Между тем, их деятельность активно протекает и в постнатальный период онтогенеза. Сложно сказать в чем именно может иметь место несовершенство этой формы адаптивного ответа, однако, ее реализация зачастую сопряжена с активацией патогенетических механизмов различных систем органов. <strong>INTRODUCTION</strong> &nbsp; Kidney disease is one of the most pressing global problems of modern medicine. Medical statistics show a steady increase in the number of nephrological patients in need of dialysis and organ transplantation (Reddy M.A, Natarajan R., 2015; Uwaezuoke S.N. et al., 2016; Zununi Vahed S. et al., 2016). The drama of the picture complements the fact that this trend also shows relevance for children, including newborns (Woroniecki R. et al., 2011; Uwaezuoke S.N. et al., 2016; Lee-Son K., Jetton J.G., 2016). The problem is serious, but even the attraction of genetics approaches based on the monogenic inheritance laws of G. Mendel to its overcoming does not fully solve the problem posed. The findings of specialists in medical genetics who study the inheritance of pathological signs that increase the risk of renal failure are accompanied by a statement of the practical importance of finding out the epigenetic mechanisms of kidney tissue damage (K&ouml;ttgen A. et al., 2010; Lee-Son K., Jetton JG, 2016; Ma RCW, 2016). Indeed, reviews of the results of experimental and clinical studies indicate the need for a deeper development of the scientific direction related to the epigenetic mechanisms of the pathogenesis of renal failure (Thomas M.C., 2016; Witasp A. et al., 2017). At the same time, the peculiarity of the kidney activity is that the various segments of its structural and functional unit, the nephron, have significant differences among themselves related to their transport capabilities, a set of humoral factors regulating their activity and the physicochemical parameters of the microenvironment. Indeed, the homeostatic functions of different parts of the nephron are coordinated by a rather complex system of humoral factors that determine the physiological and pathophysiological mechanisms of the reaction of the kidneys to changes in the parameters of the body&rsquo;s water basins and external adverse effects. These humoral factors include the renin-angiotensin-aldosterone system (RAAS) (Lee-Son K., Jetton JG, 2016), nitric oxide (Shirodkar AV, Marsden PA, 2011), transforming growth factor-beta (Shi M. et al., 2011), etc. The listed humoral factors controlling organogenesis and homeostatic functions of the kidneys require further study, since they can also mediate structural and functional disorders of the renal parenchyma, including epigenetic transformations of transcription and translation in conditions of acute and chronic renal failure. From this point of view, the relevance of the epigenetic approach is due to the fact that, firstly, information on changes in the expression of genes that control biosynthesis and expression of renal parenchyma proteins, as well as systemic and intrarenal humoral factors regulating the homeostatic function of the kidneys can be used to improve modern methods. laboratory diagnosis of kidney disease (Kobori H. et al., 2008). Secondly, the clarification of the epigenetic mechanisms of renal failure pathogenesis opens up the prospect of developing fundamentally new pharmacological drugs, including those controlling the synthesis of renal parenchyma of various physiologically active molecules (Marumo T. et al., 2008; Reddy MA, Natarajan R., 2015) . Third, clarifying the epigenetic mechanisms of progression of renal failure allows us to re-evaluate the range of applications and the nephroprotective properties of already known and widely used drugs, which are based on correcting the activity of the humoral control systems of homeostatic organ functions (Reddy MA et al., 2014; Hayashi K . et al., 2015). Thus, we see our task in trying to integrate modern advances in molecular biology and biochemistry into the already existing system of scientific ideas about the physiological mechanisms of regulating kidney activity and the pathophysiological processes of the pathogenesis of renal failure and progression. Consequently, the goal of our work comes down to clarifying a few questions. First, what is the role of epigenetic transformation of chromatin and micro RNA in the physiological mechanisms of regulation of kidney activity? Secondly, what is the role of the epigenetic processes of imbalance of the systemic and intrarenal metabolism of humoral factors regulating the function of the kidneys in the formation and progression of renal failure? <strong>GENERAL INFORMATION ON EPIGENETIC MECHANISMS</strong> &nbsp; Epigenetics is a modern scientific direction that studies the mechanisms of regulation of gene expression. Epigenetic mechanisms do not affect the primary structure of nucleic acids (Beckerman P. et al., 2014) and are implemented by DNA methylation and demethylation processes (van der Wijst MGP et al., 2015), RNA (Saletore Y. et al., 2013) and post-translational processing of histone proteins (Voon HPJ, Wong LH, 2016; Jamal A. et al., 2012). In our opinion, it is important to note that the processes of synthesis and post-transcriptional processing of micro RNA are tightly controlled by enzymes (Treiber T. et al., 2019; Michlewski G., C&aacute;ceres JF, 201 (). In addition, micro RNA can perform an important function in the regulation of protein biosynthesis at the level of transcription or translation (Petrillo F. et al., 2017; Thomas MJ et al., 2018). According to the authors of the cited reviews, the study of the metabolism of micro RNA in various biological media of the body contributes to the development of fundamentally new diagnostic methods and kidney disease treatment. of this, epigenetic mechanisms are involved in adaptive responses of the organism and population in response to changes in environmental factors through modulation of gene expression (Zama A.M., Uzumcu M., 2010). One of the most studied epigenetic mechanisms of regulation of gene expression is the process of DNA methylation. This process involves the addition of methyl groups (CH3) to one of four types of DNA nucleotides by forming a covalent bond between them, however, the order of the sequence of nucleotides in the DNA chain does not change (Lister R. et al., 2009; Woroniecki R. et al., 2011). One of the four nuclear DNA methyltransferase isoenzymes (DNMT), namely DNMT1, DNMT2, DNMT3a or DNMT3b, is responsible for the addition of methyl groups to nucleotides (Reddy M.A., Natarajan R., 2015; Efimova O.A. et al., 2012). DNMT1 recognizes semi-methylated DNA (each of its chains) during replication (Bechtel W. et al., 2010). DNMT3a and DNMT3b provide de novo methylation of DNA, i.e., repeatedly, in new sites. The DNMT2 function is still under discussion (Jamal A. et al., 2012). DNA methyltransferases have the ability to embed specific &ldquo;tags&rdquo; in nucleic acids, which leads to changes in the expression of these genes (van der Wijst M.G.P. et al., 2015). It is suggested that epigenetic &ldquo;tags&rdquo; in the DNA chain block the transcription process for more than two thirds of the DNA volume (Ponnaluri V.K.C. et al., 2016). Thus, the cells of an organism use covalent modification of DNA in order to regulate gene expression according to the so-called &ldquo;on / off&rdquo; principle (Quarta C. et al., 2016). DNA methylation in most cases occurs on the cytosine nitrogen base (C), which is paired with guanine (G), on the so-called CpG sites, or CpG clusters (Dwivedi R.S. et al., 2011). In the human body, about 70-80% of CpG dinucleotides are in the methylated state (Ziller M.J. et al., 2013). The portions of the DNA chain where the density of CpG clusters is particularly high are called CpG islands (Zhang D. et al., 2009). However, the process of DNA methylation is carried out in areas with low density of CpG dinucleotides (Ziller M.J. et al., 2013). Along with the process of DNA methylation, the process of demethylation is of great importance in the epigenetic regulation of gene expression (van der Wijst M.G.P. et al., 2015; Yefimova O.A. et al., 2012). DNA demethylation is the process of DNA release from methyl groups, which is carried out with the help of special enzymes of demetallas (Auclair G., Weber M., 2012). In addition, modifications of histone proteins as a result of acetylation, deacetylation, phosphorylation, ubiquitination, etc. are also considered epigenetic mechanisms (Ganai S.A. et al., 2016; Araki Y., Mimura T., 2017;). Acetylation and deacetylation processes are possible due to a number of specific enzymes - histone acetylases (acetyltransferases, HAT) and histone deacetylases (HDAC) (Gong F. et al., 2016). Phosphorylation occurs at the expense of enzymes of kinases (phosphotransferases) (Araki Y., Mimura T., 2017; Nathan D. et al., 2012). Covalent modification of histones, as a rule, weakens the connection between the histone core of the nucleosome and DNA, which contributes to the availability of the DNA molecule for the transcription process (Rossetto D. et al., 2012). However, this rule is not universal. For example, acetylation of lysine at position 27 of histone H3 (H3K27ac) leads to increased gene expression. The combination of acetylated lysine 14 (H3K14ac) and phosphorylated serine 10 histone H3 (H3S10ph) also indicates increased gene expression (Chen K.W., Chen L., 2017). Along with this, other modifications, namely acetylation of lysine H2AK5, H2BK20, H3K14, H4K5, etc., and threonine H3T3 and serine H3S28 and H4S1 phosphorylation similarly lead to gene activation (Araki Y., Mimura T., 2017; Wang Z. et al ., 2008; Rossetto D. et al., 2012). On the contrary, histone deacetylation is accompanied by gene inactivation, as it entails DNA condensation and the impossibility of transcription (Ganai S.A. et al., 2016). Post-transcriptional gene expression is regulated by such an epigenetic mechanism as RNA interference. RNA interference is the process of suppressing the process of protein biosynthesis (transcription, translation) using micro RNA (Nabzdyk C.S. et al., 2017). At the same time, micro RNA can have a direct impact on the state of translation (Dwivedi R.S. et al., 2011; Cui J. et al., 2017). The actual process of suppressing gene expression is called silencing (Cui J. et al., 2017). MicroRNA is a class of short single-stranded non-coding RNAs of 21-24 nucleotides in length (Dwivedi R.S. et al., 2011; Zhang D. et al., 2009). Endogenous noncoding regions of DNA are responsible for the production of micro RNA. In addition to translation, micro RNA has the ability to suppress gene expression at the transcription stage (Dwivedi R.S. et al., 2011). All regulatory effects of micro RNA are embedded in a specific system of epigenetic control of the functions of a given cell population (Dwivedi R.S. et al., 2011). Analyzing modern literature data, it can be assumed that epigenetic mechanisms are an important element of adaptation at the population and organism level, coordinating the expression of genes adequately to changes in environmental factors. In our consciousness, the concept of &ldquo;epigenetic mechanisms&rdquo; is more often associated with the phenomenon of fetal programming. Meanwhile, their activity is actively proceeding in the postnatal period of ontogenesis. It is difficult to say exactly what the imperfection of this form of adaptive response can take place, however, its implementation often involves activation of the pathogenetic mechanisms of various organ systems. <strong>СПИСОК ЛИТЕРАТУРЫ К ГЛАВЕ &laquo;ВВЕДЕНИЕ&raquo;</strong> &nbsp; 1.Reddy M.A, Natarajan R. Recent Developments in Epigenetics of Acute and Chronic Kidney Diseases Kidney Int. 2015 88(2): 250&ndash;261 doi:10.1038/ki.2015.148 &nbsp; 2.Uwaezuoke S.N., Okafor H.U., Muoneke V.N. et al. Chronic kidney disease in children and the role of epigenetics: Future therapeutic trajectories. Biomed Rep. 2016; 5(6): 660&ndash;664 doi: 10.3892/br.2016.781 &nbsp; 3.Zununi Vahed S., Samadi N., Mostafidi E. et al. Genetics and Epigenetics of Chronic Allograft Dysfunction in Kidney Transplants. Iran J Kidney Dis. 2016;10(1):1-9 &nbsp; 4.Lee-Son K., Jetton J.G. AKI and Genetics: Evolving Concepts in the Genetics of Acute Kidney Injury: Implications for Pediatric AKI. J Pediatr Genet. 2016; 5(1): 61&ndash;68 doi:10.1055/s-0035-1557112 &nbsp; 5.Woroniecki R., Gaikwad A., Susztak K. Fetal environment, epigenetics, and pediatric renal disease. Pediatr Nephrol. 2011; 26(5): 705&ndash;711 doi: 10.1007/s00467-010-1714-8 &nbsp; 6.K&ouml;ttgen A., Pattaro C., B&ouml;ger C.A. et al. Multiple New Loci Associated with Kidney Function and Chronic Kidney Disease: The CKDGen consortium. Nat Genet. 2010; 42(5): 376&ndash;384 doi: 10.1038/ng.568 &nbsp; 7.Ma R.C.W. Genetics of cardiovascular and renal complications in diabetes. J Diabetes Investig. 2016; 7(2): 139&ndash;154 doi: 10.1111/jdi.12391 &nbsp; 8.Thomas M.C. Epigenetic Mechanisms in Diabetic Kidney Disease. Curr Diab Rep. 2016;16:31 doi 10.1007/s11892-016-0723-9 &nbsp; 9.Witasp A., Van Craenenbroeck A.H., Shiels P.G. et al. Current epigenetic aspects the clinical kidney researcher should embrace. Clinical Science. 2017; 131:1649&ndash;1667 doi:10.1042/CS20160596 &nbsp; 10.Shirodkar A.V., Marsden P.A. Epigenetics in cardiovascular disease. Curr Opin Cardiol. 2011; 26(3): 209&ndash;215 doi:10.1097/HCO.0b013e328345986e &nbsp; 11.Shi M., Zhu J., Wang R. et al. Latent TGF-&beta; structure and activation. Nature. 2011; 474(7351): 343&ndash;349 doi: 10.1038/nature10152 &nbsp; 12.Kobori H., Katsurada A., Miyata K. et al. Determination of plasma and urinary angiotensinogen levels in rodents by newly developed ELISA. Am J Physiol Renal Physiol. 2008; 294(5): F1257&ndash;F1263 doi: 10.1152/ajprenal.00588.2007 &nbsp; 13.Marumo T., Hishikawa K., Yoshikawa M., Fujita T. Epigenetic Regulation of BMP7 in the Regenerative Response to Ischemia. J Am Soc Nephrol. 2008; 19(7): 1311&ndash;1320 doi: 10.1681/ASN.2007091040 &nbsp; 14.Hayashi K., Sasamura H., Nakamura M. et al. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria. Kidney Int. 2015;88(4):745-753 doi: 10.1038/ki.2015.178 &nbsp; 15.Reddy M.A., Sumanth P., Lanting L. et al. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int. 2014; 85(2): 362&ndash;373 doi: 10.1038/ki.2013.387 &nbsp; 16.Kobori H., Kamiyama M., Harrison-Bernard L.M., Navar L.G. Cardinal Role of the Intrarenal Renin-Angiotensin System in the Pathogenesis of Diabetic Nephropathy. J Investig Med. 2013; 61(2): 256&ndash;264 doi:10.231/JIM.0b013e31827c28bb &nbsp; 17.Beckerman P., Ko Y.-A., Susztak K. Epigenetics: a new way to look at kidney diseases. Nephrol Dial Transplant. 2014; 29(10): 1821&ndash;1827 doi: 10.1093/ndt/gfu026 &nbsp; 18.van der Wijst M.G.P., Venkiteswaran M., Chen H. et al. Local chromatin microenvironment determines DNMT activity: from DNA DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epigenetics. 2015; 10(8): 671&ndash;676 doi:10.1080/15592294.2015.1062204 &nbsp; 19.Saletore Y.,<sup> </sup>Chen-Kiang S., Mason C.E. Novel RNA regulatory mechanisms revealed in the epitranscriptome. RNA Biol. 2013; 10(3): 342&ndash;346 doi: 10.4161/rna.23812 &nbsp; 20.Voon H.P.J., Wong L.H. New players in heterochromatin silencing: histone variant H3.3 and the ATRX/DAXX chaperone. Nucleic Acids Res. 2016; 44(4): 1496&ndash;1501 doi: 10.1093/nar/gkw012 &nbsp; 21.Jamal A., Man H.S.J., Marsden P.A. Gene Regulation in the Vascular Endothelium: Why Epigenetics Is Important for the Kidney. Semin Nephrol. 2012; 32(2): 176&ndash;184 doi: 10.1016/j.semnephrol.2012.02.009 &nbsp; 22.Treiber T., Treiber N., Meister G. Publisher Correction: Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019;20(5):321 doi: 10.1038/s41580-019-0106-6 23.Michlewski G., C&aacute;ceres J.F. Post-transcriptional control of miRNA biogenesis. RNA. 2019;25(1):1-16 doi: 10.1261/rna.068692.118 &nbsp; 24.Petrillo F., Iervolino A., Zacchia M., Simeoni A., Masella C., Capolongo G., Perna A., Capasso G., Trepiccione F. MicroRNAs in Renal Diseases: A Potential Novel Therapeutic Target. Kidney Dis (Basel). 2017;3(3):111-119 doi: 10.1159/000481730 25.Thomas M.J., Fraser D.J., Bowen T. Biogenesis, Stabilization, and Transport of microRNAs in Kidney Health and Disease. Noncoding RNA. 2018;4(4). pii: E30 doi: 10.3390/ncrna4040030 &nbsp; 26.Zama A.M., Uzumcu M. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: An ovarian perspective. Front Neuroendocrinol. 2010; 31(4): 420&ndash;439 doi:10.1016/j.yfrne.2010.06.003 &nbsp; 27.Lister R., Pelizzola M., Dowen R.H. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009; 462: 315-322 doi: 10.1038/nature08514 &nbsp; 28.Efimova O.A., Pendina A.A., Tikhonov A.V. et al. DNA methylation - a major mechanism of human genome reprogramming and regulation. Medical Genetics. 2012; 4(118): 10-18 &nbsp; 29.Bechtel W., McGoohan S., Zeisberg E.M. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 2010; 16(5): 544&ndash;550 doi: 10.1038/nm.2135 &nbsp; 30.Ponnaluri V.K.C., Ehrlich K.C., Zhang G., Lacey M., Johnston D., Pradhan S., Ehrlich M. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression. Epigenetics. 2016; 12(2): 123-138 doi: 10.1080/15592294.2016.1265713 &nbsp; 31.Quarta C., Shneider R., Tschӧp M.H. Epigenetic ON/OFF Switches for Obesity. Cell. 2016; 164(3): 341-342 doi: 10.1016/j.cell.2016.01.006 &nbsp; 32.Dwivedi R.S., Herman J.G., McCaffrey T. et al. Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int. 2011; 79(1): 23-32 doi: 10.1038/ki.2010.335 &nbsp; 33.Ziller M.J., Gu H., M&uuml;ller F., Donaghey J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013; 500(7463): 477-481. doi: 10.1038/nature12433 <strong>ГЛАВА 1. </strong><strong>ЭПИГЕНЕТИЧЕСКИЕ</strong><strong> </strong><strong>МЕХАНИЗМЫ </strong> <strong>В СИСТЕМЕ КОНТРОЛЯ</strong><strong> </strong><strong>ФУНКЦИИ</strong><strong> </strong><strong>ПОЧЕК</strong><strong> </strong><strong>В</strong><strong> </strong><strong>НОРМЕ</strong><strong> </strong> &nbsp; &nbsp; Эпигенетические системы управления экспрессии генов выполняют принципиально важную функцию на разных этапах онтогенеза. Например, у плода они координируют нормальное течение нефрогенеза. В зрелом возрасте эпигенетические механизмы тесно вовлечены в систему контроля гомеомтатических функций органа. Процессы снижения функции почек у пожилых людей также тесно связаны с эпигенетическими механизмами. Оценивая роль эпигенетических механизмов в процессах органогенеза почки, необходимо отметить роль метилирования гистонов в цитодифференцировке эмбриональных клеток (Adli M. et al., 2015). Наряду с этим, подчеркивается роль баланса активности гистоновых ацетилтрансфераз и деацетилаз в регуляции экспрессии генов на ранних стадиях органогенеза почки (Hilliard S.A, El-Dahr S.S., 2016). Высказывается мнение о том, что некоторые деацетилазы гистоновых белков (HDAC1 and HDAC2) могут быть критически важны для процессов развития канальцевого и сосудистого компонентов нефрона на ранних стадиях онтогенеза почки (Liu H. et al., 2018). Наряду с этим, в литературе имеются даные о том, что синтез некодидурющих РНК и реакции ацетилирования гистонов выполняют важную роль в формировании юкста-гломерулярного аппарата (ЮГА) в процессе нефрогенеза (Martini A.G., Danser A.H.J., 2017). С другой стороны, внутриорганная продукция компонентов ренин-ангиотензиновой системы (РАС) на ранних этапах онтогенеза также критически важна для координации гисто- и органогенеза. Установлено, что избыточное потребление хлорида натрия во время беременности может нарушать эти процессы через изменения активности внутриорганной экспрессии компонентов РАС и продукции оксида азота в тканях плода (Stocher D.P. et al., 2018). Анализ роли метилтрансфераз и деметилаз, а также гистон-ацетилтрансфераз и гистон-деацетилаз в процессах нефрогенеза позволил выявить определенные закономерности динамики активности данных групп ферментов по мере формирования нефрона (Hilliard S.A., El-Dah S.S., 2016). Авторы цитируемого обзора сопоставляют процессы нефрогенеза с топологией и динамикой во времени активности систем ковалентной модификации хроматина: остатков лизина в составе гистонов (H3K), остатков аргинина в составе гистонов (H3R) и молекулы ДНК. Наряду с процессами ковалентной модификации хроматина, механизмы транскрипции и метаболизма некодирующих РНК также могут иметь принципиально важное значение для нормального течения морфогенеза почки млекопитающих (Ho J., Kreidberg J.A., 2012). В настоящее время роль микро РНК в процессах органогенеза почки изучено достаточно подробно. В литературе имеются сведения о том, что некоторые семейства микро РНК критически важны для морфогенеза сосудисто-клубочкового и канальцевого отделов почки (Trionfini P., Benigni A., 2017). Возможно, эпигенетические механизмы органогенеза почки находятся под контролем гормонов системного действия материнского организма. В частности, показано, что такой способностью может обладать мелатонин (Tain Y.-L. et al., 2017). По мнению авторов, мелатонин обладает способностью контролировать не только формирование архитектуры нефрона, но и регулировать уровень активности внутрипочечной системы NO-синтаз и ренин-ангиотензиновой системы плода через интенсивность метилирования ДНК и ацетилирования белков гистонов. Кроме того, показано, что инсулин также обладает выраженным влиянием на состояние эпигенетических механизмов в тканях почки человека (Lay A.C., Coward R.J.M., 2018). В литературе приводятся данные о том, что гипометилирование хроматина на уровне нейро-эндокринного звена контроля деятельности почки &mdash; одна из причин увядания гомеостатической функции органа в преклонном возрасте (Murgatroyd C. et al., 2010). Дальнейшие исследования позволили установить важное значение роли метилирования хроматина в возрастных изменениях системы контроля водно-солевого баланса у млекопитающих (Greenwood M.P. et al., 2018). В литературе уделяется внимание роли микро РНК и ковалентной модификации хроматина в процессах возрастных нарушений функции почек человека (Shiels P.G. et al., 2017). На основе анализа роли деацетилаз гистонов SIRT1 и SIRT3 в регуляции обменных процессов почки, делается вывод о том, что данная группа ферментов обладает выраженным нефропротекторным свойством, обеспечивая сдерживание процессов старения тканей органа (Morigi M. et al., 2018). <strong>1.1. ПЛАСТИЧНОСТЬ СИСТЕМ ЭПИГЕНЕТИЧЕСКОЙ МОДУЛЯЦИИ ЭКСПРЕССИИ ГЕНОВ РЕНАЛЬНОЙ ПАРЕНХИМЫ </strong> &nbsp; Как уже отмечалось выше, в зрелом возрасте эпигенетические механизмы сохраняют за собой важное место в регуляции функции почек, в частности, адаптивных реакций ренальной паренхимы. Необходимо подчеркнуть, что эпигенетические механизмы контроля биосинтеза белка сохраняют высокий уровень пластичности в зрелом возрасте. Иллюстрируя высокие показатели пластичности обсуждаемых процессов, можно упомянуть роль метилирования ДНК в формировании суточного ритма поведенческой активности млекопитающих (Azzi A. et al., 2014). Следовательно, есть основания полагать, что молекулярные механизмы регуляции экспрессии генов могут непосредственно координировать адаптивные реакции ренальной паренхимы. Возможно, эпигенетические механизмы, наряду с нейро-гуморальными системами контроля водно-солевого обмена, принимают участие в регуляции гомеостатических функций почек. В ряде публикаций указывается, что стимулом для молекулярных механизмов управления экспрессии генов, как правило, является динамика параметров констант водно-солевого баланса организма. Результаты более ранних исследований показали, что метилтрансфераза гистонов Dot1a непосредственно определяет альдостерон-зависимую транскрипцию гена EnaC-альфа в дистальных отделах нефрона (Zhang D. et al., 2009). Согласно данным литературы, состояние посттранскрипционного процессинга предшественника микроРНК в проксимальных нефроцитах может выполнять ключевую роль в адаптации канальцевого эпителия к ишемии, возможно, участвуя в патогенезе реперфузионного поражения S3-сегмента (Wei Q. et al., 2010). Подчеркивается, что интенсивность репаративных реакций ренальной паренхимы может контролироваться некодирующими РНК и состоянием метилирования Н2А и Н3 гистонов (Chou Y.-H. et al., 2017). В литературе имеются сведения о том, что у некоторых видов млекопитающих в адаптивных реакциях почки на острые изменения системных параметров водно-солевого обмена могут принимать участие механизмы регуляции экспрессии генов (MacManes M.D., 2017). Наряду с этим, в проксимальном сегменте нефрона объектом регуляторного влияния эпигенетических механизмов являются гены субъединиц натрий\калиевой АТФазы базолатеральной мембраны эпителия (Taub M., 2018). По мнению автора цитируемого обзора, сигналом для активации/инктивации транскрипции указанных генов может служить концентрация натрия в люминальной жидкости, а непосредственная реализация поступающих сигналов определяется интенсивностью ацетилирования гистонов. Наряду с этим, изменения внутриклеточной концентрации натрия в эпителии проксимального сегмента нефрона и тонкой восходящей петли Генле также может оказывать прямое влияние на состояние транскрипции генов транспортных белков, экспрессируемых данной популяцией нефроцитов (Gildea J.J. et al., 2018). Приводятся данные о том, что содержание натрия в рационе питания оказывает влияние на экспрессию генов белков-транспортеров натрия (ENaC и Na-Cl-котранспортер) в дистальном отделе нефрона (Ivy J.R. et al., 2018). С другой стороны, показано, что гипонатриевая диета стимулирует гипометилирование гена альдостерон-синтазы через активацию РАС (Takeda Y. et al., 2018). Привлекает внимание тот факт, что ядерные деацетилазы ренальной паренхимы (SIRT1,3,6,7) обладают способностью регулировать экспрессию ряда белков в тканях почки, имеющих фундаментальное значение для гомеостатических функций органа (Morigi M. et al., 2018). В частности, авторы обзора сообщают, что SIRT1 непосредственно регулирует экспрессию альфа-субъединицы эпителиального натриевого канала, эндотелиальной NO-синтазы и рецептора к ангиотензину-2 (AT1R) в подоцитах и гладкомышечных волокнах кровеносных сосудов почки. По данным авторов SIRT3 участвует в регуляции обменных процессов в митохондриях, обладает противовоспалительным и противосклерозирующим действием. Белок SIRT6 также необходим для сдерживания просклерозирующих факторов. Следует отметить, что, наряду с ковалентной модификацией хроматина, важная роль в эпигенетическом контроле ренального транспорта веществ отводится некодирующим РНК (Hua J.X. et al., 2012). Показана важная роль микро РНК в регуляции транспорта натрия в эпителии нефрона (Mladinov D. et al., 2013). Наряду с ионорегулирующей функцией почек, установлено, что некодирующие РНК могут принимать участие в управлении осморегулирующей функцией почек млекопитающих (Huang W. et al., 2011; Luo Y. et al., 2014). Авторы цитируемых публикаций указывают на роль микро РНК в регуляции экспрессии транспортных белков медуллярных сегментов нефрона в ответ на острый гиперосмотический стимул. Следует отметить, что в норме экспрессия некоторых типов микро РНК в корковом и мозговом слое почки имеет четкие отличия (Chandrasekaran K. et al., 2012; Ichii O., Horino T., 2018). Приводится информация о непосредственном влиянии гиперосмотического стимула на экспрессию строго определенных типов микро РНК во внутренней медулле почки (Chandrasekaran K. et al., 2012). Вместе с тем, авторы обращают внимание на тот факт, что состояние метаболизма микро РНК в ренальной паренхиме может регулироваться гуморальными факторами нейро-эндокринного звена контроля гомеостатических функций почек. При этом микро РНК осуществляют контроль транспорта ионов не только в почке, но и системные параметры ионного гомеостаза (Hua J.X. et al., 2012). В ряде публикаций подчеркивается тезис о том, что микро РНК могут осуществлять постоянную тонкую регуляцию обменных процессов в ренальной паренхиме. Например, имеются сообщения о роли микро РНК в регуляции обменных процессов в подоцитах, в зависимости от возможных изменений величины гидростатического давления в клубочке и химического состава ультрафильтрата (Trionfini P., Benigni A., 2017). Одним из наиболее перспективных направлений исследований роли микро РНК в регуляции деятельности почки является анализ взаимосвязи внутриорганного метаболизма микро РНК и их содержания в биологических средах организма (Thomas M.J. et al., 2018). С точки зрения практической медицины, ценность таких исследований обусловлена необходимостью внедрения новых методов диагностики и терапии заболеваний почек (Trionfini P., Benigni A., 2017; Thomas M.J. et al., 2018). Вместе с тем, значительное внимание уделяется роли гуморальных систем контроля гомеостатических функций почек в регуляции эспрессии генов в ренальной паренхиме (Hirohama D. et al., 2018; Lu C.C. et al., 2018). Приводятся данные о молекулярных механизмах регуляции локальной экспрессии белков-компонентов РАС (Martini A.G. et al., 2017; Lu C.C. et al., 2018). Ранее была показана роль микро РНК в регуляции экспрессии генов ренина (Sequeira-Lopez M.L.S. et al., 2010). В настоящее время установлена роль метилирования ДНК, ацетилирования и метилирования гистонов канальцевого эпителия в управлении экспрессией гена ангиотензиногена (Marumo T. et al., 2015). Показано участие метилирования ДНК, ковалентной модификации гистонов и метаболизма микро РНК в экспрессии генов ренина в почке (Martini A.G., Danser A.H.J., 2017). С другой стороны, выявлено значение ренин-ангиотензин-альдостероновой системы в регуляции экспрессии генов транспортных белков канальцевого отдела нефрона в ответ на изменение физиологических констант водно-солевого баланса (Hirohama D. et al., 2018). Установлено, что ковалентная модификация гистонов (метилирование и ацетилирование) может принимать участие в контроле экспрессии гена атриального натрийуретического пептида (Hohl M. et al., 2013). Сообщается, что эпигенетический контроль экспрессии гена атриального натрийуретического пептида способствует адаптивным изменениям продукции гормона (Sergeeva I.A. et al., 2016). При этом, атриальный натрийуретический пептид также рассматривается в качестве индуктора эпигенетических механизмов, реализуемых через специфические микро РНК (Li Y. et al., 2016). Не меньший интерес привлекают сведения о влиянии острого осмотического стимула на эпигенетические системы контроля синтеза аргинин-вазопрессина - АВП (Hayashi M. et al., 2006; Greenwood M.P. et al., 2016). Необходимо отметить, что половые стероидные гормоны также могут оказывать влияние на экспрессию гена АВП при участии эпигенетических механизмов (Augera C.J. et al., 2011). Поскольку канальцевые эффекты АВП реализуются при участии специфических поробразующих белков &mdash; аквапоринов, в частности, при участии аквапорина-2 (AQP2), привлекают интерес сведения о значении эпигенетического контроля данного белка (Park E.-J., Kwon T.H.; 2015; Jung H.J., Kwon T.-H.; 2016). <strong>1.2. ЭНДОКРИННЫЕ ФАКТОРЫ РЕГУЛЯЦИИ ВОДНО-СОЛЕВОГО БАЛАНСА ОРГАНИЗМА В СИСТЕМЕ ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМОВ КОНТРОЛЯ ГОМЕОСТАЗА </strong> &nbsp; Предполагая определенную роль эпигенетических механизмов в регуляции гомеостатических функций почек и адаптивных изменениях органа, по нашему мнению, необходимо проанализировать, во-первых, информацию о роли эпигенетических механизмов в модуляции экспрессии генов белковых гормонов-регуляторов водно-солевого обмена. Во-вторых, свойства гуморальных факторов системного действия, как возможных индукторов эпигенетической трансформации ренальной паренхимы. Общеизвестна роль аргинин-вазопрессина, как системного регулятора осмотического гомеостаза, определяющего острую и точную реакцию организма на изменение пищевого и внутривенного поступления жидкости осмотически активных веществ (Bourque C.W., 2008; Thornton S.N.; 2010; Greenwood M.P. et al., 2015; Park E.-J., Kwon T.-H., 2015). Физиологическая роль ренин-ангиотензиновой системы определяется, как контролем реабсорбции весьма значительного объема ультрафильтрата, растворенных в нем натрия и калия, а также других жизненно важных компонентов ультрафильтрата (Zhuo J.L., Li X.C., 2001; Kurtz A., 2012; Gomez R.A., Sequeira-Lopez M.L.S., 2018). Таким образом, Ангиотензин-II принимает участие в регуляции показателей ионного, осмотического, волемического, кислотно-основного гомеостаза, а также регулирует тонус кровеносных сосудов. Атриальный (мозговой) натрий уретический пептид &mdash; важнейший гуморальный регулятор волемического гомеостаза, определяющий выведение натрия и жидкости на уровне дистального отдела нефрона (Kuwahara К., Nakao К., 2010; Nakagawa Y. et al., 2019). &nbsp; 1.2.1. АРГИНИН-ВАЗОПРЕССИН (АВП) &nbsp; Результаты более ранних исследований позволили установить, что изменения физиологических констант осмотического и волемического гомеостаза оказывают влияние на уровни транскрипции гена аргинин вазопрессина (АВП) (Kondo N. et al., 2004). Кроме того, авторами цитируемой публикации была выявлена корреляция между концентрацией катионов натрия во внеклеточной жидкости и уровнем экспрессии гена аргинин вазопрессина. Было продемонстрировано также резкое усиление транскрипции гена АВП под влиянием осмотического стимула (Hindmarch C.C.T., Murphy D., 2010). Наряду с этим, было показано, что гиперосмотический стимул усиливает транскрипцию ряда генов, белки которых аккумулируются в задней доли гипофиза (Hindmarch C. et al., 2006). Выявлено, что активация транскрипции гена аргинин вазопрессина, под влиянием осмотического воздействия, демонстрирует более выраженную чувствительность к стимулу, в сравнении с другими нейропептидами задней доли гипофиза (Yue C. et al., 2008). Сложность вопроса в том, что к осмотическому стимулу чувствительны также гены гипоталамо-гипофизарной оси, принимающие участие в регуляции репродуктивной сферы (Qiu J. et al., 2007). В то же время, было установлено, что осмотические нагрузки оказывают специфическое влияние на экспрессию вполне определенной группы генов в супраоптическом ядре крысы (Johnson K.R. et al., 2015). При этом, необходимо отметить, что, вероятно, ген аргинин вазопрессина содержит нуклеотидную последовательность в области промотора, обладающей чувствительностью к изменениям показателей осмотического гомеостаза (Ponzio T.A. et al., 2012). Авторами установлено отличие в первичной последовательности нуклеотидов данного участка генов аргинин вазопрессина и окситоцина. Далее, сопоставляя классическую схему физиологического контроля осмотического гомеостаза и факты, подтверждающие участие эпигенетических механизмов, опираясь на выше изложенные результаты исследований, мы констатируем, что показатель экспрессии гена аргинин вазопрессина обладает чувствительностью к сдвигам осмоляльности внеклеточной жидкости организма. Вероятный механизм влияния физико-химических условий внеклеточной жидкости (концентрации хлорида натрия во внеклеточной жидкости) на состояние транскрипции гена аргинин вазопрессина, в основном, подтвердили ранее выполненные наблюдения (Kondo N. et al., 2004; Hindmarch C.C., Murphy D., 2010). При этом отмечается, что АВП, помимо регуляции осмотического гомеостаза, может отвечать за поведенческие реакции, поэтому, с точки зрения авторов, нарушения осмотического гомеостаза могут негативно отражаться на адаптивных поведенческих реакциях (Mitchell N.C. et al., 2018). Показано, что экспрессия гена аргинин вазопрессина демонстрирует высокий уровень пластичности, и что интенсивность метилирования ДНК в области помотора гена гормона может существенно изменяться в зависимости от состояния показателей осмотического гомеостаза организма (Greenwood M.P. et al., 2016). Сообщается о видоспецифических молекулярных механизмах, вовлеченных в индукцию транскрипции аргинин вазопрессина, на фоне дегидратации организма (Stewart L. et al., 2011). Высокий уровень пластичности эпигенетических систем контроля биосинтеза аргинин вазопрессина подтверждается тем фактом, что усиление транскрипции гена гормона регистрируется в условиях острого гиперосмотического стимула раствором хлорида натрия (Kawasaki M. et al., 2009). В настоящее время имеются данные и о том, какие энзиматические системы, отвечающие за ковалентную трансформацию хроматина принимают участие в изменении транскрипции гена аргинин вазопрессина (Archer T., 2015). Дальнейшие исследования, проведенные научными сотрудниками групппы Murphy D. показали, что к чувствительностью к осмотическому стимулу обладают целый ряд генов (Caprin2), белки которых могут быть важны в формировании адаптивного ответа супраоптических ядер гипоталамуса на изменения осмотического гомеостаза организма (Loh S.-Y. et al., 2017). При том, что показана роль гена Caprin2 в механизмах стабилизации матричной РНК аргинин вазопрессина (Konopacka A. et al., 2015). Высказанный тезис можно дополнить сведениями о том, что микро РНК также принимают участие в эпигенетической модуляции активности нейро-эндокринного контроля осмотического гомеостаза (Luo Y. et al., 2014). В этом блоке анализа данных литературы необходимо выделить тот факт, что аргинин вазопрессин может непосредственно контролировать экспрессию транспортного белка Na+,K+,2Cl- котранспортера в восходящей петле Генле нефрона (Konopacka A. et al., 2015). Однако, непосредственно усиление экспрессии гена Na+,K+,2Cl-котранспортера по влиянием аргинин вазопрессина, рассматривается в качестве долговременной АВП- зависимой стимуляции белка (Knepper M.A. et al., 2015). Вместе с тем, авторы обзора подчеркивают, что аргинин вазопрессин может контролировать в дистальных сегментах нефрона экспрессию таких транспортных белков, как: натрий-хлор котранспортирующий протеин, переносчик мочевины, некоторые субъединицы эпителиального натриевого канала порообразующих белков аквапоринов. Подчеркивается актуальность данных механизмов в изучении патогенеза заболеваний почек и сердечно-сосудистой системы (Qian Q., 2018). Также анализируется АВП-зависимые системы внутриклеточной передачи сигнала (через протеин киназы) в эпителии собирательных трубочек канальцевого отдела нефрона, как звено индукции эпигенетического контроля экспрессии генов транспортных белков (Sanghi A. et al., 2014). С другой стороны, анализируется взаимосвязь различных изоформ аденилатциклаз и протеинкиназ в системе регуляции генов транспортных белков в эпителии собирательных трубочек (Roos K.P. et al., 2013). Завершая рассмотрение роли эпигенетических механизмов в поддержании осмотического гомеостаза, необходимо отметить участие АВП в долговременной стимуляции биосинтеза и экспрессии аквапорина-2 в эпителии собирательных трубочек канальцевого отдела нефрона (Wilson J.L.L. et al., 2013). Были установлены механизмы активации транскрипции гена аквапорина-2, включающие в себя механизмы внутриклеточной передачи сигнала, а также идентифицированы участки ДНК предполагаемого связывания регулятора транскрипции (Yua M.-J. et al., 2009). Проведен анализ метаболизма белка аквапорина-2 в эпителии собирательных трубочек канальцевого отдела нефрона и роль АВП в управлении транскрипции гена AQP2 (Jung H.J., Kwon T.H., 2016). Наряду с этим, авторы цитируемого обзор указывают на роль микро РНК (miR-32 и miR-137) в процессах внутриклеточного метаболизма протеина аквапорина-2. Оценивая роль эпигенетического контроля физиологических функций собирательных трубочек (Xiao Z. et al., 2016), авторы приходят к выводу, что баланс активности ядерных метилтрансфераз (Dot1lAC и Dot1lf/f) в эпителии данного сегмента нефрона, может оказывать существенное влияние на экспрессию белка аквапорин-2. Поскольку изменения в продукции и биологических эффектах аргинин вазопрессина имеют отношение не только к регуляции водно-солевого гомеостаза, но и к поведенческим реакциям человека, изучение эпигенетических процессов контроля, например, рецепторов АВП также является объектом междисциплинарных исследований (Bodden C. et al., 2017). &nbsp; 1.2.2. НАТРИЙУРЕТИЧЕСКИЕ ПЕПТИДЫ &nbsp; Интерес к эпигенетическим системам контроля АНП также в некоторой степени обусловлен нейротропными эффектами гормона (Frieling H. et al., 2008). Были достаточно подробно изучены физиологически активные вещества, способные индуцировать транскрипцию генов атриального (АНП), мозгового (БНП) и С-типа натрийуретических пептидов, структура генов и самих натрийуретических гормонов (Gardner D.G. et al., 2007; Kuwahara К., Nakao К., 2010; Ichiki T., Burnett J.C., 2017; Nakagawa Y. et al., 2019). Вместе с тем, имеются данные о том, что АНП может синтезироваться эпителием канальцевого отдела нефрона (Dong L. et al., 2016; Pandey K.N., 2018). При этом, в некоторых обзорных публикациях высказывается тезис о важной практической значимости исследований эпигенетического контроля экспрессии генов натрийуретических пептидов (DiSalvo T.G., 2015; Man J. et al., 2018). Поскольку представляет интерес несколько аспектов данной проблемы: эффективность использования параметров синтеза и секреции натрийуретических пептидов в качестве диагностических маркеров ряда актуальных нозологий, исследования собственно механизмов контроля экспрессии генов этих гормонов и вовлеченность в этот процесс некоторых гормонов и цитокинов, участвующих в патогенезе заболеваний сердечно-сосудистой системы и почек: ангиотензин-2, трансформирующий фактор роста-бета1, гормоны щитовидной железы (Sergeeva I.A., Christoffels V.M., 2013). Вместе с тем, данные литературы подчеркивают значение уровня экспрессии рецепторов натрийуретических пептидов в сердечно-сосудистой системе и ренальной паренхиме для понимания физиологических и патофизиологических эффектов гормонов (Pandey K.N., 2011; Kumar P. et al., 2014). Результаты экспериментальных исследований показали, что гипертрофия кардиомиоцитов токсического генеза сопровождается снижением продукции miR-133a на фоне усиления метилирования ДНК метилтрансферазами ДНК DNMT1 и DNMT3b, а также дозозависимым увеличением уровня м-РНК АНП и БНП (Huang L. et al., 2016). Снижение уровня miR-133a в миокарде было обнаружено у лабораторных крыс, подвергавшихся продолжительной инфузии ангиотензина-2 (Li Y. et al., 2016). Вместе с тем, авторы сообщают, что предварительное введение животным рекомбинантного АНП благоприятно сказывалось на динамике miR-133a. Показано, что в условиях неишемической кардиомиопатии наблюдается снижение экспрессии генов АНП и БНП в кардиомиоцитах на фоне усиления метилирования остатка лизина H3 гистона нуклеосомы (Ito E. et al., 2017). Наряду с этим, авторами публикации выявлена взаимосвязь биосинтеза АНП в кардиомиоцитах и продукции (miR-133a) микро РНК. Результаты дальнейших наблюдений показали, что микро РНК-30 может принимать участие в регуляции синтеза БНП (Nakagawa Y. et al., 2019). Важная роль в регуляторном эффекте гормона отводится его рецепторам. В этом смысле, привлекают внимание сведения о том, что уровень экспрессии рецептора популяции А к натрийуретическому пептиду, наиболее физиологически активных рецепторов к АНП (БНП), негативно коррелирует с параметрами энзиматической активности изоформы ДНК-метилтрансферазы DNMT3B (Shen K. et al., 2017). Наряду с этим, высказывается мнение о ключевой роли деацетилаз гистоновых белков (HDAC4) в регуляции экспрессии генов АНП И БНП в норме и при патологии (Hohl M. et al., 2013). В результате экспериментальных исследований установлено, что нарушения функционального состояния миокарда сопровождаются изменениями продукции АНП и БНП на фоне деметилирования H3K9 в промоторных областях генов данных белков и умеренного повышения ацетилирования Н3 гистона (H3K27ac) (Sergeeva I.A. et al., 2016). Тогда показатели ацетилирования H3K9 существенно не были изменены. Ранее полученные сведения также подчеркивают роль ацетилирования белков гистонов в регуляции экспрессии рецептора популяции А к натрийуретическому пептиду в ренальной паренхиеме, (Kumar P., Pandey K.N., 2009). По мнению авторы цитируемой публикации, ацетилтрансфераза белков гистонов (Р300), при участии специализированной микро РНК, может регулировать экспрессию гена гуанилил циклазы-А/рецептора-А натрийуретического пептида. В дальнейших исследованиях авторами было показано, что эпигенетический механизм регуляции экспрессии гуанилил циклазы-А/рецептора-А натрийуретического пептида (<em>Npr1</em>) на основе баланса ацетилирования гистонов (ацетилтрансфераза Р300 и деацетилазы гистонов HDAC1/2), может выполнять важную роль в поддержании физиологических констант волемического гомеостаза организма (Kumar P. et al., 2014). Вместе с тем, авторами высказывается мысль о том, что величина осмотического давления во неклеточной жидкости, уровень продукции ангиотензина-II и витамин Д могут оказывать влияние на показатели экспрессии гена <em>Npr1</em>. Подчеркивается, что амплификация генов (Nppa и Nppb), а также рецепторов натрийуретических пептидов, препятствует повышению кровяного давления, способствует усилению почечного кровотока, увеличению скорости клубочковой фильтрации, ограничивает процессы воспаления и фиброза в ренальной паренхме (Pandey K.N., 2018). Авторы цитируемого обзора также указывают, что натрийуретические пептиды обладают способностью сдерживать активность ренин-ангиотензин-альдостероновой системы. Обращает на себя внимание тот факт, что значительное количество публикаций по данной тематике отмечают антагонизм физиологических эффектов натрийуретических пептидов и трансформирующего фактора роста бета1 (ТФР бета1). Причина такого внимания, по нашему мнению, объясняется фундаментальной ролью ТФР бета1 в ряде патогенетических механизмов нарушения функций органов сердечно-сосудистой системы и почек (Chen L. et al., 2018). В этом смысле, уместно привести данные о том, что ТФР бета1 может оказывать влияние на систему натрийуретических пептидов, подавляя транскрипцию гена <em>Npr1 -</em> основного рецептора гормонов<em> </em>в мышечном слое стенки аорты лабораторных мышей (Sen A. et al., 2016). <strong>СПИСОК ЛИТЕРАТУРЫ К ГЛАВЕ</strong> <strong>&laquo;ЭПИГЕНЕТИЧЕСКИЕ</strong><strong> </strong><strong>МЕХАНИЗМЫ </strong><strong>В СИСТЕМЕ КОНТРОЛЯ ФУНКЦИИ ПОЧЕК В НОРМЕ&raquo; </strong> &nbsp; 1.Adli M., Parlak M., Li Y., El-Dahr S. Epigenetic States of Nephron Progenitors and Epithelial Differentiation. J Cell Biochem. 2015;116(6): 893&ndash;902 doi:10.1002/jcb.25048 &nbsp; 2.Hilliard S.A, El-Dahr S.S. Epigenetics mechanisms in renal development. Pediatr Nephrol. 2016;31(7):1055&ndash;1060 doi:10.1007/s00467-015-3228-x &nbsp; 3.Liu H., Chen S., Yao X., Li Y., Chen C.-H., Liu J., Saifudeen Z., El-Dahr S.S. Histone deacetylases 1 and 2 regulate the transcriptional programs of nephron progenitors and renal vesicles.Development. 2018;145,dev153619 doi:10.1242/dev.153619 &nbsp; 4.Martini A.G., Danser A.H.J. Juxtaglomerular Cell Phenotypic Plasticity. High Blood Press Cardiovasc Prev, 2017;24:231&ndash;242 doi 10.1007/s40292-017-0212-5 &nbsp; 5.Stocher D.P., Klein C.P., Saccomori A.B., August P.M., Martins N.C., Couto P.R.G, Hagen M.E.K., Mattй C. Maternal high-salt diet alters redox state and mitochondrial function in newborn rat offspring&rsquo;s brain. British Journal of Nutrition, 2018;119: 1003&ndash;1011 doi:10.1017/S0007114518000235 &nbsp; 6.Hilliard S.A., El-Dah S.S. Epigenetics of Renal Development and Disease. Yale Journal of Biology and Medicine,2016;89(4):565-573 PMC5168832 &nbsp; 7.Mugatroyd C., Wu Y., Bockmuhl Y., Spengler D. The Janus face of DNA methylation in aging. Aging,2010;2(2):107-110 doi:10.18632/aging.100124 &nbsp; 8.Greenwood M.P., Greenwood M., Romanova E.V., Mecawi A.S., Paterson A., Sarenac O., Japundzic-Zigon N., Antunes-Rodrigues J., Paton J.F.R., Sweedler J.V., Murphy D. The effects of aging on biosynthetic processes in the rat hypothalamic osmoregulatory neuroendocrine system. Neurobiology of Aging, 2018; 65:178-191 doi.org/10.1016/j.neurobiolaging.2018.01.008 &nbsp; 9.Ho J., Kreidberg J.A. The Long and Short of MicroRNAs in the Kidney. J Am Soc Nephrol,2012;23: 400&ndash;404 doi: 10.1681/ASN.2011080797 &nbsp; 10.Trionfini P., Benigni A. MicroRNAs as Master Regulators of Glomerular Function in Health and Disease. J Am Soc Nephrol,2017;28:1686&ndash;1696 doi: https://doi.org/10.1681/ASN.2016101117 &nbsp; 11.Tain Y.-L., Huang L.-T., Hsu C.-N. Developmental Programming of Adult Disease: Reprogramming by Melatonin? Int. J. Mol. Sci., 2017; 18: 426 doi:10.3390/ijms18020426 &nbsp; 12.Lay A.C., Coward R.J.M. The Evolving Importance of Insulin Signaling in Podocyte Health and Disease. Front. Endocrinol,2018;9:693 doi: 10.3389/fendo.2018.00693 &nbsp; 13.Shiels P.G., McGuinness D., Eriksson M., Kooman J.P., Stenvinkel P. The role of epigenetics in renal ageing. Nature Reviews Nephrology, 2017;13:471-482 doi:10.1038/nrneph.2017.78 &nbsp; 14.Morigi M., Perico L., Benigni A. Sirtuins in Renal Health and Disease. Journal of the American Society of Nephrology, 2018;29(7):1799-1809 doi: 10.1681/ASN.2017111218 &nbsp; 15.Azzi A., Dallmann R., Casserly A., Rehrauer H., Patrignani A., Maier B., Kramer A., Brown S.A. Circadian behavior is light-reprogrammed by plastic DNA methylation, Nature Neuroscience,2014;17:377&ndash;382 doi:10.1038/nn.3651 &nbsp; 16.Zhang D., Yu Z., Cruz P., Kong Q., Li S., Kone B.C Epigenetics and the control of epithelial sodium channel expression in collecting duct. Kidney International, 2009; 75:260&ndash;267 doi:10.1038/ki.2008.475 &nbsp; 17.Wei Q., Bhatt K., He H.-Z., Mi Q.-S., Haase V.H., Dong Z. Targeted Deletion of Dicer from Proximal Tubules Protects against Renal Ischemia-Reperfusion Injury. J Am Soc Nephrol, 2010;21:756&ndash;761 doi: 10.1681/ASN.2009070718 &nbsp; 18.Chou Y.-H., Huang T.-M., Chu T.-S. Novel insights into acute kidney injury&ndash;chronic kidney disease continuum and the role of renin&ndash;angiotensin system. Journal of the Formosan Medical Association,2017;116:652e659 http://dx.doi.org/10.1016/j.jfma.2017.04.026 19.MacManes M.D. Severe acute dehydration in a desert rodent elicits a transcriptional response that effectively prevents kidney injury. Am J Physiol Renal Physiol, 2017; 313:F262&ndash;F272 doi:10.1152/ajprenal.00067.2017 &nbsp; 20.Taub M. Gene Level Regulation of Na,K-ATPase in the Renal Proximal Tubule Is Controlled by Two Independent but Interacting Regulatory Mechanisms Involving Salt Inducible Kinase 1 and CREB-Regulated Transcriptional Coactivators. Int. J. Mol. Sci, 2018;19:2086 doi:10.3390/ijms19072086 &nbsp; 21.Gildea J.J., Xu P., Kemp B.A., Carlson J,M., Tran HT, Bigler Wang D, et al. Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells. PLoS ONE, 2018;13(4): e0189464 https://doi.org/10.1371/journal.pone.0189464 &nbsp; 22.Ivy J.R., Evans L.C., Moorhouse R., Richardson RV, Al-Dujaili E.A.S., Flatman P.W., Kenyon C.J., Chapman K.E., Bailey M.A. Renal and Blood Pressure Response to a High-Salt Diet in Mice With Reduced Global Expression of the Glucocorticoid Receptor. Front. Physiol, 2018;9:848 doi: 10.3389/fphys.2018.00848 &nbsp; 23.Takeda Y., Demura M., Wang F., Karashima S., Yoneda T., Kometani M., Hashimoto A., Aono D., Horike S., Meguro-Horike M., Yamagishi M., Takeda Y. Epigenetic Regulation of Aldosterone Synthase Gene by Sodium and Angiotensin II. J Am Heart Assoc, 2018;7:e008281 doi: 10.1161/JAHA.117.008281 &nbsp; 24.Hua J.X., Ting Z.J., Chan C.H. Ion channels/transporters as epigenetic regulators? A microRNA perspective. Science china Life Sciences,2012;55(9):753&ndash;760 doi: 10.1007/s11427-012-4369-9 &nbsp; 25.Mladinov D., Liu Y., Mattson D.L., Liang M. MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K+-ATPase b1. Nucleic Acids Research, 2013:41, No. 2 1273&ndash;1283 doi:10.1093/nar/gks1228 &nbsp; 26.Huang W., Liu H., Wang T., Zhang T., Kuang J., Luo Y., Chung S.S.M., Yuan L., Yang J.Y. Tonicity-responsive microRNAs contribute to the maximal induction of osmoregulatory transcription factor OREBP in response to high-NaCl hypertonicity. Nucleic Acids Research, 2011;39(2):475&ndash;485 doi:10.1093/nar/gkq818 &nbsp; 27.Luo Y., Liu Y., Liu M., Wei J., Zhang Y., Hou J., Huang W., Wang T., Li X., He Y., Ding F., Yuan L., Cai J., Zheng F., Yang J.Y. Sfmbt2 10th intron-hosted miR-466(a/e)-3p are important epigenetic regulators of Nfat5 signaling, osmoregulation and urine concentration in mice. Biochimica et Biophysica Acta, 2014;1839:97&ndash;106 http://dx.doi.org/10.1016/j.bbagrm.2013.12.005 &nbsp; 28.Chandrasekaran K., Karolina D.S., Sepramaniam S., Armugam A., Wintour E.M., Bertram J.F., Jeyaseelan K. Role of microRNAs in kidney homeostasis and disease. Kidney International,2012;81:617&ndash;627 doi:10.1038/ki.2011.448 &nbsp; 29.Ichii O., Horino T. MicroRNAs associated with the development of kidney diseases in humans and animals. J Toxicol Pathol,2018;31(1):23&ndash;34 doi:10.1293/tox.2017-0051 &nbsp; 30.Thomas M.J., Fraser D.J., Bowen T.Biogenesis, Stabilization, and Transport of microRNAs in Kidney Health and Disease. Non-coding RNA,2018;4(4):E30 doi:10.3390/ncrna4040030 &nbsp; 31.Hirohama D., Ayuzawa N., Ueda K., Nishimoto M., Kawarazaki W., Watanabe A., Shimosawa T., Marumo T., Shibata S., Fujita T. Aldosterone Is Essential for Angiotensin II-Induced Upregulation of Pendrin. J Am Soc Nephrol, 2018;29:57&ndash;68 doi: https://doi.org/10.1681/ASN.2017030243 &nbsp; 32.Lu C.C., Ma K.L., Ruan X.Z., Liu B.C. Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy. Int. J. Med. Sci.,2018;15(8):816-822 doi: 10.7150/ijms.25543 &nbsp; 33.Martini A.G., Xa L.K., Lacombe M.-J., Blanchet-Cohen A., Mercure C., Haibe-Kains B., Friesema E.C.H.., van den Meiracker A.H., Gross K.W., Azizi M., Corvol P., Nguyen G., Reudelhuber T.L., Danser A.H.J. Transcriptome Analysis of Human Reninomas as an Approach to Understanding Juxtaglomerular Cell Biology. Hypertension. 2017;69:1145-1155 doi:10.1161/HYPERTENSIONAHA.117.09179 &nbsp; 34.Sequeira-Lopez M.L.S., Weatherford E.T., Borges G.R., Monteagudo M.C., Pentz E.C., Harfe B.D., Carretero O., Sigmund C.D., Gomez R.A. The MicroRNA-Processing Enzyme Dicer Maintains Juxtaglomerular Cells. J Am Soc Nephrol,2010;21:460&ndash;467 doi: 10.1681/ASN.2009090964 &nbsp; 35.Marumo T., Yagi S., Kawarazaki W., Nishimoto M., Ayuzawa N., Watanabe A., Ueda K., Hirahashi J., Hishikawa K., Sakurai H., Shiota K., Fujita T. Diabetes Induces Aberrant DNA Methylation in the Proximal Tubules of the Kidney. J Am Soc Nephrol,2015;26:2388&ndash;2397 doi: 10.1681/ASN.2014070665 &nbsp; 36.Martini A.G., Danser A.H.J. Juxtaglomerular Cell Phenotypic Plasticity. High Blood Press Cardiovasc Prev,2017;24:231&ndash;242 doi 10.1007/s40292-017-0212-5 &nbsp; 37.Hohl M., Wagner M., Reil J.-C., Mьller S.-A., Tauchnitz M., Zimmer A.M., Lehmann L.H., Thiel G., Bцhm M., Backs J., Maack C. HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest.2013;123(3):1359&ndash;1370 doi:10.1172/JCI61084 &nbsp; 38.Sergeeva I.A., Hooijkaas I.B., Ruijter J.M., van der Made I., de Groot N.E., van de Werken H.J.G., Creemers E.E., Christoffels V.M. Identification of a regulatory domain controlling the Nppa-Nppb gene cluster during heart development and stress. Development,2016;143:2135-2146 doi:10.1242/dev.132019 &nbsp; 39.Li Y., Cai X., Guan Y., Wang L., Wang S., Li Y. et al. Adiponectin Upregulates MiR-133a in Cardiac Hypertrophy through AMPK Activation and Reduced ERK1/2 Phosphorylation. PLoS ONE,2016;11(2):e0148482 doi:10.1371/journal.pone.0148482 &nbsp; 40.Hayashi M., Arima H., Goto M., Banno R., Watanabe M., Sato I., Nagasaki H., Oiso Y. Vasopressin gene transcription increases in response to decreases in plasma volume, but not to increases in plasma osmolality, in chronically dehydrated rats. Am J Physiol Endocrinol Metab,2006;290:E213&ndash;E217 doi:10.1152/ajpendo.00158.2005 &nbsp; 41.Greenwood M.P., Greenwood M., Gillard B.T., Loh S.Y., Paton J.F.R., Murphy D. Epigenetic Control of the Vasopressin Promoter Explains Physiological Ability to Regulate Vasopressin Transcription in Dehydration and Salt Loading States in the Rat. Journal of Neuroendocrinology, 2016;28(4):10.1111/jne.12371 doi: 10.1111/jne.12371 &nbsp; 42.Augera C.J., Cossa D., Augera A.P., Forbes-Lorman R.M. Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain. PNAS,2011;108(10):4242&ndash;4247 doi:10.1073/pnas.1100314108 &nbsp; 43.Park E.-J., Kwon T.H. A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells. Electrolyte Blood Press,2015;13:1-6 doi.org/10.5049/EBP.2015.13.1.1 &nbsp; 44.Jung H.J., Kwon T.-H. Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol Renal Physiol,2016,311:F1318&ndash;F1328 doi:10.1152/ajprenal.00485.2016 &nbsp; 45.Bourque C.W. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci. 2008;9(7):519-531 doi: 10.1038/nrn2400 &nbsp; 46.Thornton S.N. Thirst and hydration: physiology and consequences of dysfunction. Physiol Behav. 2010;100(1):15-21 doi:10.1016/j.physbeh.2010.02.026 &nbsp; 47.Greenwood M.P., Mecawi A.S.,Hoe S.Z., Mustafa M.R., Johnson K.R., Al-Mahmoud G.A., Elias L.L.K., Paton J.F.R., Antunes-Rodrigues J., Gainer H., Murphy D., Hindmarch C.C.T. A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol. 2015;<em> </em>308: R559&ndash;R568 doi:10.1152/ajpregu.00444.2014 &nbsp; 48.Park E.-J., Kwon T.-H. A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells. Electrolyte Blood Press. 2015; 13(1): 1&ndash;6 doi: 10.5049/EBP.2015.13.1.1 &nbsp; 49.Zhuo J.L., Li X.C. New Insights and Perspectives on Intrarenal Renin-Angiotensin System: Focus on Intracrine/Intracellular Angiotensin II. Peptides. 2011; 32(7): 1551&ndash;1565 doi: 10.1016/j.peptides.2011.05.012 &nbsp; 50.Kurtz A. Control of renin synthesis and secretion. Am J Hypertens. 2012;25(8):839-847 doi: 10.1038/ajh.2011.246 &nbsp; 51.Gomez R.A., Sequeira-Lopez M.L.S. Renin cells in homeostasis, regeneration and immune defence mechanisms. Nat Rev Nephrol. 2018;14(4):231-245 doi:10.1038/nrneph.2017.186 &nbsp; 52.Kuwahara К., Nakao К. Regulation and signifcance of atrial and brain natriuretic peptides as cardiac hormones. Endocrine Journal<em> </em>2010;57(7):555-565 PMID: 20571250 &nbsp; 53.Nakagawa Y., Nishikimi T., Kuwahara K.Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides. 2019;111:18-25 doi: 10.1016/j.peptides.2018.05.012 &nbsp; 54.Kondo N., Arima H., Banno R., Kuwahara S., Sato I., Oiso Y. Osmoregulation of vasopressin release and gene transcription under acute and chronic hypovolemia in rats. Am J Physiol Endocrinol Metab. 2004;<em> </em>286(3): E337&ndash;E346 PMID:14613925 doi:10.1152/ajpendo.00328.2003 &nbsp; 55.Hindmarch C.C.T., Murphy D. The Transcriptome and the Hypothalamo Neurohypophyseal System. Pediatric Neuroendocrinology. Endocr Dev. 2010;17:1&ndash;10 https://doi.org/10.1159/000262523 &nbsp; 56.Hindmarch C., Yao S., Beighton G., Paton J., Murphy D. A comprehensive description of the transcriptome of the hypothalamoneurohypophyseal system in euhydrated and dehydrated rats. PNAS, 2006;103(5): 1609&ndash;1614 PMID:16432224 PMCID:PMC1360533 doi:10.1073/pnas.0507450103 &nbsp; 57.Mitchell N.C., Gilman T.L., Daws L.C., Toney G.M. High Salt Intake Enhances Swim Stress-Induced PVN Vasopressin Cell Activation and Active Stress Coping Psychoneuroendocrinology. 2018;93:29-38 https://doi.org/10.1016/j.psyneuen.2018.04.003 &nbsp; 58.Yue C., Mutsuga N., Sugimura Y., Verbalis J., Gainer H. Differential Kinetics of Oxytocin and Vasopressin Heteronuclear RNA Expression in the Rat Supraoptic Nucleus in Response to Chronic Salt Loading In vivo. Journal of Neuroendocrinology. 2008;20:227&ndash;232 PMID:18088359 doi: 10.1111/j.1365-2826.2007.01640.x &nbsp; 59.Hindmarch C.C., Murphy D. The transcriptome and the hypothalamo-neurohypophyseal system. Endocr Dev. 2010;17:1-10 Doi: 10.1159/000262523 &nbsp; 60.Qiu J., Yao S., Hindmarch C., Antunes V., Paton J., Murphy D. Transcription Factor Expression in the HypothalamoNeurohypophyseal System of the Dehydrated Rat: Upregulation of Gonadotrophin Inducible Transcription Factor 1 mRNA Is Mediated by cAMP-Dependent Protein Kinase A. J. Neurosci.2007;27(9):2196&ndash;2203 doi:10.1523/JNEUROSCI.5420-06.2007 &nbsp; 61.Johnson K.R., Hindmarch C.C.T., Salinas Y.D., Shi Y., Greenwood M., Hoe S.Z., et al. (2015) A RNASeq Analysis of the Rat Supraoptic Nucleus Transcriptome: Effects of Salt Loading on Gene Expression. PLoS ONE. 2015;10(4): e0124523 doi:10.1371/journal.pone.0124523 &nbsp; 62.Ponzio T.A., Fields R.L., Rashid O.M., Salinas Y.D., Lubelski D., Gainer H. Cell-Type Specific Expression of the Vasopressin Gene Analyzed by AAV Mediated Gene Delivery of Promoter Deletion Constructs into the Rat SON In Vivo. PloS One. 2012;7(11):e48860 doi: 10.1371/journal.pone.0048860 &nbsp; 63.Kawasaki M., Ponzio T.A., Yue C., Fields R.L., Gainer H. Neurotransmitter regulation of c-<em>fos </em>and vasopressin gene expression in the rat supraoptic nucleus. Exp Neurol. 2009; 219(1): 212&ndash;222 doi:10.1016/j.expneurol.2009.05.019 &nbsp; 64.Stewart L., Hindmarch C.C.T., Qiu J., Tung Y.-C. L., Yeo G.S.H., Murphy D. Hypothalamic Transcriptome Plasticity in Two Rodent Species Reveals Divergent Differential Gene Expression But Conserved Pathways. Journal of Neuroendocrinology. 2011; 23:177&ndash;185 PMID:21070396 doi: 10.1111/j.1365-2826.2010.02093.x &nbsp; 65.Archer T. Epigenetic Changes Induced by Exercise. Journal of Reward Defciency Syndrome. 2015;1(2):71-74 &nbsp; 66.Loh S.-Y., Jahans-Price T., Greenwood M.P., Greenwood M., Hoe S.-Z., Konopacka A., Campbell C., Murphy D., Hindmarch C.C.T. Unsupervised Network Analysis of the Plastic Supraoptic Nucleus Transcriptome Predicts Caprin2 Regulatory Interactions. eNeuro.2017;4(6). pii: ENEURO.0243-17.2017 doi: 10.1523/ENEURO.0243-17.2017 &nbsp; 67.Konopacka A., Greenwood M., Loh S.-Y., Paton J., Murphy D. RNA binding protein Caprin-2 is a pivotal regulator of the central osmotic defense response. eLife 2015;4:e09656 doi: 10.7554/eLife.09656 PMID:26559902 &nbsp; 68.Konopacka A., Qiu J., Yao S.T., Greenwood M.P., Greenwood M., Lancaster T., Inoue W., Mecawi A.S., Vechiato F.M., de Lima J.B., Coletti R., Hoe S.Z., Martin A., Lee J., Joseph M., Hindmarch C., Paton J., Antunes-Rodrigues J., Bains J., Murphy D. Osmoregulation requires brain expression of the renal Na-K-2Cl cotransporter NKCC2. J Neurosci.2015;35(13):5144-5155 doi: 10.1523/JNEUROSCI.4121-14.2015 &nbsp; 69.Knepper M.A., Kwon T.-H., Nielsen S. Molecular Physiology of Water Balance. N Engl J Med. 2015; 372(14): 1349&ndash;1358 doi:10.1056/NEJMra1404726 &nbsp; 70.Qian Q. Salt, water and nephron: Mechanisms of action and link to hypertension and chronic kidney disease. Nephrology (Carlton). 2018; 23(Suppl Suppl 4): 44&ndash;49 doi:10.1111/nep.13465 PMID: 30298656 &nbsp; 71.Sanghi A., Zaringhalam M., Corcoran C.C., Saeed F., Hoffert J.D., Sandoval P., Pisitkun T., Knepper M.A.<strong> </strong>A knowledge base of vasopressin actions in the kidney. Am J Physiol Renal Physiol. 2014;307: F747&ndash;F755 doi:10.1152/ajprenal.00012.2014 &nbsp; 72.Roos K.P., Bugaj V., Mironova E., Stockand J.D., Ramkumar N., Rees S., Kohan<sup> </sup>D.E.Adenylyl Cyclase VI Mediates Vasopressin-Stimulated ENaC Activity. J Am Soc Nephrol. 2013; 24(2): 218&ndash;227 doi:10.1681/ASN.2012050449 PMCID: PMC3559481 PMID: 23264685 &nbsp; 73.Wilson J.L.L., Miranda C.A., Knepper M.A. Vasopressin and the Regulation of Aquaporin-2. Clin Exp Nephrol. 2013; 17(6): 10.1007/s10157-013-0789-5 doi:10.1007/s10157-013-0789-5 PMID: 23584881 &nbsp; 74.Yua M.-J., Miller R.L., Uawithya P., Rinschen M.M., Khositseth S., Braucht D.W.W., Chou C.L., Pisitkun T., Nelson R.D., Knepper M.A. Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct. PNAS. 2009;106(7): 2441&ndash;2446 https://doi.org/10.1073/pnas.0813002106 &nbsp; 75.Jung H.J., Kwon T.H.<strong> </strong>Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol Renal Physiol. 2016;<em> </em>311: F1318 &ndash;F1328 doi:10.1152/ajprenal.00485.2016 &nbsp; 76.Xiao Z., Chen L., Zhou Q., Zhang W. Dot1l deficiency leads to increased intercalated cells and upregulation of V-ATPase B1 in mice. Exp Cell Res. 2016; 344(2): 167&ndash;175. doi:10.1016/j.yexcr.2015.09.014 &nbsp; 77.Bodden C., van den Hove D., Lesch K.-P., Sachser N. Impact of varying social experiences during life history on behaviour, gene expression, and vasopressin receptor gene methylation in mice. Sci Rep. 2017; 7: 8719 doi:10.1038/s41598-017-09292-0 PMID: 28821809 &nbsp; 78.Frieling H., Bleich S., Otten J., Ro&uml;mer K.D., Kornhuber J., de Zwaan M., Jacoby G.E., Wilhelm J., Hillemacher T. Epigenetic Downregulation of Atrial Natriuretic Peptide but not Vasopressin mRNA Expression in Females with Eating Disorders is Related to Impulsivity. Neuropsychopharmacology. 2008;33:2605&ndash;2609 doi:10.1038/sj.npp.1301662 &nbsp; 79.Gardner D.G., Chen S., Glenn D.J., Grigsby C.L. Molecular Biology of the Natriuretic Peptide System Implications for Physiology and Hypertension. Hypertension. 2007;49:419-426 doi: 10.1161/01.HYP.0000258532.07418.fa &nbsp; 80.Ichiki T., Burnett J.C. Atrial Natriuretic Peptide. Old But New Therapeutic in Cardiovascular Diseases. Circ J.<em> </em>2017; 81:<strong> </strong>913&ndash;919 doi:10.1253/circj.CJ-17-0499 &nbsp; 81.Nakagawa Y., Nishikimi T., Kuwahara K. Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides. 2019;111:18-25 doi: 10.1016/j.peptides.2018.05.012 PMID:29859763 &nbsp; 82.Sergeeva I.A., Christoffels V.M. Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart developmentand disease. Biochim Biophys Acta. 2013;1832(12):2403-2413 doi: 10.1016/j.bbadis.2013.07.003 &nbsp; 83.Dong L., Wang H., Dong N., Zhang Ce., Xue B., Wu Q. Localization of corin and atrial natriuretic peptide expression in human renal segments. Clin Sci (Lond). 2016; 130(18): 1655&ndash;1664 doi:10.1042/CS20160398 &nbsp; 84.Pandey K.N. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol Genomics. 2018;50(11):913-928 doi: 10.1152/physiolgenomics.00083.2018 &nbsp; 85.DiSalvo T.G. Epigenetic regulation in heart failure: part II DNA and chromatin. Cardiol Rev. 2015;23(6):269-281 doi:10.1097/CRD.0000000000000074 &nbsp; 86.Man J., Barnett P., Christofels V.M. Structure and function of the <em>Nppa</em>&ndash;<em>Nppb </em>cluster locus during heart development and disease. Cell Mol Life Sci. 2018;75(8):1435-1444 doi: 10.1007/s00018-017-2737-0 &nbsp; 87.Pandey K.N. Guanylyl Cyclase/Atrial Natriuretic Peptide Receptor-A: Role in the Pathophysiology of Cardiovascular Regulation. Can J Physiol Pharmacol. 2011; 89(8): 557&ndash;573 doi:10.1139/y11-054 &nbsp; 88.Kumar P., Periyasamy R., Das S., Neerukonda S., Mani I., Pandey K.N. All-Trans Retinoic Acid and Sodium Butyrate Enhance Natriuretic Peptide Receptor A Gene Transcription: Role of Histone Modification. Mol Pharmacol. 2014; 85(6):946-957 doi: 10.1124/mol.114.092221 &nbsp; 89.Huang L., Xi Z., Wang C, Zhang Y., Yang Z., Zhang S., Chen Y., Zuo Z. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNAmethylation. Sci Rep. 2016;6:20105 doi: 10.1038/srep20105 &nbsp; 90.Ito E., Miyagawa S., Fukushima S., Yoshikawa Y., Saito S., Saito T., Harada A., Takeda M., Kashiyama N., Nakamura Y., Shiozaki M., Toda K., Sawa Y. Histone Modification Is Correlated With Reverse Left Ventricular Remodeling in Nonischemic Dilated Cardiomyopathy. Ann Thorac Surg 2017;104:1531&ndash;1539 doi: 10.1016/j.athoracsur.2017.04.046 &nbsp; 91.Shen K., Tu T., Yuan Z., Yi J., Zhou Y., Liao X., Liu Q., Zhou X. DNA methylation dysregulations in valvular atrial fibrillation. Clinical Cardiology. 2017;40:686&ndash;691 doi: 10.1002/clc.22715 &nbsp; 92.Hohl M., Wagner M., Reil J.-C., M&uuml;ller S.A., Tauchnitz M., Zimmer A.M., Lehmann L.H., Thiel G., B&ouml;hm M., Backs J., Maack C. HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest<em>. </em>2013;123(3):1359&ndash;137 doi:10.1172/JCI61084 &nbsp; 93.Sergeeva I.A., Hooijkaas I.B., Ruijter J. M., van der Made I., de Groot N.E., van de Werken H.J.G., Creemers E.E. Christoffels V.M. Identification of a regulatory domain controlling the Nppa-Nppb gene cluster during heart development and stress. Development. 2016; 143(12):2135-2146 doi:10.1242/dev.132019 &nbsp; 94.Kumar P., Pandey K.N. Cooperative activation of <em>npr1</em> gene transcription and expression by interaction of ets-1 and P300. Hypertension. 2009; 54(1): 172&ndash;178 doi:10.1161/HYPERTENSIONAHA.109.133033 PMID: 19487584 &nbsp; 95.Kumar P., Tripathi S., Pandey K.N. Histone Deacetylase Inhibitors Modulate the Transcriptional Regulation of Guanylyl Cyclase/Natriuretic Peptide Receptor-A Gene. Interactive roles of modified histones, histone acetyltransferase, p300, and Sp1. Journal of biological chemistry. 2014; 289(10):6991-7002 doi: 10.1074/jbc.M113.511444 &nbsp; 96.Chen L., Yang T., Lu D.W., Zhao H., Feng Y.L., Chen H., Chen D.Q., Vaziri N.D., Zhao Y.Y. Central role of dysregulation of TGF-&beta;/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother. 2018;101:670-681 doi: 10.1016/j.biopha.2018.02.090 &nbsp; 97.Sen A., Kumar P., Garg R., Lindsey S.H., Katakam P.V.G., Bloodworth M., Pandey K.N. Transforming growth factor b1 antagonizes the transcription, expression and vascular signaling of guanylyl cyclase/natriuretic peptide receptor A &ndash; role of dEF1. FEBS Journal. 2016; 283(9):1767&ndash;1781 doi:10.1111/febs.13701 PMID:26934489 &nbsp; <strong>ГЛАВА 2. НЕКОТОРЫЕ ФАКТОРЫ АКТИВАЦИИ </strong> <strong>ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМОВ</strong> &nbsp; Приступая к обсуждению данной темы, считаем необходимым подчеркнуть, что, во-первых, в отличие от предыдущих разделов, при рассмотрении большинства факторов, включая факторы внешней среды, способных оказывать влияние на экспрессию генов, речь идет о надорганизменном уровне, чаще всего, о популяции. Во-вторых, косвенно затронуты вопросы участия эпигенетических механизмов в процессах наследования приобретенных признаков и их роли в эволюционных преобразований. Возможно, сочетание новых признаков, обусловленных не только мутациями, но и эпигенетическими механизмами внутри популяции, может оказать влияние на процессы микроэволюции. Необходимо отметить, что в современной литературе уделяется внимание поставленным вопросам. В частности, указывается, что предполагаемые глобальные изменения климатических условий учитывают актуальность эпигенетических преобразований для динамики адаптивных изменений популяций человека (Hu J., Barrett R.D.H., 2017). Поэтому, экспериментальные данные, полученные в исследованиях на животных позволяют, с одной стороны, расширить наши представления о роли эпигенетических система контроля адаптивных реакций на изменения факторов среды. С другой стороны, предположить возможность закрепления этих адаптивных преобразований экспрессии генов в ряду поколений. При этом, авторы цитируемого обзора, во-первых, подчеркивают важное значение эпигенетических механизмов для экологической пластичности различных видов животных. Во-вторых, приводят конкретные примеры передачи в последующие поколения эпигенетических изменений хроматина у некоторых видов млекопитающих. Наряду с этим, привлекают внимание сведения об устойчивых сочетаниях генов, выполняющих ведущую роль в формировании экологической пластичности животных к изменениям, например, температурного режима окружающей среды (Wollenberg Valero K.C. et al., 2014). Заслуживает внимания и тот факт, что комбинация данных генов в ряду позвоночных животных обладает достаточно высокой эволюционной консервативностью. Поэтому, необходимо отметить, что в современной литературе высказываются мнения о том, что эпигенетические преобразования, сформированные в генотипе родительских особей, могут выполнять принципиально важную функцию в эволюционном процессе, поскольку могут передаваться потомству и играть существенную роль в адаптивных реакциях потомства (Wang Y. et al., 2017). Авторы приводят ряд аргументов, подтверждающих возможность наследования эпигенетических трансформаций хроматина и у человека. Аналогичная точка зрения, относительно возможности наследования в поколениях эпигенетической модуляции экспрессии генов, обусловленной, в первую очередь, ковалентной модификацией хроматина, высказывается и в последующих публикациях (Norouzitallab P. et al., 2019). Вместе с тем, приведенные сведения о наследовании эпигенетических модификаций генома, во-первых, не являются общепризнанными. Во-вторых, возможный тип наследования эпигенетических трансформаций также мало изучен. Тем не менее, мы посчитали необходимым включить в обзор краткое упоминание об этих аспектах эпигенетики, поскольку возможность их реализации существует. Следовательно, рассматривая роль эпигенетических механизмов в адаптивных реакциях почки на факторы среды (не только внешних) в масштабе популяций, уместно принять к сведению возможность наследования эпигенетических перестроек в системе регуляции экспрессии генов, равно, как и их возможное участие в эволюционных процессах. Также, на наш взгляд, необходимо учитывать интересы практической медицины, особенно, если речь идет об участии эпигенетических процессов в патофизиологических механизмах заболеваний почек. В данном разделе, в качестве тем для обсуждения нами выбраны факторы внешней среды, в том числе и антропогенной природы. Наряду с этим, некоторые факторы, связанные с устойчивыми нарушениями физиологических констант организма также достаточно широко распространены в популяциях человека и заслуживают рассмотрения. <strong>2.1. ИЗМЕНЕНИЕ ТЕМПЕРАТУРНОГО РЕЖИМА, КАК ФАКТОР ИНДУКЦИИ ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМОВ</strong> &nbsp; Даже принимая к сведению тот факт, что представители биологического вида Homo sapiens sapiens проживают в искусственно созданной среде и используют различные способы формирования микроклимата своих жилищ, климатические факторы среды, в частности, температура среды, до настоящего времени оказывает исключительно важное влияние на человека (Cheshire W.P. Jr., 2016; Beker B.M. et al., 2018). Обсуждение вероятности стремительных изменений климатических условий на планете Земля не входит в круг наших задач. Вместе стем, мы исходим из того, что уже существующее разнообразие климатических условий различных географических широт, а также межсезонные флуктуации климатических условий можно рассматривать, как важный стимул в изучении роли эпигенетических процессов в адаптации организма к изменению температурного режима среды (Franks S.J., Hoffmann A.A., 2012; Wollenberg Valero K.C. et al., 2014). В данном случае, температурный режим рассматривается в качестве одного из основных факторов среды, способных вызывать устойчивые эпигенетические изменения структуры ДНК человека, которые, направлены на повышение адаптивных возможностей популяции и, вероятно, могут передаваться по наследству (Giuliani C. et al., 2015). Вместе с тем, авторы иллюстрируют адаптивный характер эпигенетических изменений, адекватных геофизическим условиям проживания данных популяций человека. Почки наземных позвоночных животных (амниот) выполняют жизненно важную функцию поддержания постоянства внутренней среды организма. При этом, с одной стороны, физиологические и патофизиологические аспекты адаптации почек человека к изменению температурного режима среды постоянно находятся в центре внимания современной науки (Johnson R.J. et al., 2016; de Lorenzo A., Lia&ntilde;o F., 2017). С другой стороны, участие эпигенетических механизмов в этих процессах требует более глубокого изучения. Тем не менее, установлено, что, в частности, тепловой стресс оказывает мощное влияние на перестройку метаболизма микро РНК в почках (Permenter M.G. et al., 2019). Вместе с тем, авторы цитируемой публикации отмечают органоспецифический характер изменений метаболизма микро РНК под влиянием повышения температуры. Ранее было показано, что белки семейства аквапорины также могут изменять свою экспрессию в почках и слюнных железах под влиянием температурного фактора (как повышение, так и понижение температуры) у позвоночных животных (Wollenberg Valero K.C. et al., 2014). <strong>2.2. </strong><strong>ГИПОКСИЯ.</strong> &nbsp; Наряду с температурным фактором, одним из важнейших факторов среды, способным оказать влияние на состояние эпигенетических механизмов человека, является гипоксия (Giuliani C. et al., 2015). Гипоксическая гипоксия может оказывать влияние на структурные показатели и функциональное состояние ренальной паренхимы через систему HIFs-протеинов, контролируя экспрессию генов, белки которых критически важны для регуляции деятельности почек (Poonit N.D. et al., 2018). С другой стороны, гипоксия ренальной паренхимы различного генеза рассматривается в качестве одного из базовых индукторов эпигенетических механизмов трансформации гуморальных систем контроля гомеостатических функций почек человека (Clarke N.E., Turner A.J., 2012; Macconi D. et al., 2014). Известно, что, стимулируемый гипоксией HIF-1альфа, является одним из ведущих активаторов эпигенетических механизмов (Perez-Perri J.I. et al., 2011). Являясь важным звном в системе адаптации почки к гипоксии, HIF-1альфа может быть непосредственно вовлечен в патогенетические механизмы хронизации и прогрессирования почечной недостаточности (Shoji K. et al., 2014). Установлено, что HIFs-зависимое угнетение метилирования гистонов (H3K9me3 и H3K27me3) может сопутствовать прогрессированию почечной недостаточности (Nangaku M. et al., 2017). Сообщается, что эпигенетические механизмы активации ренин-ангиотензиновой системы могут выполнять ключевую роль в хронизации и прогрессирования почечной недостаточности (Chou Y.H. et al., 2017). Вместе с тем, показано, что HIF-1альфа на уровне транскрипции изменяет баланс экспрессии компонентов РАС в направлении стимуляции биосинтеза компонентов оси Ангиотензин-I-превращающий фермент (АСЕ)/Ангиотензин-2/АТ1-рецепторы против угнетения контура отрицательной обратной связи РАС АСЕ-2/Ангиотензин-1-7/MASS1-рецепторов (Clarke N.E., Turner A.J., 2012; Macconi D. et al., 2014). Помимо того, что HIF-1альфа усиливает экспрессию АТ1-рецепторов и АСЕ, в условиях гипоксии в почке наблюдается резкая активация АСЕ-независимого пути образования Ангиотензин-I в присутствии индуцированного гипоксией лактат-химаза-зависимого механизма (Xie G. et al., 2017). В совокупности, индуцированное гипоксией смещение баланса в пользу оси Ангиотензин-I-превращающего фермента (АСЕ)/Ангиотензин-2/АТ1-рецептор против угнетения контура отрицательной обратной связи РАС АСЕ-2/Ангиотензин-1-7/MASS1 способствует активации воспаления, нарушению клеточного цикла клеток ренальной паренхимы, состоянию энергетического обмена нефроцитов, а также активации эпителиально-мезенхимальной трансформации (Macconi D. et al., 2014; Chou Y.H. et al., 2017). Эпигенетические механизмы, стимулированные гипоксией, выполняют важную роль в хронизации и прогрессирования почечной недостаточности, индуцируя нарушение функции подоцитов (Lin C.-L. et al., 2014) и мезангиума (Lu Z. et al., 2017). По мнению ряда исследователей, ключевым звеном в этом процессе является поражение проксимального отдела нефрона (Matsusaka T. et al., 2012; Kobori H. et al., 2013). Наряду с этим приводятся аргументы о том, что стимулируемые семейством HIF-протеинов эпигенетический процессы являются перспективным объектом фармакологических методов сдерживания прогрессирующей почечной недостаточности (Shoji K. et al., 2014). <strong>2.3. ГИПЕРГЛИКЕМИЯ</strong> &nbsp; Гипергликемия, в подавляющем большинстве случаев, рассматривается в качестве симптома, сопутствующего течению сахарного диабета. Тем не менее, устойчиво повышенный уровень глюкозы во внеклеточной жидкости выступает в качестве самостоятельного патогенетического фактора ренальных дисфункций (Dounousi E. et al., 2015), способного инициировать дальнейшее прогрессирование почечной недостаточности при участии ковалентной трансформации хроматина (Reddy M.A, Natarajan R., 2015; Lu Z. et al., 2017). Обсуждая роль гипергликемии в эпигенетических механизмах перестройки функции почки, необходимо отметить, что данному симптому сахарного диабета 2-го типа сопутствует также изменения секреции инсулина, нарушения обменных процессов, усиление продукции активных форм кислорода, нарушение параметров системной и внутриорганной гемодинамики, повышение уровня HIF-1 (Reddy M.A, Natarajan R., 2015). По мнению цитируемых авторов, HIF-1 обладает способностью стимулировать эпигенетические механизмы активации экспрессии ферментов деметилаз гистонов. Высказывается мнение о том, что гипергликемия в значительной степени ответственна за ряд характерных изменений систем передачи внутриклеточного сигнала в целом ряде различных популяций клеток почки, включая клетки канальцевого эптелия, фибробласты, эндотелиоциты, клетки мезангиума и подоциты (Reddy M.A, Natarajan R., 2015). В обзоре указывается, что стимуляция фиброза тканей почки может усиливаться TGF-&beta;, индуцирующего повышение таких эпигенетических меток, как miR-29, H3K9/14Ac,<strong> </strong>H3K9Ac, H3K4me1 и H3K4me3, на фоне снижения H3K9me3. Указанные изменения могут сопровождаться усилением экспрессии гена <em>Agt</em> (ангиотензиногена) в проксимальных нефроцитах, вызванной ингибированием DNMT и повышением активности HDAC. С другой стороны, следует учитывая роль сопутствующих сахарному диабету изменений гемодинамических параметров на эпигенетические процессы. Известно, что устойчивое повышение кровяного давления может способствовать повышению экспрессии гена Асе (ангиотензин-превращающего фермента) в том числе и в почках через повышение уровня меток H3KAc и H3K4me, на фоне снижения экспрессии метки H3K9me2 (Liang M. et al., 2013; Reddy M.A, Natarajan R., 2015). Эпигенетические механизмы патогенеза и прогрессирования гипертонической болезни рассмотрены в ряде обзорных публикаций (Friso S. et al., 2013; Wise I.A., Charchar F.J., 2016). Авторами цитируемых работ указан ряд генов, экспрессия которых тесно связана с течением гипертонии, включая гены ренина, АСЕ, рецепторов ангиотензина-2 и эндотелиальной NO-синтазы. Эпигенетическая перестройка экспрессии генов системы NO-синтаз может индуцироваться гипоксией (Fish J.E. et al., 2010) и гипергликемией (Advani A. et al., 2011; Schmidt Dellamea B. et al., 2014). Показано, что ингибитор ферментов деацетилаз белков гистонов vorinostat способствует снижению албуминурии, отложению коллагена IV клетками мезангиума, а также оксидативный стресс в экспериментальной модели сахарного диабета 1 типа (Advani A. et al., 2011). <strong>2.4. ТЯЖЕЛЫЕ МЕТАЛЛЫ</strong> &nbsp; Широко известно нефротоксическое действие тяжелых металлов. Наряду с этим в литературе имеются отдельные сведения об их эпигенетических эффектах (Ruiz-Hernandez A. et al., 2015). В частности, авторами показано усиление метилирование ДНК в зависимости от продолжительности экспозиции к кадмию, a также общая тенденция к гипометилированию ДНК на фоне повышения свинца в крови. Относительно ртути, экспериментальные исследования свидетельствуют о том, что ртуть может изменить характер метилирования ДНК. В эмбриональных стволовых клетках крысы метилртуть уменьшала пролиферацию нервных клеток, в связи с гипометилированием ДНК. Также авторы цитируемой публикации сообщают, что механизмы индукции тяжелыми металлами эпигенетической перестройки ДНК остаются крайне мало изучены. Поскольку высоко токсичные тяжелые металлы (ртуть, кадмий и свинец) в организм человека поступают, как правило, в следовых количествах не вызывая острого токсического эффекта, представляет интерес анализ их влияния на изменение обменных процессов в организме, эндокринных функций поджелудочной железы, в патогенезе резистентности тканей к инсулину и избыточной массы тела (Kuo C.-C. et al., 2013). Действительно, эпигенетические эффекты тяжелых металлов могут быть индуцированы достаточно низкими уровнями поступления ксенобиотиков, как правило, не превышающие санитарные нормы. Наиболее ранние публикации, посвященные данной тематике, содержат информацию о том, что, например, тяжелый металл Со2+ может стимулировать процессы транскрипции некоторых белков независимо от внутриклеточной эндогенной продукции активных форм кислорода (Salnikow K. et al., 2000). В дальнейшем были непосредственно указаны индуцированные Со2+, HIF‐1&alpha;-зависимые эпигенетические механизмы, связанные с ферментными системами метилирования ДНК и ацетилирования гистонов (Maxwell P., Salnikow K., 2004). В современной литературе роль эпигенетических механизмов в реализации токсических и канцерогенных эффектов тяжелых металлов широко признана (Salnikow K., Zhitkovich A., 2008; Chervona Y, Costa M., 2012; Brocato J.,<strong> </strong>Costa M., 2013). Также широко признана важность роли HIF‐1&alpha;-зависимых эпигенетических механизмов, индуцируемых тяжелыми металлами (Salnikow K. et al., 2008; Nagasawa H., 2011; Brocato J.,<strong> </strong>Costa M., 2013; Eskandani M. et al., 2017). Было также показано, что стимуляция кобальтом отложений белков внеклеточного матрикса, а также индукция регуляторных пептидов VEGF и эритропоэтина связаны с HIF‐1&alpha; (Tanaka T. et al., 2005). По нашему мнению, научная новизна предлагаемого подхода, состоит в том, что впервые было предложено теоретически обоснованное эпигенетическими механизмами контроля экспрессии генов объяснение патогенеза смертельно опасных онкологических заболеваний, индуцированных тяжелыми металлами. При этом, патогенез этих заболеваний не рассматривался, как результат прямого повреждения ДНК. Был разработан подход, основанный на малигнизирующих эффектах тяжелых металлов, обусловленных специфической ковалентной модификацией хроматина, изменяющей экспрессию генов (Salnikow K., Zhitkovich A., 2008; Salnikow K. et al., 2008). Продуктивность такого подхода была подтверждена последующими результатами исследований (Chervona Y, Costa M., 2012; Brocato J.,<strong> </strong>Costa M., 2013). Результаты исследований in vitro на культуре малигнизированных клеток показали, что присутствие в среде тяжелых металлов оказывает существенное влияние на уровни HIF-1&alpha; в клетках, а также на состояние экспрессии генов, идентифицированных, как гены факторов транскрипции, маркеров дифференциации клеток, цитокинов и факторов роста, протеинкиназ, супрессоров опухолей и онкогенов (Bae S. et al., 2012). По данным авторов, им удалось выделить группу генов, чувствительных, в частности, к ионам Со2+. Установлено также, что тяжелые металлы, через процессы ацетилирования белков-гистонов, регулирует экспрессию гена внеклеточной супероксид дисмутазы<strong> </strong> (Hattori S. et al., 2016). С другой стороны, показано, что применение в эксперименте ингибитора деацетилаз гистоновых белков (valproic acid), способствует ослаблению патофизиологических эффектов HIF-1&alpha; (Luo H.-M. et al., 2013; Kim Y.J. et al., 2017). Наряду с этим, показано, что HIF-1&alpha; может регулировать не только ковалентную модификацию хроматина, но и биосинтез малых некодирующих РНК, способных определять биосинтез белка на уровне транскрипции или трансляции (Kwak J. et al., 2018). Действительно, в литературе имеются данные о том, что HIF могут оказывать влияние на системы метаболизма некодирующих малых РНК (Ho J.J. et al., 2012; Ibrahim A.A. et al., 2017). При этом, в исследованиях in vitro установлена связь между присутствием в среде дихлорида кобальта, HIFs протеинами и показателями экспрессии клетками микро РНК (Silakit R. et al., 2018). Приводятся данные о том, что HIF-зависимые механизмы, через систему микро РНК принимают участие в регуляции экспрессии провоспалительных цитокинов (Kwak J. et al., 2018). Механизмы индукции Со2+ процессов воспаления занимают важное место в патогенезе кобальтовой интоксикации, однако роль эпигенетических механизмов, определяющих синтез (в том числе и микро РНК) провоспалительных факторов белковой природы изучены пока не достаточно (Kumanto M. et al., 2017). По нашему мнению, в литературе проведен достаточно детальный анализ роли тяжелых металлов в индукции базовых механизмов эпигенетической трансформации систем контроля экспрессии генов. В тоже время, нельзя исключить определенных органоспецифических особенностей их реализации. Например, в почках. При том, что ренальная паренхима является одной из основных мишеней для данной группы ксенобиотиков. <strong>2.5. ЭНДОКРИНОПАТИИ</strong> &nbsp; Течение эндокринопатий связано с тем, что на состояние эпигенетических механизмов может одновременно оказывать существенное влияние несколько факторов. Пример такого комбинированного влияния мы уже рассматривали, анализируя эпигенетические эффекты гипергликемии. Вместе с тем, фактор неадекватной секреции инсулина и изменение чувствительности тканей к гормону не является второстепенным и может участвовать в эпигенетических механизмах регуляции деятельности почки (Shiels P.G. et al., 2017). Авторы цитируемого обзора рассматривают роль инсулина в эпигенетической системе контроля деятельности почек в процессе возрастных изменений функции органа. В этом смысле, представляют интерес сведения о базовых эпигенетических механизмах, способных детерминировать резистентность тканей к регуляторному воздействию инсулина (Seok S. et al., 2018). Сложность точной оценки степени влияния различных факторов (гипергликемия, изменение чувствительности тканей к инсулину, оксидативный стресс и т.д) течения сахарного диабета второго типа на перестройку экспрессии генов &mdash; вполне объективная проблема. Вместе с тем, в литературе имеются данные о том, что собственно резистентность к инсулину может, через регуляцию метилирования гистонов, принимать участие в патофизиологических механизмах нарушении целостности слоя подоцитов, провоцируя усиление альбуминурии и прогрессирование нефропатии (Lizotte F. et al., 2016). Действительно, ранее экспериментально было подтверждено участие инсулина в регуляции экспрессии генов мыши и человека через систему метилирования ДНК (Kuroda A. et al., 2009). Известно также, что альдостерон через систему метилирования гистонов может непосредственно регулировать экспрессию гена альфа-субъединицы эпителиального натриевого канала дистального отдела нефрона &alpha;<em>ENaC</em> (Kone B.C., 2013), а также эндотелина-1 (Welch A.K. et al., 2016). Высказывается мнение, что понимание этих эпигенетических механизмов альдостерона представляет интерес, как в лечении гипертонической болезни, так и в борьбе с избыточным весом (Kawarazaki W., Fujita T., 2016). В качестве потенциального индуктора эпигенетической трансформации гуморальных систем контроля гомеостатических функций почек можно упомянуть гормоны щитовидной железы. В литературе имеются указания на регуляторные эффеты гормонов щитовидной железы, рассматриваемых, как природные ингибиторы ацетилазы белков-гистонов (Re A. et al., 2016). Также установлено, что эпигенетические эффекты тироксина стимуляции деацетилазы гистонов-5 (HDAC5) могут реализовываться через путь передачи сигнала, сопряженный с интегрином &alpha;v&beta;3/PKD/HDAC5 (Liu X. et al., 2014). В литературе представлены данные и о том, что в условиях гипофункции щитовидной железы также наблюдается закономерное изменение экспрессии некоторых генов через механизм импринтинга (Hu Z. et al., 2014; Leow M.K., 2016). Следовательно, как гипо- так и гипертиреоз могут рассматриваться в качестве потенциальных индукторов эпигенетической перестройки гуморальных систем контроля деятельности почки. Поскольку широко известен тот факт, что нарушение тиреоидного статуса организма усиливает риск заболевания почек через активацию РАС (Kobori H. et al., 1999). <strong>2.6. </strong><strong>ЭПИГЕНЕТИЧЕСКИЕ ПРОЦЕССЫ, ИНДУЦИРОВАННЫЕ ПАТОГЕННЫМИ МИКРООРГАНИЗМАМИ</strong> &nbsp; Воспалительные реакции тканей почки человека в ответ на инфекционные и неинфекционные заболевания, анализируются с учетом их популяционных особенностей с позиций современных взглядов на филогенез выделительной системы и принципы антропогенеза (Chevalier R.L., 2017). В литературе подчеркивается роль эпигенетических механизмов в эволюционных аспектах формирования адаптивных реакций иммунной системы и тканей почки. При этом, особое внимание уделяется механизмам иммунопатологии почки. В связи с этим в ряде публикаций высказывается мнение о том, что у человека эпигенетическая перестройка (метилирование и ацетилирование гистонов) клеток моноцитарного ряда, направленная на регуляцию выработки провоспалительных факторов, может сохранятся и передаваться дочерним клеткам, определяя особенности течения заболевания (Venet F., Monneret G., 2018). По мнению некоторых исследователей, эпигенетические изменения в иммунной системе, вызванные хроническим воспалением и повышенным окислительным стрессом, могут рассматриваться в качестве базового патогенетического механизма патологии почек и могут приводить к необратимым нарушениям ренальной паренхимы (Syed-Ahmed M., Narayanan M., 2019). Помимо этого, на основе результатов популяционных исследований была проанализирована возможная роль микрофлоры организма человека в эпигенетической перестройке иммунных реакций, связанных с риском заболеваний почек (Uy N. et al., 2015). Дальнейшие исследования показали, что состояние микрофлоры организма может оказывать влияние на риск заболевания почек через эпигенетические механизмы перестройки внутрипочечной РАС (Marques F.Z. et al., 2017). По мнению некоторых авторов, нарушения функции почек могут быть тесно связаны с нарушениями микрофлоры кишечника, поскольку данный показатель оказывает влияние на состояние иммунитета кишечника таким образом, что он больше не может поддерживать физиологический контроль микробиоты (Syed-Ahmed M., Narayanan M., 2019). Авторы цитируемого обзора рассматривают эпигенетическую активацию провоспалительных реакций, возможно, за пределами почечной паренхимы, как мощный индуктор патологических изменений органа. Аналогичную точку зрения высказывают и другие авторы, обращая внимание на тот факт, что эпигенетические механизмы могут выполнять определенную роль в патогенезе прогрессирующей почечной недостаточности на фоне нарушений микрофлоры кишечника (Lu C.C. et al., 2018). Наряду с эим, привлекают внимание сведения о том, что метаболиты микрофлоры кишечника могут оказывать влияние на состояние внутрипочечной ренин-ангиотензиновой системы. Предполагая наличие патогенетических механизмов активации внутрипочечных систем гуморального контроля гомеостатических функций почек &mdash; ренин-ангиотензиновой системы. Показана актуальность эпигенетической индукции РАС и при вирусной инвазии (Chandel N. et al., 2013). <strong>СПИСОК ЛИТЕРАТУРЫ К ГЛАВЕ</strong> &laquo;<strong>НЕКОТОРЫЕ ФАКТОРЫ АКТИВАЦИИ ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМОВ&raquo;</strong> &nbsp; 1.Hu J., Barrett R.D.H. Epigenetics in natural animal populations. J Evol Biol. 2017;30(9):1612-1632 doi: 10.1111/jeb.13130 2.Wollenberg Valero K.C., Pathak R., Prajapati I., Bankston S., Thompson A., Usher J., Isokpehi R.D. A candidate multimodal functional genetic network for thermal adaptation. PeerJ. 2014;2:e578 doi: 10.7717/peerj.578 &nbsp; 3.Wang Y., Liu H., Sun Z. Lamarck rises from his grave: parental environment-induced epigenetic inheritance in modelorganisms and humans. Biol Rev Camb Philos Soc. 2017;92(4):2084-2111 doi: 10.1111/brv.12322 &nbsp; 4.Norouzitallab P., Baruah K, Vanrompay D., Bossier P. Can epigenetics translate environmental cues into phenotypes? Sci Total Environ. 2019;647:1281-1293 doi: 10.1016/j.scitotenv.2018.08.063 &nbsp; 5.Cheshire W.P. Jr. Thermoregulatory disorders and illness related to heat and cold stress. Auton Neurosci. 2016;196:91-104 doi: 10.1016/j.autneu.2016.01.001 &nbsp; 6.Beker B.M., Cervellera C., De Vito A., Musso C.G. Human Physiology in Extreme Heat and Cold. Int Arch Clin Physiol. 2018;1:001 &nbsp; 7.Franks S.J., Hoffmann A.A. Genetics of climate change adaptation. Annu Rev Genet. 2012;46:185-208 doi: 10.1146/annurev-genet-110711-155511 &nbsp; 8.Giuliani C., Bacalini M.G., Sazzini M., Pirazzini C., Franceschi C., Garagnani P., Luiselli D. The epigenetic side of human adaptation: hypotheses, evidences and theories. Ann Hum Biol, 2015; 42(1): 1&ndash;9 doi: 10.3109/03014460.2014.961960 &nbsp; 9.Johnson R.J., Stenvinkel P., Jensen T., Lanaspa M.A., Roncal C., Song Z., Bankir L., S&aacute;nchez-Lozada L.G.Metabolic and Kidney Diseases in the Setting of Climate Change, Water Shortage, and Survival Factors. J Am Soc Nephrol. 2016;27(8):2247-2256 doi: 10.1681/ASN.2015121314 &nbsp; 10.de Lorenzo A., Lia&ntilde;o F. High temperatures and nephrology: The climate change problem. Nefrologia. 2017;37(5):492-500 doi: 10.1016/j.nefro.2016.12.008 &nbsp; 11.Permenter M.G., McDyre B.C., Ippolito D.L., Stallings J.D. Alterations in tissue microRNA after heat stress in the conscious rat: potential biomarkers of organ-specific injury. BMC Genomics. 2019;20(1):141 doi: 10.1186/s12864-019-5515-6 &nbsp; 12.Poonit N.D., Zhang Y.C., Ye C.Y., Cai H.L., Yu C.Y., Li T., Cai X.H. Chronic intermittent hypoxia exposure induces kidney injury in growing rats. Sleep Breath. 2018;22(2):453-461 doi: 10.1007/s11325-017-1587-1 &nbsp; 13.Clarke N.E., Turner A.J. Angiotensin-ConvertingEnzyme2: The first Decade. International Journal of Hypertension.2012; 2012: 307315 Article ID 07315 doi:10.1155/2012/307315 &nbsp; 14.Perez-Perri J.I., Acevedo J.M., Wappner P. Epigenetics: New Questions on the Response to Hypoxia. Int J Mol Sci. 2011; 12(7): 4705&ndash;4721 doi: 10.3390/ijms12074705 &nbsp; 15.Shoji K., Tanaka T., Nangaku M. Role of hypoxia in progressive chronic kidney disease and implications for therapy. Curr Opin Nephrol Hypertens. 2014;23(2):161-168 doi: 10.1097/01.mnh.0000441049.98664.6c &nbsp; 16.Nangaku M., Hirakawa Y., Mimura I. et al. Epigenetic Changes in the Acute Kidney Injury-to-Chronic Kidney Disease Transition. Nephron. 2017;137:256&ndash;259 doi.org/10.1159/000476078 &nbsp; 17.Chou Y.H., Huang T.M., Chu T.S. Novel insights into acute kidney injury-chronic kidney disease continuum and the role of renin-angiotensin system. J Formos Med Assoc. 2017;116(9):652-659 doi: 10.1016/j.jfma.2017.04.026 &nbsp; 18.Xie G., Liu Y., Yao Q. et al. Hypoxia-induced angiotensin II by the lactate-chymase-dependent mechanism mediates radioresistance of hypoxic tumor cells. Sci Rep. 2017; 7: 42396. doi: 10.1038/srep42396 &nbsp; 19.Lin C.-L., Lee P.-H., Hsu Y.-C. et al. MicroRNA-29a Promotion of Nephrin Acetylation Ameliorates Hyperglycemia-Induced Podocyte Dysfunction. J Am Soc Nephrol. 2014; 25(8):1698&ndash;1709 doi: 10.1681/ASN.2013050527 &nbsp; 20.Lu Z.,<sup> </sup>Liu N., Wang F. Epigenetic Regulations in Diabetic Nephropathy. J. Diabetes Res. 2017; 2017: 780505 doi: 10.1155/2017/7805058 &nbsp; 21.Dounousi E., Duni A., Leivaditis K. et al. Improvements in the Management of Diabetic Nephropathy. Rev Diabet Stud. 2015; 12(1-2): 119&ndash;133 doi: 10.1900/RDS.2015.12.119 &nbsp; 22.Schmidt Dellamea B., Bauermann Leit&atilde;o C., Friedman R., Canani L.H. Nitric oxide system and diabetic nephropathy. Diabetol. Metab. Syndr. 2014; 6: 17 doi: 10.1186/1758-5996-6-17 &nbsp; 23.Ruiz-Hernandez A., Kuo C.-C., Rentero-Garrido P. et al. Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clin Epigenetics. 2015; 7(1): 55 doi: 10.1186/s13148-015-0055-7 &nbsp; 24.Kuo C.-C., Moon K., Thayer K.A., Navas-Acien A. Environmental Chemicals and Type 2 Diabetes: An Updated Systematic Review of the Epidemiologic Evidence. Curr Diab Rep. 2013; 13(6): 831&ndash;849 doi: 10.1007/s11892-013-0432-6 &nbsp; 25.Salnikow K., Su W., Blagosklonny M.V., Costa M. Carcinogenic metals induce hypoxia-inducible factor-stimulated transcription by reactive oxygen species-independent mechanism. Cancer Res. 2000;60(13):3375-3378 PMID: 10910041 &nbsp; 26.Tanaka T., Kojima I., Ohse T, Ingelfinger J.R., Adler S., Fujita T., Nangaku M.Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Invest. 2005;85(10):1292-1307 doi:10.1038/labinvest.3700328 &nbsp; 27.Shrivastava K., Ram M.S., Bansal A., Singh S.S., Ilavazhagan G.Cobalt supplementation promotes hypoxic tolerance and facilitates acclimatization to hypobaric hypoxia in rat brain. High Alt Med Biol. 2008;9(1):63-75 doi: 10.1089/ham.2008.1046 &nbsp; 28.Chai Y.C., Mendes L.F., van Gastel N., Carmeliet G., Luyten F.P. Fine-tuning pro-angiogenic effects of cobalt for simultaneous enhancement of vascular endothelial growth factor secretion and implant neovascularization. Acta Biomater. 2018;72:447-460 doi: 10.1016/j.actbio.2018.03.048 &nbsp; 29.Karaczyn A., Ivanov S., Reynolds M., Zhitkovich A., Kasprzak K.S., Salnikow K. Ascorbate depletion mediates up-regulation of hypoxia-associated proteins by cell density and nickel. J Cell Biochem. 2006;97(5):1025-1035 doi:10.1002/jcb.20705 &nbsp; 30.Yuan Y., Hilliard G., Ferguson T., Millhorn D.E. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem. 2003;278(18):15911-15916 doi:10.1074/jbc.M300463200 &nbsp; 31.Stenger C., Naves T., Verdier M., Ratinaud M.H.The cell death response to the ROS inducer, cobalt chloride, in neuroblastoma cell lines according to p53 status. Int J Oncol. 2011;39(3):601-609 doi:10.3892/ijo.2011.1083 &nbsp; 32.Chimeh U., Zimmerman M.A., Gilyazova N., Li P.A. B355252, A Novel Small Molecule, Confers Neuroprotection Against Cobalt Chloride Toxicity In Mouse Hippocampal Cells Through Altering Mitochondrial Dynamics And Limiting Autophagy Induction. Int J Med Sci. 2018;15(12):1384-1396 doi:10.7150/ijms.24702 &nbsp; 33.Shrivastava K., Ram M.S., Bansal A., Singh S.S., Ilavazhagan G.Cobalt supplementation promotes hypoxic tolerance and facilitates acclimatization to hypobaric hypoxia in rat brain. High Alt Med Biol. 2008;9(1):63-75 doi: 10.1089/ham.2008.1046 34.Jeon E.S., Shin J.H., Hwang S.J., Moon G.J., Bang O.Y., Kim H.H.Cobalt chloride induces neuronal differentiation of human mesenchymal stem cells through upregulation of microRNA-124a. Biochem Biophys Res Commun. 2014;444(4):581-587 doi: 10.1016/j.bbrc.2014.01.114 &nbsp; 35.Chen Y., Zhao Q., Yang X., Yu X., Yu D., Zhao W.. Effects of cobalt chloride on the stem cell marker expression and osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Cell Stress Chaperones. 2019 doi: 10.1007/s12192-019-00981-5 &nbsp; 36.Matsumoto M., Makino Y., Tanaka T., Tanaka H., Ishizaka N., Noiri E., Fujita T., Nangaku M. Induction of Renoprotective Gene Expression by Cobalt Ameliorates Ischemic Injury of the Kidney in Rats. J Am Soc Nephrol 14: 1825&ndash;1832, 2003 PMID:12819242 &nbsp; 37.Tanaka T., Kojima I., Ohse T., Ingelfinger J.R., Adler S., Fujita T., Nangaku M. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Laboratory Investigation. 2005;85: 1292&ndash;1307 doi:10.1038/labinvest.3700328 &nbsp; 38.Tan L., Lai X., Zhang M., Zeng T., Liu Y., Deng X., Qiu M., Li J., Zhou G., Yu M., Geng X., Hu J., Li A. A stimuli-responsive drug release nanoplatform for kidney-specific anti-fibrosis treatment. Biomater Sci. 2019;7(4):1554-1564 doi: 10.1039/c8bm01297k 39.Nagasawa H. Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery: drug discovery for targeting the tumor microenvironment. J Pharmacol Sci. 2011;115(4):446-452 PMID: 21422725 &nbsp; 40.Eskandani M., Vandghanooni S., Barar J., Nazemiyeh H., Omidi Y. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells. Int J Biol Macromol. 2017;99:46-62 doi: 10.1016/j.ijbiomac.2016.10.113 &nbsp; 41.Czarnek K., Terpiłowska S., Siwicki A.K.Selected aspects of the action of cobalt ions in the human body. Cent Eur J Immunol. 2015;40(2):236-242 doi:10.5114/ceji.2015.52837 &nbsp; 42.Lawrence H., Deehan D.J., Holland J.P., Anjum S.A., Mawdesley A.E., Kirby J.A., Tyson-Capper A.J.. Cobalt ions recruit inflammatory cells <em>in vitro</em> through human Toll-like receptor 4. Biochem Biophys Rep. 2016;7:374-378 doi: 10.1016/j.bbrep.2016.07.003 &nbsp; 43.Anjum S.A., Lawrence H., Holland J.P., Kirby J.A., Deehan D.J., Tyson-Capper A.J. Effect of cobalt-mediated Toll-like receptor 4 activation on inflammatory responses in endothelial cells. Oncotarget. 2016;7(47):76471-76478 doi: 10.18632/oncotarget.13260 &nbsp; 44.Shweta, Mishra K.P., Chanda S., Singh S.B., Ganju L.A comparative immunological analysis of CoCl2 treated cells with in vitro hypoxic exposure. Biometals. 2015;28(1):175-185 doi: 10.1007/s10534-014-9813-9 &nbsp; 45.Liang Y., Zhen X., Wang K., Ma J. Folic acid attenuates cobalt chloride-induced PGE2 production in HUVECs via the NO/HIF-1alpha/COX-2 pathway. Biochem Biophys Res Commun. 2017;490(2):567-573 doi:10.1016/j.bbrc.2017.06.079 &nbsp; 46.Kumanto M., Paukkeri E.-L., Nieminen R., Moilanen E. Cobalt(II) Chloride Modifies the Phenotype of Macrophage Activation. Basic &amp; Clinical Pharmacology &amp; Toxicology, 2017;121:98&ndash;105 doi: 10.1111/bcpt.12773 &nbsp; 47.Friso S., Carvajal C.A., Fardella C.E., Olivieri O. Epigenetics and arterial hypertension: the challenge of emerging evidence. Transl Res. 2015;165(1):154-165 doi: 10.1016/j.trsl.2014.06.007 &nbsp; 48.Wise I.A., Charchar F.J. Epigenetic Modifications in Essential Hypertension. Int J Mol Sci. 2016; 17(4): 451 doi: 10.3390/ijms17040451 &nbsp; 49.Shiels P.G., McGuinness D., Eriksson M. et al. The role of epigenetics in renal ageing. Nat Rev Nephrol. 2017;13(8):471-482 doi: 10.1038/nrneph.2017.78 &nbsp; 50.Seok S., Kim Y.C., Byun S., Choi S., Xiao Z., Iwamori N., Zhang Y., Wang C., Ma J., Ge K., Kemper B., Kemper J.K. Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid &beta;-oxidation. J Clin Invest. 2018;128(7):3144-3159 doi: 10.1172/JCI97736 &nbsp; 51.Lizotte F., Denhez B., Guay A., G&eacute;vry N., C&ocirc;t&eacute; A.M., Geraldes P. Persistent Insulin Resistance in Podocytes Caused by Epigenetic Changes of SHP-1 in Diabetes. Diabetes. 2016;65(12):3705-3717 doi:10.2337/db16-0254 &nbsp; 52.Kuroda A., Rauch T.A., Todorov I. et al. Insulin Gene Expression Is Regulated by DNA Methylation. PLoS One. 2009; 4(9): e6953 doi: 10.1371/journal.pone.0006953 &nbsp; 53.Kone B.C. Epigenetics and the Control of the Collecting Duct Epithelial Sodium Channel. Semin Nephrol. 2013; 33(4): 383&ndash;391 doi: 10.1016/j.semnephrol.2013.05.010 &nbsp; 54.Welch A.K., Jeanette Lynch I., Gumz M.L. et al. Aldosterone alters the chromatin structure of the murine endothelin-1 gene. Life Sci. 2016;159:121-126 doi: 10.1016/j.lfs.2016.01.019 &nbsp; 55.Kawarazaki W., Fujita T.<sup> </sup>The Role of Aldosterone in Obesity-Related Hypertension. Am J Hypertens. 2016; 29(4): 415&ndash;423 doi: 10.1093/ajh/hpw003 &nbsp; 56.Hu Z., Zhuo X., Shi Y. et al. Iodine deficiency up-regulates monocarboxylate transporter 8 expression of mouse thyroid gland. Chin Med J (Engl). 2014;127(23):4071-4076 &nbsp; 57.Leow M.K. A Review of the Phenomenon of Hysteresis in the Hypothalamus&ndash;Pituitary&ndash;Thyroid Axis. Front Endocrinol (Lausanne). 2016; 7: 64 doi: 10.3389/fendo.2016.00064 &nbsp; 58.Kobori H., Ichihara A., Miyashita Y. et al. Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol. 1999;160(1):43-47 &nbsp; 59.Chevalier R.L. Evolutionary Nephrology. Kidney Int Rep. 2017; 2(3): 302&ndash;317 doi: 10.1016/j.ekir.2017.01.012 &nbsp; 60.Venet F., Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018;14(2):121-137 doi: 10.1038/nrneph.2017.165 &nbsp; 61.Syed-Ahmed M., Narayanan M. Immune Dysfunction and Risk of Infection in Chronic Kidney Disease. Adv Chronic Kidney Dis. 2019;26(1):8-15 doi: 10.1053/j.ackd.2019.01.004 &nbsp; 62.Uy N., Graf L., Lemley K., Kaskel F. Effects of Gluten-Free, Dairy-Free Diet on Childhood Nephrotic Syndrome and Gut Microbiota. Pediatr Res. 2015; 77(1-2): 252&ndash;255 doi: 10.1038/pr.2014.159 &nbsp; 63.Marques F.Z., Nelson E., Chu P.Y. et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation. 2017;135(10):964-977 doi: 10.1161/CIRCULATIONAHA.116.024545 &nbsp; 64.Lu C.C., Ma K.L., Ruan X.Z., Liu B.C. Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabeticnephropathy. Int J Med Sci. 2018;15(8):816-822 doi: 10.7150/ijms.25543 &nbsp; 65.Chandel N., Husain M., Goel H. et al. VDR hypermethylation and HIV-induced T cell loss. J Leukoc Biol. 2013; 93(4): 623&ndash;631 doi: 10.1189/jlb.0812383 <strong>ГЛАВА 3. ФАКТОРЫ ВНУТРИОРГАННОЙ ГУМОРАЛЬНОЙ РЕГУЛЯЦИИ ДЕЯТЕЛЬНОСТИ ПОЧЕК. ИХ МЕСТО И РОЛЬ В ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМАХ НАРУШЕНИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ РЕНАЛЬНОЙ ПАРЕНХИМЫ</strong> &nbsp; Обсуждая физиологические и патофизиологические аспекты эпигенетического контроля экспрессии генов клеток ренальной паренхимы, необходимо учитывать, что почки обладают автономной системой продукции тканевых гормонов, с одной стороны, принимающих участие в системе ауторегуляции гомеостатических функций и внутриорганного кровотока. С другой стороны, способных индуцировать эпигенетическую трансформацию экспрессии регуляторных и транспортных белков в интересах системного контроля гомеостаза. Вместе с тем, данным эпигенетическим системам контроля экспрессии генов отводится важная патофизиологическая роль в индукции патогенеза почечной недостаточности. Следовательно, еще одним объектом исследований молекулярной биологии и генетики в изучении патогенеза заболеваний почек являются принципиально новые фармакологические методы сдерживания прогрессирования почечной недостаточности. <strong>3.1. РЕНИН-АНГИОТЕНЗИНОВАЯ СИСТЕМА (РАС)</strong> &nbsp; Для того чтобы более полно охарактеризовать результаты эпигенетической перестройки локальной внутрипочечной РАС для функции почек, мы позволим себе кратко упомянуть широко известную схему функционирования внутрипочечной РАС. Согласно существующим представлениям, утвердившимся в мировой литературе, в почке основным местом синтеза ренина являются специализированные клетки ЮГА. Субстрат ренина &ndash; ангиотензиноген, синтезируется в печени. Основные регуляторные эффекты ангиотензина-II, образующегося в результате поступательной конверсии ангиотензиногена в ангиотензин-I при участии ренина, а затем и в ангиотензин-II при участии ангиотензин-превращающего фермента-1 (АПФ-1), сосредоточены на уровне проксимального сегмента нефрона и кровеносных сосудов почки, главным образом, через АТ1-популяцию рецепторов. Благодаря этим эффектам ангиотензин-II осуществляет контроль кровяного давления, волемического гомеостаза, параметров ионного и кслотно-основного гомеостаза организма, а также принимает участие в ауторегуляции почечного кровотока. Некоторые авторы не исключают, что в норме ангиотензиноген может в небольших количествах синтезироваться нефроцитами проксимального отдела нефрона (Kobori H. et al., 2013). Вместе с тем, результаты экспериментальных исследований указывают, что главным источником ангиотензиногена в норме является печень (Matsusaka T. et al., 2012). Помимо АПФ-1, в почке достаточно высокие уровни активности АПФ-2, отвечающего за образование ангиотензина-1-7, отвечающего за механизмы отрицательной обратной связи к ангиотензину-II, хотя, строго говоря, ангиотензин-1-7 антагонистом октапептида не является. В указанной схеме преобразования ангиотензиногена в ангиотензин-II регуляторным ферментом является ренин. При этом, более ранние источники литературы указывали роль процесса ацитилирования гистонов в контроле прогрессирования заболеваний почек, сердца, легких (Bush E.W., McKinsey T.A., 2010). В обсуждении роли преобразований экспрессии компонентов ренин-ангиотензиновой системы почки в процессах патогенеза почечной недостаточности, высказывается мысль о том, что индукцию экспрессии ренина/проренина в канальцевом эпителии следует рассматривать в качестве одного из ключевых событий (Prieto M.C. et al., 2013). Рассматривается роль усиления экспрессии ренина в канальцевом отделе нефрона в патогенезе фиброза почки и гипертонической болезни (Prieto M.C. et al., 2013; Gonzalez A.A., Prieto M.C., 2015). В литературе анализируются возможные молекулярные механизмы индукции экспрессии гена ренина в почках, включая механизмы экспансии ренин-секретирующих клеток за пределы юкста-гломерулярного аппарата (Sequeira Lopez M.L., Gomez R.A., 2010; Kurtz A., 2012). В настоящее время экспансия экспрессии гена ренина (за счет рекрутирования новых, ранее не синтезировавших ренин клеток) рассматривается, как результат, в основном, деятельности эпигенетических механизмов (Gomez R.A., 2017). С другой стороны, эпигенетические системы контроля экспрессии гена ренина сохраняют свою актуальность не только для тканей почки, но и для процессов кроветворения, иммунокомпетентных клеток и т. д. (Gomez R.A., Sequeira-Lopez M.L.S., 2018). Необходимо отметить, что, по мнению ряда авторов, ангиотензин-II следует рассматривать в качестве одного из основных факторов, способствующих прогрессированию почечной недостаточности, через нарушение внутриорганной гемодинамики, стимуляцию фиброза органа, активацию провоспалительных факторов, ограничение клеточного цикла канальцевого эпителия и нарушение обменных процессов в нефроцитах (Kobori H. et al., 2013). Указывается, что по мере прогрессирования почечной недостаточности концентрации ангиотензина-II в тканях почки могут существенно повышаться, на фоне незначительных изменений уровня октапептида в системном кровотоке (Matsusaka T. et al., 2012; Kobori H. et al., 2013). Привлекает внимание тот факт, что существенному увеличению внутриренальной продукции ангиотензина-II, на фоне прогрессирования почечной недостаточности, сопутствует отчетливый прирост биосинтеза белков-компонентов РАС: ангиотензиногена, проренина, АПФ-1 и АТ1-рецепторов ангиотензина-II (основной популяции рецепторов, отвечающих за большинство физиологических и патофизиологических эффектов ангиотензина-II), не только в проксимальных нефроцитах, но и в атипичных очагах активности РАС - эпителии дистальных отделов нефрона (Kobori H. et al., 2013). Авторы цитируемой публикации детально не обсуждают возможную роль эпигенетических механизмов в перестройке внутрипочечной РАС по мере нарастания патологических изменений ренальной паренхимы. Тем не менее, сама логика излагаемых фактов подводит к этому вопросу. Постараемся выяснить, насколько обосновано такое предположение. Действительно, дальнейшие исследования показали, что экспрессия компонентов РАС может регулироваться эпигенетическими механизмами на разных этапах онтогенеза (Tain Y.-L. et al., 2017; Tain Y.L., Hsu C.N., 2017, Witasp A. et al., 2017). При этом, эпигенетическая модуляция экспрессии компонентов РАС рассматривается, в качестве одного из ведущих патогенетических механизмов целого ряда опасных заболеваний (Tain Y.-L. et al., 2017). В частности, показано, что эпигенетические изменения критически важны для понимания перехода острой почечной недостаточности в хроническую форму (Rodr&iacute;guez-Romo R. et al., 2015). В литературе мы встречаем данные о том, что в условиях экспериментальной модели фетального программирования подтверждено участие эпигенетических факторов в регуляции уровней экспрессии АТ1 рецепторов ангиотензина-II (Bogdarina I. et al., 2007; Wu L. et al., 2016). Важным является тот факт, что эпигенетические механизмы, усиливая синтез компонентов РАС, создают условия для активации внутриклеточных (аутокринных) эффектов ангиотензина-II, что, по мнению некоторых авторов, является базовым патогенетическим механизмом РАС-зависимых повреждений тканей почек и сердца (De Mello W.C., 2015). В качестве иллюстрации к высказанному мнению можно привести данные о том, что ацетилирование гистонов 3 (H3Ac), а также их триметилирование (H3K4me3) и диметилирование (H3K9me2) может способствовать высвобождению промотора гена АПФ-1 в почечной паренхиме, обеспечивая биосинтез фермента (Liang M. et al., 2013). С одной стороны, в соответствии с классическим представлением о деятельности РАС, АПФ-1 в нашем организме присутствует в избытке и не является лимитирующим фактором в процессах образования ангиотензина-II. Но если оценивать упомянутый факт с позиций формирования полноценно функционирующей внутриклеточной РАС, то он приобретает совершенно иное значение (Abadir P.M. et al., 2012; Ellis B. et al., 2012). Действительно, по данным литературы, повышение экспрессии в тканях почки гена АПФ-1 является маркером неблагоприятного течения диабетической нефропатии (Thomas M.C., 2016). В дополнение к сказанному, можно привести сообщение группы исследователей, выявивших в условиях диабетической нефропатии усиление внутриклеточной продукции ангиотензиногена в проксимальных нефроцитах, обусловленное ацетилированием (H3K9) и триметилированием (H3K4me3) белка гистона-3 (Marumo T. et al., 2015). По мнению авторов, выявленный эффект может в равной степени свидетельствовать, как о повышении функциональной нагрузки на данный сегмент нефрона, так и о включении патофизиологических механизмов, индуцирующих повреждение данной популяции клеток канальцевого эпителия. Мнение о том, что повышение экспрессии ангиотензиногена в проксимальных нефроцитах может рассматриваться в качестве маркера прогрессирования почечной недостаточности, высказывают и другие авторы (O&#39;Leary R. et al., 2016; Bourgeois C.T. et al., 2017). Патофизиологические и эпигенетические механизмы этого феномена требуют более глубокого исследования. Однако, установлено, что на процессы эпигенетического контроля синтеза ангиотензиногена проксимальными нефроцитами могут оказывать влияние такие факторы, как интерферон-гамма (Satou R. et al., 2013), IL-6 (O&#39;Leary R. et al., 2016) и половые стероидные гормоны (Bourgeois C.T. et al., 2017). Наряду с этим, ангиотензин-II также обладает способностью модулировать состояние экспрессии белков в тканях почки, стимулируя повышение экспрессии АТ1 рецепторов и трансформирующего фактора роста-бета1, на фоне угнетения АПФ-2 (Macconi D. et al., 2014). Эпигенетические механизмы, инициируемые на стадии острой почечной недостаточности, могут рассматриваться в качестве фактора, создающего предпосылки прогрессирования почечной недостаточности, формируя неблагоприятный прогноз течения заболевания (Beckerman P. et al., 2014; Tang J., Zhuang S., 2015; Lee-Son K., Jetton J.G., 2016). В контексте обсуждаемой темы уместно напомнить, что фармакологические ингибиторы РАС (ингибиторы АПФ-1, антагонисты АТ1 рецепторов и ингибиторы ренина) довольно широко и успешно применяются, в том числе, при решении проблемы сдерживания прогрессирующей почечной недостаточности. Применение данной группы препаратов способствует ослаблению протеинурии, предотвращает поражение канальцевого эпителия, содействует ограничению воспаления и фиброза почки (Macconi D. et al., 2014). Поэтому, вполне логичным является вопрос о возможном участии блокаторов РАС в нормализации изменений, индуцированных эпигенетической перестройкой хроматина. Установлено, что в условиях острой почечной недостаточности токсического генеза, ренопротекторные свойства антагониста АТ1 рецепторов (лозартана) обусловлены сдерживанием, в том числе, эпигенетических механизмов, индуцирующих десквамацию подоцитов и усиление протеинурии (Hayashi K. et al., 2015). В частности, авторами выявлено, что лозартан влияет на состояние метилирования промотора гена белка нефрина. По некоторым данным, в условиях экспериментальной модели диабетической нефропатии, лозартан может оказывать умеренный благоприятный эффект на состояние эпигенетических механизмов в тканях почки крыс (Reddy M.A. et al., 2013). В дальнейшем, в условиях ранее примененной экспериментальной модели, авторы показали, что лозартан эффективно блокирует эпигенетические механизмы (через регуляцию процессов ацетилирования H3K9/14Ac) экспрессии генов, ответственных за стимуляцию синтеза ингибитора активатора плазминогена-1 (PAI-1) и моноцитарного хемоаттрактанта протеина-1 (MCP-1), являющихся важными медиаторами повреждения тканей почек (Reddy M.A. et al., 2014). На основании полученных данных авторы цитируемой публикации делают вывод о том, что наиболее эффективная фармакологическая терапия почечной недостаточности должна базироваться на комбинированном применении ингибиторов РАС и специфических модуляторов эпигенетических механизмов. Аналогичную точку зрения высказываются и другие авторы, предполагая, что к наиболее благоприятным терапевтическим результатам может привести сочетанное назначение нефрологическим пациентам ингибитора АПФ-1 и ингибитора деацетилазы гистонов (HDACI) (Zhong Y. et al., 2013). Признавая эффективность лозартана в ограничении метилирования гистонов Harshman L.A. и Zepeda-Orozco D. (2016) видят перспективность клинического использования в нефрологической практике препаратов, относящихся к группе ингибиторов HDACI. Наряду с этим, высказывается мнение о роли микро-РНК в эпигенетических механизмах активации локальной РАС почек при хронической почечной недостаточности (Witasp A. et al., 2017). В литературе высказывается мнение о том, что изучение эпигенетических механизмов функционирования внутриклеточной РАС является фундаментальным направлением современной медицинской науки, призванное решать наиболее актуальные практические задачи в области нефрологии и заболеваний сердечно-сосудистой системы (De Mello W.C., 2017). Таким образом, проведенный анализ данных литературы показал, что эпигенетические аспекты перестройки внутрипочечной (внутриорганной) РАС принципиально важны для понимания патофизиологических механизмов нарушения деятельности почек, сопряженных с усилением внутриклеточной продукции ангиотензина-II. Во-первых, эпигенетическая модификация хроматинового комплекса приводит к появлению новых атипичных очагов интенсивной продукции ангиотензина-II в канальцевом эпителии проксимального и дистального отдела нефрона. Во-вторых, самодостаточная (содержащая все основные компоненты) внутриклеточная РАС канальцевого эпителия переключается на аутокринный и паракринный механизмы, с одной стороны, ослабляет свою роль в физиологической регуляции гомеостатических функций почек. С другой стороны, активация внутриклеточной РАС все более нацелена на патофизиологические механизмы усиления повреждения ткани через нарушения энергетического обмена клетки (De Mello W.C., 2017). Кроме того, активируемые эпигенетическими механизмами гены белков-компонентов РАС, через повышение продукции ангиотензина-II, запускают новый виток каскадного усиления ковалентной модификации хроматина, где в качестве индуктора эпигенетических преобразований, напрямую или опосредовано выступает сам ангиотензин-II. Об этом убедительно свидетельствует эффективность применения блокаторов РАС в отношении эпигенетической трансформации хроматина клеток почки. В-третьих, в доступной нам литературе имеются единичные косвенные данные, позволяющие судить о том, насколько эффективно проникают внутрь клеток (в том числе в эпителий канальца) фармакологические ингибиторы РАС (Foster D.R. et al., 2009). При том, что существует очевидная потенциальная возможность с помощью ингибиторов РАС оказывать влияние на внутриклеточные эффекты ангиотензина-II, нацеленные на регуляцию экспрессии генов (da Silva Novaes A. et al., 2018). При этом мы можем только предполагать характер возможного терапевтического действия селективных ингибиторов на внутриклеточную РАС. В-четвертых, данное направление исследований способствует разработке принципиально новых фармакологических препаратов, способствующих более эффективному решению практических задач не только в нефрологии, но и в борьбе с заболеваниями сердечно-сосудистой системы и в области онкологии. <strong>3.2. МИНЕРАЛОКОРТИКОИДЫ.</strong> &nbsp; Анализ фармакологических способов контроля метаболизма минералокортикоидов вовлечен в довольно широкий круг задач, далеко выходящий за пределы изучения патогенеза почечной недостаточности (Zhang D. et al., 2009; Welch A.K. et al., 2016; Bavishi C. et al., 2016; Kawarazaki W., Fujita T., 2016; Azzam Z.S. et al., 2017). Однако, роль альдостерона в патогенезе заболеваний почек, по-прежнему занимает одно из центральных мест (Currie G. et al., 2016). Строго говоря, альдостерон синтезируется вне почки. Тем не менее, мы посчитали возможным рассмотрение эпигенетических эффектов, связанных с его метаболизмом в контексте анализируемого вопроса, поскольку его физиологические, патофизиологические и фармакологические аспекты тесно связаны с функционированием локальной РАС коры надпочечников и внутрипочечной РАС (Feraille E., Dizin E., 2016; Kawarazaki W., Fujita T., 2016; Nehme A., Zibara K., 2017). Возможно, такое объединение может иметь и более обоснованный аргументы, однако, данный вопрос требует дополнительного изучения (De Mello W.C., 2017). Тем не менее, уже известные факты, широко применяемые в практической медицине (Bavishi C. et al., 2016; Currie G. et al., 2016), дают нам право дополнить выше изложенные аргументы сведениями о роли эпигенетических механизмов в патофизиологии альдостерона и РААС. Позволим себе еще одно краткое замечание. В процессе филогенеза появление у амниот минералокортикоидов произошло относительно недавно &ndash; в связи с выходом позвоночных животных на сушу. В то время, как у низших позвоночных (анамний) функцию минералокортикоидов выполнял кортизол (Dolomatov S.I. et al., 2012). Вероятно, поэтому мы наблюдаем интерференцию эффектов альдостерона и глюкокортикоидов на процессы реабсорбции натрия в дистальном отделе нефрона человека (Feraille E., Dizin E., 2016; Nehme A., Zibara K., 2017). В данном случае упоминание о минералокортикоидной функции глюкокортикоидов следует рассматривать, как попытку более полно оценить обсуждаемые процессы. Возможно, рассмотрение регуляторных эффектов альдостерона, необходимо начать с того, что наиболее важными стимулами интенсивности его секреции в коре надпочечников являются: повышение содержания ионов калия во внеклеточной (внутрисосудистой) жидкости и ангиотензина-II, образующийся в локальной (внутриорганной) РАС надпочечников и почек (Feraille E., Dizin E., 2016; Kawarazaki W., Fujita T., 2016; Nehme A., Zibara K., 2017). Поскольку стимулирующее действие ангиотензина-II на уровень секреции альдостерона реализуется через АТ1-популяцию рецепторов, уместно напомнить, что ранее была установлена роль эпигенетических механизмов в управлении экспрессией АТ1 рецепторов, в том числе и в корковом веществе надпочечников (Bogdarina I. et al., 2007; Liang M. et al., 2013). Кроме того, показано, что механизмы фетального программирования, обусловленные даже непродолжительным повышением кортизола в крови матери могут усиливать экспрессию их рецепторов у плода (Liang M. et al., 2013; Tain Y.L., Hsu C.N., 2017). По мнению авторов цитируемых публикаций, такой механизм может способствовать неадекватной стимуляции реабсорбции натрия в зрелом возрасте, приводя к системным нарушениям параметров гемодинамики. Кроме того, авторы отмечают, что активация реабсорбции натрия в дистальном отделе нефрона может осуществляться и за счет триметилирования of H3K36, сопровождающегося подавлением экспрессии гена 11&beta;-гидроксистероид дегидрогеназы-2, отвечающей за метаболический клиренс глюкокортикоидов. Необходимо подчеркнуть, что патофизиологические механизмы альдостерона в почках непосредственно сопряжены со стимуляцией фиброгенеза в тканях органа, повреждением подоцитов и нарастанием протеинурии (Kawarazaki W., Fujita T., 2016). В современной литературе мы наблюдаем повышение интереса к эпигенетическим механизмам перестройки работы почки, связанных с изменением экспрессии транспортных систем натрия, калия и хлора в различных сегментах нефрона (Tain Y.L., Hsu C.N., 2017). Одно из центральных мест этого направления исследований прочно занимает эпителиальный натриевый канал (ENaC) дистального отдела нефрона (Duarte J.D. et al., 2012; Kone B.C., 2013; Yu Z. et al., 2013). В цитируемых источниках сообщается, что альдостерон стимулирует транскрипцию гена белка альфа-субъединицы EnaC (&alpha;ENaC) через активацию фермента глюкокортикоид-индуцируемую киназу-1, подавляющую активность Dot1a (метилтрансферазу белков-гистонов H3K79), транскрипционного фактора Af9 и гистоновой деацетилазы Sirt1, изменяя активность комплекса Dot1/Af9. Кроме того, в литературе имеются данные о том, что индуцированная альдостероном модификация хроматина может способствовать усилению экспрессии гена эндотелина-1 в соединительных трубочках внутренней медуллы (Welch A.K. et al., 2016). Поскольку рецепторам минералокортикоидов отводится важная роль в реализации эпигенетических эффектов альдостерона, могут представлять интерес данные о том, какова роль данной популяции рецепторов в регуляции экспрессии генов, чувствительных к влиянию альдостерона (Ueda K. et al., 2014). Привлекают внимание сообщения о том, что эпигенетические изменения в системе РААС могут принципиально нарушать механизмы стимуляции секреции альдостерона в корковом веществе надпочечников, ослабляя регуляторную роль внутриорганной РАС почек и надпочечников, выводя на первые позиции совершенно иные факторы (например, лептин), непосредственно не связанные с функциональным состоянием почек и не привязанные к параметрам водно-солевого обмена (Kawarazaki W., Fujita T., 2016). Таким образом, проведенный анализ данных литературы показал, что эпигенетические механизмы перестройки метаболизма альдостерона являются важным фактором в патогенезе ренальных дисфункций и патологических нарушений системной гемодинамики. Установлено, что эпигенетические механизмы затрагивают: систему регуляции метаболизма неполовых стероидов; контролирующих экспрессию транспортных белков дистального отдела нефрона; секрецию физиологически активных пептидов в канальцевом отделе нефрона. Кроме того, есть основания предполагать, что процессы регулирования секреции альдостерона также могут подвергаться эпигенетическим изменениям, приводя к неадекватной стимуляции продукции гормона. Возможно, совокупность выявленных закономерностей позволяет некоторым авторам утверждать, что вызванная эпигенетической перестройкой хроматина неограниченная активация РААС и взаимное усиление патофизиологических эффектов ангиотензина-II и альдостерона является одним из базовых патогенетических механизмов хронических заболеваний почек и органов сердечно-сосудистой системы (De Mello W.C., 2017). <strong>3.3. ТРАНСФОРМИРУЮЩИЙ ФАКТОР РОСТА-бета1 </strong> &nbsp; Согласно данным литературы, трансформирующий фактор роста-бета1 (ТФР-бета1) принадлежит к суперсемейству цитокинов, в состав которых, помимо ТФР-бета, входит большое количество белков, например, ВМР, в норме имеющих важное значение для цитодифференцировки тканей и процессов заживления ран (Shi M. et al., 2011). В стимуляции внутриренального синтеза ТФР-бета1важную роль играет ангиотензин-II через АТ1 популяцию рецепторов (Reddy M.A. et al., 2014). Между тем, авторы цитируемого источника отмечают, что антагонисты АТ1 рецепторов и блокаторы АПФ-1 оказывают умеренное благоприятное воздействие на процессы фиброза органа при хронической почечной недостаточности, поскольку существуют РАС-независимые пути индукции ТФР-бета1. Известно, что ТФР-бета1 и ТФР-бета3 является ключевым фактором стимуляции фиброгенеза ткани почки в условиях хронической почечной недостаточности (Wing M.R. et al., 2013). Обнаружено, что патологические нарушения почек в условиях экспериментальных моделей острой почечной недостаточности сопровождаются достаточно быстрым приростом продукции ТФР-бета1 в тканях почки, в том числе, благодаря активации эпигенетических механизмов (Zager R.A. et al., 2011), нарушая нормальное течение репаративных процессов в почке (Bonventre J.V., Yang L., 2011). В экспериментальных условиях острой почечной недостаточности in vivo и в моделировании острого токсического воздействия на культивируемые проксимальные нефроциты было установлено, что стимуляция метилирования Н3 (H3K4mе3) предшествует резкому повышению уровня мРНК ТФР-бета1 в ткани (Zager R.A., Johnson A.C.M., 2010). Результаты экспериментальных исследований подтверждают, что эпигенетическая активация гена ТФР-бета1 происходит в условиях острой почечной недостаточности, способствуя хронизации заболеваний почек (Sun G. et al., 2014). Поскольку ТФР-бета1 может участвовать в метастазировании злокачественных опухолей, является одним из основных индукторов фиброза почек, печени, легких, кожи, проблеме клинического применения анти-ТФР-бета терапии, основанной, в том числе, на эпигенетических механизмах, уделяется значительное внимание, как наиболее перспективному направлению в лечении целого ряда опасных заболеваний (Zeisberg M., Zeisberg E.M., 2015). В частности, анализируется эффективность различных способов подавления патогенетических ТФР-бета1-заисимых механизмов через селективное ингибирование популяции II-типа рецепторов цитокина (Doi S. et al., 2011), применение антисывороток ТФР-бета1 протеина (Zeisberg M., Zeisberg E.M., 2015), использование селективных блокаторов активности деацетилаз гистоновых белков (HDAC) (Guo W. et al., 2009). Хотя, по мнению некоторых авторов, в качестве основной мишени специфических блокаторов деацетилаз гистонов следует рассматривать фермент HDAC класса I, которая, возможно, критически важна для стимуляции ТФР-бета1-зависимого фиброза почек (Liu N. et al., 2013). Также, некоторыми авторами высказывается мнение о целесообразности фармакологической коррекции баланса активности феерментов ацетилтрансфераз гистонов (HATs) и ферментов деацетилаз гистонов (HDACs) (Yuan H. et al., 2013). Необходимо отметить, что в литературе представлены обзоры, содержащие достаточно глубокий и всесторонний анализ возможных системных терапевтических эффектов ингибиторов энзиматической активности HDACs, нацеленных на предотвращение фиброза внутренних органов, включая почки, а также других модуляторов эпигенетических изменений в ренальной паренхиме (Van Beneden K. et al., 2013; Tang J., Zhuang S., 2015). Приводятся аргументы в пользу терапевтической эффективности ингибиторов метилирования в развитии ТФР-бета1-зависимого фиброгенеза почки (Bechtel W. et al., 2010). При этом, в качестве наиболее актуальной мишени перспективных препаратов предлагается фермент метилтрансфераза 7/9 (SET7/9), осуществляющая монометилирование остатка лизина 4 белка-гистона H3 (H3K4me1) (Sasaki K. et al., 2016). На том основании, что некоторые виды микроРНК (в частности, miR-29b) обладают способностью подавлять некоторые просклерозирующие эффекты ТФР-бета1, предполагается, данное направление также может быть в перспективе применено для сдерживания прогрессирующей почечной недостаточности (Wing M.R. et al., 2013). Установлено, что некоторые микроРНК (микро РНК-21 и микро ТНК-192), могут рассматриваться в качестве индукторов ТФР-бета1-зависимого тубулоинтерстициального фиброза и гломерулосклероза (Liu R. et al., 2015). Стимулированное ТФР-бета1 повышение транскрипции микро РНК<em>-192</em> подтверждено в опытах in vitro в культуре клеток (человека и мыши) мезангиума, подоцитов, эндотелиоцитов и канальцевого эпителия (Kato M. et al., 2013). Авторам также удалось установить, что стимуляция ТФР-бета1 транскрипции микро РНК<em>-192</em> зависит от нескольких участков ацетилирования гистона Н3 (H3K9, H3K14 и H3K27). Кроме того, авторами данной публикации высказывается мысль о том, что микро РНК-192 принадлежит особая роль в каскадном усилении просклерозирующих эффектов ТФР-бета1 через активацию транскрипции микро РНК-200b и микро РНК-200c, повышающих экспрессию генов коллагена-1альфа2 (<em>Col1a2</em><em>), коллагена-4альфа1(</em><em>Col4a1</em>) и самого ТФР-бета1 (<em>TGF-</em>&beta;<em>1</em>). С другой стороны, известно, что ТФР-бета1 через Smad3-протеин, стимулирует образование микро РНК-21, активирующей, в свою очередь, экспрессию генов collagen I и fibronectin, а также способствующей повышению уровня &alpha;-SMA в почке (Wing M.R. et al., 2013). Показано, что ТФР-бета1 через активацию фермента метилирования гистонов H3K4-метилтрансферазы SET7/9, повышает экспрессию генов, запускающих, процессы фиброгенеза в почке. Напротив, подавление SET7/9 ингибирует экспрессию индуцируемых ТФР-бета1 генов фиброза (Reddy M.A, Natarajan R., 2015; Dressler G.R., Patel S.R., 2015; Hilliard S.A., El-Dahr S.S., 2016). Возможно, медиаторами эффекта ТФР-бета1 в отношении активности SET7/9 являются продукты реакции, катализируемой ферментом 12/15-липоксигеназы (Yuan H. et al., 2016). Наряду с этим, сообщается о том, что ТФР-бета1-зависимая активация фиброгенеза осуществляется через систему внутриклеточной передачи сигнала Smad-протеинами (Reddy M.A, Natarajan R., 2015). Авторы указывают, что, например, Smad2-протеин причастен к стимуляции ацетилирования молекулы гистона Н3 (H3K9/14Ac). Наряду с ранее названными эпигенетическими изменениями, отмечается, что метилирование гистона Н3 (H3K9me2 и H3K9me3) является важным механизмом в регуляции экспрессии генов коллагена-1альфа1 (Col1&alpha;1) и ингибитора активатора плазминогена (PAI-1) (Reddy M.A. et al., 2013; Sun G. et al., 2014). Одним из базовых патогенетических механизмов тубулоинтерстициальных повреждений канальцевого отдела нефрона является эпителиально-мезенхимальная трансформация, маркером интенсивности которого служит экспрессия &alpha;-актина (&alpha;SMA). В связи с этим представляет интерес сообщение о том, что в условиях экспериментальной модели односторонней обструкции мочеточника у мышей TGF-&beta;1 не оказывал существенного влияния на состояние H3K9Ac в проксимальных нефроцитах и миофибробластах. Наряду с этим, цитокин приводил к перераспределению метки H3K9Me3 в хроматине ядра фибробластов, что коррелировало с увеличением экспрессии &alpha;-SMA (Hewitson T.D. et al., 2017). Таким образом, обзор литературы показал, что эпигенетические эффекты TGF-&beta;1 оказывают весьма значительное влияние на процессы фиброгенеза в тканях почек, затрагивая, фактически, все известные механизмы импринтинга: метилирование и ацетилирование гистоновых белков, а также перестройку экспрессии некоторых специфических микро РНК. Следует отметить, что эпигенетические механизмы, инициируемые TGF-&beta;1 в ренальной паренхиме, не только непосредственно участвуют в реализации просклерозирующего эффекта цитокина, но и способствуют резкому усилению TGF-&beta;1-зависимых патогенетических механизмов ремоделирования ренальной паренхимы. При этом, ингибирование TGF-&beta;1-зависимой модификации хроматина способствует сдерживанию патологических изменений деятельности почек. Что, с одной стороны, доказывает важную патогенетическую роль TGF-&beta;1 в хронизации и прогрессировании почечной недостаточности. С другой стороны, это открывает новые перспективы использования селективных модуляторов эпигенетических процессов в практической медицине, что подтверждается сведениями о готовности их применения в доклинических испытаниях (Van Beneden K. et al., 2013). <strong>3.4. МОЛЕКУЛА ОКСИДА АЗОТА (</strong><strong>NO</strong><strong>)</strong> &nbsp; По данным литературы, эпигенетические механизмы выполняют очень важную функцию в регуляции аргинин-зависимого пути синтеза NO в системе изоформ NO-синтаз: эндотелиальной (nNOS - NOS-1), индуцибельной (iNOS - NOS-2), и нейрональной (eNOS - NOS-3). Некоторые авторы выделяют еще одну изоформу &ndash; митохондриальную mtNOS. Имеются данные о том, что гипоксия, один из наиболее мощных активаторов эпигенетической модификации хроматина, способствует изменению экспрессии генов различных изоформ фермента NOS (Shirodkar A.V., Marsden P.A., 2011). Согласно данным цитируемого обзора, ишемия может сопровождаться репрессией гена eNOS в эндотелиоцитах, на фоне активации транскрипции всех трех изоформ NOS в неоинтиме, включая транскрипцию гена eNOS в мышечных волокнах стенки кровеносных сосудов. Авторы отмечают, что добавление к культивируемым клеткам гладкой мускулатуры сосудистой стенки ингибитора метилтрансферазы ДНК (5-azacytidine), а также как ингибитора HDAC (Trichostatin A), приводило к стимуляции транскрипцию гена eNOS в этих клетках, также, способствуя увеличению мРНК eNOS. В исследованиях in vitro на культуре проангиогенных клеток (early EPCs) и мезангиобластов было установлено, что добавление в среду только 3-deazaneplanocin A (DZNep), ингибитора триметилирования H3K27, не оказывало существенного влияния на экспрессию гена eNOS, тогда, как сочетанное воздействие на клетки DZNep и ингибитора гистоновой дезацетилазы Trichostatin A (TSA) увеличивает экспрессию eNOS (Ohtani K. et al., 2011). Результаты клинических наблюдений, подтверждая роль метилирования и ацетилирования гистонов в регуляции экспресси гена eNOS, также акцентируют внимание на процессах метилирования ДНК (Kheirandish-Gozal L. et al., 2013). Возможно, анализ процесса метилирования промотора гена eNOS представляет интерес в составлении прогноза рисков патологических нарушений некоторых показателей минерального обмена человека (Harvey N.C. et al., 2012). Эпигенетические механизмы контроля экспрессия eNOS в эндотелии кровеносных сосудов почки критически важны в процессе органогенеза, а также адаптации почки к гипоксии и изменениям параметров внутрипочечной гемодинамики (Jamal A. et al., 2012). По данным источника, эндотелиоциты могут не проявлять чувствительность к действию цитокинов, стимулирующих экспрессию iNOS, в том случае, если промотор этого гена обильно метилирован, В норме в тканях почки преимущественно представлены nNOS (NOS-1), в основном в области macula densa, а также eNOS (NOS-3) в эндотелиоцитах и в канальцевом эпителии. Известно, что NO участвует в регуляции ренальной гемодинамики, канальцевого транспорта натрия, регуляции величины скорости клубочковой фильтрации. Является важным фактором контроля тубуло-гломерулярной обратной связи, регулятором агрегатного состояния крови и процессов воспаления. Однако, динамика изменения внутрипочечной продукции NO не всегда совпадает с уровнем экспрессии генов NO-синтаз. Так, как интенсивность внутрипочечного синтеза NO, по мере прогрессирования почечной недостаточности, может снижаться в результате поражения сосудистого русла, фиброза коркового слоя почек, изменения метаболизма субстрата (L-Arginine), повышения концентрации эндогенного блокатора NO-синтаз (асимметричного диметиларгинина - ADMA) и доступности кофакторов NOS-синтазных энзиматических комплексов. Установлено, что прогрессирование почечной недостаточности сопровождается снижением внутрипочечной продукции NO, что коррелирует с интенсивностью фиброгенеза в почке (Schmidt Dellamea B. et al., 2014). Вместе с тем, авторы отмечают роль некоторых биологически активных веществ (инсулина, фактора некроза опухоли-альфа, ангиотензина-II) в регуляции экспрессии генов NO-синтаз. Возможно, стимулируемая инсулином избыточная экспрессия гена eNOS (NOS-3) является одним из важнейших патогенетических механизмов прогрессирования диабетической нефропатии, поскольку в условиях экспериментальной модели, введение животным vorinostat (неселективного ингибитора гистон-деацетилаз класса I и класса II понижало экспрессию данного гена, что способствовало ограничению протеинурии о накопления белков внеклеточного матрикса мезангиальными клетками (Advani A. et al., 2011). Сообщается, что, во-первых, в условиях экспериментальной патологии почек избыточная внутрипочечная продукция оксида азота является важным патогенетическим фактором развития гломерулопаии. Во-вторых, Trichostatin A (TSA) - ингибитор гистон-деацетилаз может способствовать нормализации избыточной продукции NO, как клетками мезангиума, так и индуцибельной iNOS, активируемой некоторыми провоспалительными цитокинами (например, IL-1&beta;) (Van Beneden K. et al., 2013). Возможно, ингибиторы деацетилаз гистонов следует рассматривать в качестве перспективной группы фармакологических препаратов, позволяющих сдерживать целый ряд NO-зависимых патогенетических механизмов прогрессирования почечной недостаточности: воспалительный и просклерозирующий компоненты тубуло-интерстициальных повреждений, блокировать активацию фибробластов почки и апоптоз канальцевого эпителия почки (Jamal A. et al., 2012). Кроме того, ингибиторы деацетилаз гистонов, снижая в почке экспрессию генов iNOS и eNOS, способствуют восстановлению функции почек на фоне ограничения образования &alpha;-SMA, коллагена I, фибронектина, ТФР бета1, а также ограничивают апоптоз в условиях диабетической нефропати (Khan S., Jena G., 2014). Установлено, что гипоксия является одним из наиболее мощных факторов, регулирующих экспрессию гена <em>NOS3</em> эндотелиальной NO-синтазы эндотелиоцитов через снижение и ацетилирования гистоновых белков, и метилирования остатков лизина 4 в гистоне H3 (Fish J.E. et al., 2010). Высказывается мнение о том, что, спровоцированное гипоксией усиление экспрессии индуцибельной iNOS, также может оказывать нефропротекторный эффект при реперфузионных повреждениях органа (Bonventre J.V., Yang L., 2012). Тем не менее, продолжительная стимуляция экспрессии iNOS при токсическом поражении почки рассматривается в качестве неблагоприятного фактора, усугубляющего течение заболевания (Sattarinezhad E. et al., 2017). Необходимо признать, что проблема эпигенетической перестройки внутрипочечной системы оксида азота достаточно многогранна, в частности, в литературе представлены работы, посвященные анализу изменений баланса некоторых гуморальных регуляторов деятельности почки (NO, ангиотензина-II, производных арахидоновой кислоты) в условиях фетального программирования (Tain Y.-L., Joles J.A., 2016). Обсуждаемые вопросы постоянно находятся в поле зрения современной науки, о чем свидетельствуют обзорные публикации, содержащие сведения о фундаментальных эпигенетических механизмах регуляции системы оксида азота (Vasudevan D. et al., 2016; Socco S. et al., 2017). Однако, нельзя исключать возможности наличия органоспецифических, в том числе в ренальной паренхиме, механизмов контроля экспрессии различных изоформ NOS, в частности, iNOS и eNOS (Cerkezkayabekir A. et al., 2017). Суммируя изложенные факты, можно сделать вывод о том, что эпигенетическая трансформация системы оксида азота является важным компонентом патогенетических механизмов нарушения деятельности почек. Имеющиеся в литературе факты указывают, что инициирование данной перестройки, например, гипоксией тканей или под воздействием гормонов и цитокинов, может осуществляться на самых ранних этапах заболевания почек. Кроме того, ренальная система NOS подвергается радикальной модификации по мере прогрессирования почечной недостаточности, что проявляется в уменьшении экспрессии nNOS в корковом веществе почек, неуклонном снижении экспрессии eNOS в эндотелиоцитах и появлении атипичной локализации eNOS в мышечном слое сосудистой стенки, стимуляции экспрессии iNOS. С одной стороны, известно, что NOS почек (главным образом nNOS) принимают участие в регуляции активности внутриорганной РАС, а молекула NO &ndash; один из основных антагонистов ренотропных эффектов ангиотензина-II на сосудистом и канальцевом уровне (Chappell M.C., 2012; Thoonen R. et al., 2013). Следовательно, ослабление внутриорганных регуляторных влияний конститутивных NO-синтаз может являться одной из причин неограниченной активации внутрипочечной РАС и ТФР-бета в условиях прогрессирования почечной недостаточности (Macconi D. et al., 2014). Более того, по мнению некоторых авторов именно активацию митохондриальной NOS допустимо рассматривать в ряду основных патогенетических механизмов эпигенетической активации внутриклеточной РАС (De Mello W.C., 2017). С другой стороны, неадекватная активация экспрессии NOS (eNOS и iNOS) на определенных этапах течения заболевания, в силу специфики физико-химических свойств конечного продукта &ndash; молекулы оксида азота и особенностей функционирования NO-синтазных комплексов, может служить источником активных форм кислорода и азота, внося, таким образом, существенный вклад в усиление патологических процессов (Advani A. et al., 2011; Sattarinezhad E. et al., 2017; Tain Y.-L. et al., 2017). Помимо этого, обсуждение эпигенетических перестроек аргинин-зависимого пути образования NO не исчерпывает всей темы метаболизма оксида азота в почках в норме и при патологии. Известно, что существует механизм ресинтеза молекулы NO, использующий в качестве субстрата химически стабильные продукты окисления NO (нитриты, нитраты и др.) и контролируемый такими белками, как гемоглобин или цитохром Р450. В современных обзорах мы встречаем упоминание аргинин-независимого синтеза NO в связи с эпигенетической модуляций системы оксида азота (Vasudevan D. et al., 2016; Socco S. et al., 2017). Однако, данные механизмы имеют определенную специфику, характерную для обменных и транспортных процессов, протекающих в тканях почек. <strong>3.5. ПАТОФИЗИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ЭПИГЕНЕТИЧЕСКОЙ ТРАНСФОРМАЦИИ СИСТЕМЫ ВНУТРИОРГАННОЙ ГУМОРАЛЬНОЙ РЕГУЛЯЦИИ ДЕЯТЕЛЬНОСТИ ПОЧЕК</strong> &nbsp; Результаты проведенного обзора позволяют сделать вывод о том, что эпигенетические механизмы вносят очень важный вклад в перестройку гуморальных систем регуляции деятельности почек в условиях почечной недостаточности, во многом способствуя прогрессирующему сокращению популяции действующих нефронов, непосредственно создавая предпосылки неблагоприятного течения заболевания. При этом, можно выделить несколько общих тенденций, характерных для эпигенетической трансформации внутриренального синтеза и метаболизма физиологически активных веществ. Во-первых, формирование атипичных очагов их продукции, что наиболее явно присутствует в процессах перестройки систем РАС и оксида азота. Во-вторых, гуморальные факторы, осуществляющие в неповрежденной почке координацию физиологических систем контроля гомеостатической деятельности почек, по мере усиления некоторых эпигенетических изменений, все более утрачивают функции регуляции гомеостаза и переключаются на патофизиологический путь индукции ренальных дисфункций и стимуляции прогрессирования почечной недостаточности. В-третьих, эпигенетические изменения, затрагивающие гены белков, выполняющих ключевые функции в синтезе и метаболизме гуморальных факторов регуляции функций почек, могут выполнять роль пускового механизма становления и прогрессирования почечной недостаточности. В дальнейшем, неограниченный синтез этих молекул белковой и небелковой природы приводит к триггерному усилению процесса, в том числе, опять же с привлечением эпигенетической перестройки хроматина. Следовательно, с одной стороны, гены белков, управляющих продукцией гуморальных факторов регуляции функций почек, являются объектом импринтинга. С другой стороны, стимулированная импринтингом модуляция синтеза гуморальных факторов, на последующем витке спирали, содействует дальнейшему углублению эпигенетической модификации хроматина и усилению роста их образования. Наиболее отчетливо указанная закономерность прослеживается в неограниченной активации РААС и системы ТФР-бета почек. В-четвертых, анализируя спровоцированную импринтингом трансформацию баланса ренотропных регуляторных эффектов гуморальных факторов, можно сделать вывод о том, что в этих условиях наблюдается безмерное нарастание вазотонического, просклерозирующего и провоспалительного потенциала в результате неограниченной активации РААС и системы ТФР-бета. На этом фоне происходит неуклонное сокращение регуляторных возможностей оппозиционного вектора контроля, представленного, в частности, системой оксида азота, в первую очередь, конститутивными изоформами eNOS и nNOS. В-пятых, раскрытие эпигенетических процессов в становлении и прогрессировании нефропатий различного генеза не только способствует созданию более прочной теоретической основы патогенеза почечной недостаточности, но и открывает перспективы к разработке принципиально новых фармакологических способов коррекции функции почек. К сожалению, формат рукописи не позволяет уделить данной теме того внимания, которое она безусловно заслуживает. Между тем, важный практический интерес представляют результаты исследования роли эпигенетических механизмов в модуляции систем аргинин-вазопрессина (Murgatroyd C., 2014; Lesse A. et al., 2017), порообразующих белков аквапоринов (Park E.-J., Kwon T.-H., 2015; MacManes M.D., 2017) и атриального натрийуретического пептида (Sergeeva I.A. et al., 2014; 2016). Равно, как и ренотропные эпигенетические эффекты инсулина (Kumar S. et al., 2016; Shiels P.G. et al., 2017), факторов, индуцируемых гипоксией (HIFs семейство протеинов) (Perez-Perri J.I. et al., 2011; Liu J. et al., 2017), продуктов метаболизма арахидоновой кислоты (Yuan H. et al., 2016) и тироксина (Liu X. et al., 2014; Re A. et al., 2016) могут иметь самое непосредственное отношение к обсуждаемым вопросам. По нашему мнению, данная тема может представлять интерес для понимания особенностей патофизиологических механизмов нарушения функции почек. Поскольку, эпигенетическая модификация хроматина играет принципиально важную роль в нарушении баланса внутрипочечного метаболизма гуморальных факторов регуляции функции почек. Средства фармакологической коррекции, разработанные в соответствии с пониманием механизмов импринтинга в значительной степени, могут способствовать в сдерживании хронизации и прогрессирования почечной недостаточности. Напротив, отказ от более современной стратегии сдерживания прогрессирующих нарушений ренальной паренхимы, может иметь последствия в форме изменений процессов синтеза гуморальных факторов под влиянием эпигенетических механизмов, оказыващих дальнейшее влияние на ковалентную модификацию хроматина, а также усиливающих патофизиологические механизмы повреждения ренальной паренхимы. <strong>СПИСОК ЛИТЕРАТУРЫ К ГЛАВЕ </strong>&laquo;<strong>ФАКТОРЫ ВНУТРИОРГАННОЙ ГУМОРАЛЬНОЙ РЕГУЛЯЦИИ ДЕЯТЕЛЬНОСТИ ПОЧЕК. ИХ МЕСТО И РОЛЬ В ЭПИГЕНЕТИЧЕСКИХ МЕХАНИЗМАХ НАРУШЕНИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ РЕНАЛЬНОЙ ПАРЕНХИМЫ&raquo;</strong> &nbsp; 1.Bush E.W., McKinsey T.A. Protein acetylation in the cardiorenal axis: the promise of histone deacetylase inhibitors. Circ Res. 2010;106(2):272-284 doi: 10.1161/CIRCRESAHA.109.209338 2.Prieto M.C., Gonzalez A.A., Navar L.G. Evolving concepts on regulation and function of renin in distal nephron. Pflugers Arch. 2013;465(1):121-132 doi: 10.1007/s00424-012-1151-6 3.Gonzalez A.A., Prieto M.C. Roles of collecting duct renin and (pro)renin receptor in hypertension: mini review. Ther Adv Cardiovasc Dis. 2015;9(4):191-200 doi: 10.1177/1753944715574817 4.Sequeira Lopez M.L., Gomez R.A. Novel mechanisms for the control of renin synthesis and release. Curr Hypertens Rep. 2010;12(1):26-32 doi: 10.1007/s11906-009-0080-z 5.Kurtz A. Control of renin synthesis and secretion. Am J Hypertens. 2012;25(8):839-847 doi: 10.1038/ajh.2011.246 6.Gomez R.A. Fate of Renin Cells During Development and Disease. Hypertension. 2017;69(3):387-395 doi: 10.1161/HYPERTENSIONAHA.116.08316 &nbsp; 7.Gomez R.A., Sequeira-Lopez M.L.S. Renin cells in homeostasis, regeneration and immune defence mechanisms. Nat Rev Nephrol. 2018;14(4):231-245 doi: 10.1038/nrneph.2017.186 &nbsp; 8.Reddy M.A, Natarajan R. Recent Developments in Epigenetics of Acute and Chronic Kidney Diseases Kidney Int. 2015 88(2): 250&ndash;261 doi: 10.1038/ki.2015.148 &nbsp; 9.Uwaezuoke S.N., Okafor H.U., Muoneke V.N. et al. Chronic kidney disease in children and the role of epigenetics: Future therapeutic trajectories. Biomed Rep. 2016; 5(6): 660&ndash;664 doi: 10.3892/br.2016.781 &nbsp; 10.Zununi Vahed S., Samadi N., Mostafidi E. et al. Genetics and Epigenetics of Chronic Allograft Dysfunction in Kidney Transplants. Iran J Kidney Dis. 2016;10(1):1-9 &nbsp; 11.Lee-Son K., Jetton J.G. AKI and Genetics: Evolving Concepts in the Genetics of Acute Kidney Injury: Implications for Pediatric AKI. J Pediatr Genet. 2016; 5(1): 61&ndash;68 doi: 10.1055/s-0035-1557112 &nbsp; 12.Woroniecki R., Gaikwad A., Susztak K. Fetal environment, epigenetics, and pediatric renal disease. Pediatr Nephrol. 2011; 26(5): 705&ndash;711 doi: 10.1007/s00467-010-1714-8 &nbsp; 13.K&ouml;ttgen A., Pattaro C., B&ouml;ger C.A. et al. Multiple New Loci Associated with Kidney Function and Chronic Kidney Disease: The CKDGen consortium. Nat Genet. 2010; 42(5): 376&ndash;384 doi: 10.1038/ng.568 &nbsp; 14.Ma R.C.W. Genetics of cardiovascular and renal complications in diabetes. J Diabetes Investig. 2016; 7(2): 139&ndash;154 doi: 10.1111/jdi.12391 &nbsp; 15.Thomas M.C. Epigenetic Mechanisms in Diabetic Kidney Disease. Curr Diab Rep.2016;16:31 doi 10.1007/s11892-016-0723-9 &nbsp; 16.Witasp A., Van Craenenbroeck A.H., Shiels P.G. et al. Current epigenetic aspects the clinical kidney researcher should embrace. Clinical Science. 2017; 131:1649&ndash;1667 doi:10.1042/CS20160596 &nbsp; 17.Shirodkar A.V., Marsden P.A. Epigenetics in cardiovascular disease. Curr Opin Cardiol. 2011; 26(3): 209&ndash;215 doi: 10.1097/HCO.0b013e328345986e &nbsp; 18.Shi M., Zhu J., Wang R. et al. Latent TGF-&beta; structure and activation. Nature. 2011; 474(7351): 343&ndash;349 doi: 10.1038/nature10152 &nbsp; 19.Kobori H., Katsurada A., Miyata K. et al. Determination of plasma and urinary angiotensinogen levels in rodents by newly developed ELISA. Am J Physiol Renal Physiol. 2008; 294(5): F1257&ndash;F1263 doi: 10.1152/ajprenal.00588.2007 &nbsp; 20.Marumo T., Hishikawa K., Yoshikawa M., Fujita T. Epigenetic Regulation of BMP7 in the Regenerative Response to Ischemia. J Am Soc Nephrol. 2008; 19(7): 1311&ndash;1320 doi: 10.1681/ASN.2007091040 &nbsp; 21.Hayashi K., Sasamura H., Nakamura M. et al. Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria. Kidney Int. 2015;88(4):745-753 doi: 10.1038/ki.2015.178 &nbsp; 22.Reddy M.A., Sumanth P., Lanting L. et al. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int. 2014; 85(2): 362&ndash;373 doi: 10.1038/ki.2013.387 &nbsp; 23.Kobori H., Kamiyama M., Harrison-Bernard L.M., Navar L.G. Cardinal Role of the Intrarenal Renin-Angiotensin System in the Pathogenesis of Diabetic Nephropathy. J Investig Med. 2013; 61(2): 256&ndash;264 doi:10.231/JIM.0b013e31827c28bb &nbsp; 24.Beckerman P., Ko Y.-A., Susztak K. Epigenetics: a new way to look at kidney diseases. Nephrol Dial Transplant. 2014; 29(10): 1821&ndash;1827 doi: 10.1093/ndt/gfu026 &nbsp; 25.van der Wijst M.G.P., Venkiteswaran M., Chen H. et al. Local chromatin microenvironment determines DNMT activity: from DNA DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epigenetics. 2015; 10(8): 671&ndash;676 doi:10.1080/15592294.2015.1062204 &nbsp; 26.Saletore Y.,<sup> </sup>Chen-Kiang S., Mason C.E. Novel RNA regulatory mechanisms revealed in the epitranscriptome. RNA Biol. 2013; 10(3): 342&ndash;346 doi: 10.4161/rna.23812 &nbsp; 27.Voon H.P.J., Wong L.H. New players in heterochromatin silencing: histone variant H3.3 and the ATRX/DAXX chaperone. Nucleic Acids Res. 2016; 44(4): 1496&ndash;1501 doi: 10.1093/nar/gkw012 &nbsp; 28.Jamal A., Man H.S.J., Marsden P.A. Gene Regulation in the Vascular Endothelium: Why Epigenetics Is Important for the Kidney. Semin Nephrol. 2012; 32(2): 176&ndash;184 doi: 10.1016/j.semnephrol.2012.02.009 &nbsp; 29.Zama A.M., Uzumcu M. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: An ovarian perspective. Front Neuroendocrinol. 2010; 31(4): 420&ndash;439 doi:10.1016/j.yfrne.2010.06.003 &nbsp; 30.Lister R., Pelizzola M., Dowen R.H. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009; 462: 315-322 doi: 10.1038/nature08514 &nbsp; 31.Efimova O.A., Pendina A.A., Tikhonov A.V. et al. DNA methylation - a major mechanism of human genome reprogramming and regulation. Medical Genetics. 2012; 4(118): 10-18 &nbsp; 32.Bechtel W., McGoohan S., Zeisberg E.M. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 2010; 16(5): 544&ndash;550 doi: 10.1038/nm.2135 &nbsp; 33.Ponnaluri V.K.C., Ehrlich K.C., Zhang G., Lacey M., Johnston D., Pradhan S., Ehrlich M. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression. Epigenetics. 2016; 12(2): 123-138 doi: 10.1080/15592294.2016.1265713 &nbsp; 34.Quarta C., Shneider R., Tschӧp M.H. Epigenetic ON/OFF Switches for Obesity. Cell. 2016; 164(3): 341-342 doi: 10.1016/j.cell.2016.01.006 &nbsp; 35.Dwivedi R.S., Herman J.G., McCaffrey T. et al. Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int. 2011; 79(1): 23-32 doi: 10.1038/ki.2010.335 &nbsp; 36.Ziller M.J., Gu H., M&uuml;ller F., Donaghey J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013; 500(7463): 477-481. doi: 10.1038/nature12433 &nbsp; 37.Zhang D., Yu Z., Cruz P. et al. Epigenetics and the Control of Epithelial Sodium Channel Expression in Collecting Duct. Kidney Int. 2009; 75(3): 260&ndash;267 doi: 10.1038/ki.2008.475 &nbsp; 38.Auclair G., Weber M. Mechanisms of DNA methylation and demethylation in mammals. Biochimie. 2012; 94(11): 2202-2211 doi: 10.1016/j.biochi.2012.05.016 &nbsp; 39.Araki Y., Mimura T. The Histone Modification Code in the Pathogenesis of Autoimmune Diseases. Mediators Inflamm. 2017;2017:2608605 doi: 10.1155/2017/2608605 &nbsp; 40.Ganai S.A., Ramadoss M., Mahadevan V. Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration. Curr Neuropharmacol. 2016; 14(1):55-71 &nbsp; 41.Gong F., Chiu L.Y., Miller K.M. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer. PLoS Genet. 2016; 12(9):e1006272 doi: 10.1371/journal.pgen.1006272 &nbsp; 42.Nathan D., Ingvarsdottir K., Sterner D. E. et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes and Development. 2006; 20(8):966&ndash;976. doi: 10.1101/gad.1404206 &nbsp; 43.Rossetto D., Avvakumov N., C&ocirc;t&eacute; J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics. 2012; 7(10):1098&ndash;1108 doi: 10.4161/epi.21975 &nbsp; 44.Chen K.W., Chen L. Epigenetic Regulation of BDNF Gene during Development and Diseases. Int J Mol Sci. 2017; 18(3): 571 doi: 10.3390/ijms18030571 &nbsp; 45.Wang Z., Zang C., Rosenfeld J. A. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics. 2008; 40(7):897&ndash;903 doi: 10.1038/ng.154 &nbsp; 46.Nabzdyk C.S., Pradhan-Nabzdyk L., LoGerfo F.W. RNAi therapy to the wall of arteries and veins: anatomical, physiologic, and pharmacological considerations. J Transl Med. 2017; 15:164 doi: 10.1186/s12967-017-1270-0 &nbsp; 47.Cui J., Qin L., Zhang J., Abrahimi P. et al. Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells. Nat Commun. 2017; 8:191 doi: 10.1038/s41467-017-00297-x &nbsp; 48.Matsusaka T., Niimura F., Shimizu A. et al. Liver Angiotensinogen Is the Primary Source of Renal Angiotensin II. J Am Soc Nephrol. 2012; 23(7): 1181&ndash;1189 doi: 10.1681/ASN.2011121159 &nbsp; 49.Harshman L.A., Zepeda-Orozco D. Genetic Considerations in Pediatric Chronic Kidney Disease. J Pediatr Genet. 2016; 5(1): 43&ndash;50 doi: 10.1055/s-0035-1557111 &nbsp; 50.Tain Y.-L., Huang L.-T., Hsu C.-N. Developmental Programming of Adult Disease: Reprogramming by Melatonin? Int J Mol Sci. 2017; 18(2): 426. doi: 10.3390/ijms18020426 &nbsp; 51.Tain Y.L., Hsu C.N. Developmental Origins of Chronic Kidney Disease: Should We Focus on Early Life? Int J Mol Sci. 2017; 18(2): 381 doi: 10.3390/ijms18020381 &nbsp; 52.Bogdarina I., Welham S., King P.J. et al. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res. 2007; 100(4): 520&ndash;526 doi: 10.1161/01.RES.0000258855.60637.58 &nbsp; 53.Wu L., Shi A., Zhu D. et al. High sucrose intake during gestation increases angiotensin II type 1 receptor-mediated vascular contractility associated with epigenetic alterations in aged offspring rats. Peptides. 2016;86:133-144 doi: 10.1016/j.peptides.2016.11.002 &nbsp; 54.De Mello W.C. Chemical Communication between Heart Cells is Disrupted by Intracellular Renin and Angiotensin II: Implications for Heart Development and Disease. Front Endocrinol (Lausanne). 2015; 6: 72 doi: 10.3389/fendo.2015.00072 &nbsp; 55.Liang M., Cowley A.W., Mattson D.L. et al. Epigenomics of Hypertension. Semin Nephrol. 2013; 33(4): 392&ndash;399 doi: 10.1016/j.semnephrol.2013.05.011 &nbsp; 56.Abadir P.M., Walston J.D., Carey R.M. Subcellular characteristics of functional intracellular renin&ndash;angiotensin systems. Peptides. 2012; 38(2): 437&ndash;445 doi: 10.1016/j.peptides.2012.09.016 &nbsp; 57.Ellis B., Li X.C., Miguel-Qin E. et al. Review: Evidence for a functional intracellular angiotensin system in the proximal tubule of the kidney. Am J Physiol Regul Integr Comp Physiol. 2012; 302(5): R494&ndash;R509 doi: 10.1152/ajpregu.00487.2011 &nbsp; 58.Thomas M.C. Epigenetic Mechanisms in Diabetic Kidney Disease. Curr Diab Rep. 2016;16:31 doi: 10.1007/s11892-016-0723-9 &nbsp; 59.Marumo T., Yagi S., Kawarazaki W. et al. Diabetes Induces Aberrant DNA Methylation in the Proximal Tubules of the Kidney. J Am Soc Nephrol. 2015; 26(10): 2388&ndash;2397 doi: 10.1681/ASN.2014070665 &nbsp; 60.Satou R., Miyata K., Gonzalez-Villalobos R.A. et al. Interferon-&gamma; biphasically regulates angiotensinogen expression <em>via</em> a JAK-STAT pathway and suppressor of cytokine signaling 1 (SOCS1) in renal proximal tubular cells. FASEB J. 2012; 26(5): 1821&ndash;1830 doi: 10.1096/fj.11-195198 &nbsp; 61.O&#39;Leary R., Penrose H., Miyata K., Satou R. Macrophage-derived IL-6 contributes to ANG II-mediated angiotensinogen stimulation in renal proximal tubular cells. Am J Physiol Renal Physiol. 2016; 310(10): F1000&ndash;F1007 doi: 10.1152/ajprenal.00482.2015 &nbsp; 62.Bourgeois C.T., Satou R., Prieto M.C. HDAC9 is an epigenetic repressor of kidney angiotensinogen establishing a sex difference. Biol Sex Differ. 2017; 8: 18. doi: 10.1186/s13293-017-0140-z &nbsp; 63.Macconi D., Remuzzi G., Benigni A. Key fibrogenic mediators: old players. Renin&ndash;angiotensin system. Kidney Int Suppl. 2014; 4(1): 58&ndash;64 doi: 10.1038/kisup.2014.11 &nbsp; 64.Tang J., Zhuang S. Epigenetics in acute kidney injury. Curr Opin Nephrol Hypertens. 2015; 24(4): 351&ndash;358 doi: 10.1097/MNH.0000000000000140 &nbsp; 65.Rodr&iacute;guez-Romo R., Berman N., G&oacute;mez A., Bobadilla N.A. Epigenetic regulation in the acute kidney injury (AKI) to chronic kidney disease transition (CKD). Nephrology (Carlton). 2015; 20:736&ndash;743 doi: 10.1111/nep.12521 &nbsp; 66.Reddy M.A., Park J.T., Natarajan R. Epigenetic Modifications in the Pathogenesis of Diabetic Nephropathy. Semin Nephrol. 2013; 33(4): 341&ndash;353 doi: 10.1016/j.semnephrol.2013.05.006 &nbsp; 67.Zhong Y., Chen E.Y., Liu R. et al. Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase. J Am Soc Nephrol. 2013; 24(5): 801&ndash;811 doi: 10.1681/ASN.2012060590 &nbsp; 68.De Mello W.C. Local Renin Angiotensin Aldosterone Systems and Cardiovascular Diseases. Med Clin North Am. 2017;101(1):117-127 doi: 10.1016/j.mcna.2016.08.017 &nbsp; 69.Foster D.R., Yee S., Bleske B.E. et al. Lack of interaction between the peptidomimetic substrates captopril and cephradine. J Clin Pharmacol. 2009;49(3):360-367 doi: 10.1177/0091270008329554 &nbsp; 70.da Silva Novaes A., Ribeiro R.S., Pereira L.G., Borges F.T., Boim M.A. Intracrine action of angiotensin II in mesangial cells: subcellular distribution of angiotensin II receptor subtypes AT1 and AT2. Mol Cell Biochem. 2018;448(1-2):265-274 doi: 10.1007/s11010-018-3331-y &nbsp; 71.Welch A.K., Jeanette Lynch I., Gumz M.L. et al. Aldosterone alters the chromatin structure of the murine endothelin-1 gene. Life Sci. 2016;159:121-126 doi: 10.1016/j.lfs.2016.01.019 &nbsp; 72.Bavishi C., Bangalore S., Messerli F.H. Renin Angiotensin Aldosterone System Inhibitors in Hypertension: Is There Evidence for Benefit Independent of Blood Pressure Reduction? Prog Cardiovasc Dis. 2016;59(3):253-261 doi: 10.1016/j.pcad.2016.10.002 &nbsp; 73.Kawarazaki W., Fujita T.<sup> </sup>The Role of Aldosterone in Obesity-Related Hypertension. Am J Hypertens. 2016; 29(4): 415&ndash;423 doi: 10.1093/ajh/hpw003 &nbsp; 74.Azzam Z.S., Kinaneh S., Bahouth F. et al. Involvement of Cytokines in the Pathogenesis of Salt and Water Imbalance in Congestive Heart Failure. Front Immunol. 2017; 8: 716 doi: 10.3389/fimmu.2017.00716 &nbsp; 75.Currie G., Taylor A.H., Fujita T. et al. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 2016; 17(1): 127 doi: 10.1186/s12882-016-0337-0 &nbsp; 76.Feraille E., Dizin E. Coordinated Control of ENaC and Na+,K+-ATPase in Renal Collecting Duct. J Am Soc Nephrol. 2016;27(9):2554-2563 doi: 10.1681/ASN.2016020124 &nbsp; 77.Nehme A., Zibara K. Efficiency and specificity of RAAS inhibitors in cardiovascular diseases: how to achieve better end-organ protection? Hypertension Research. 2017; (6):1&ndash;7 doi:10.1038/hr.2017.65 &nbsp; 78.Dolomatov S.I., Zukow W.A., Novikov N.Y. The regulation of osmotic and ionic balance in fish reproduction and in the early stages of ontogeny. Russian Journal of Marine Biology. 2012; 38(5): 365&ndash;374 doi:org/10.1134/S1063074012050057 &nbsp; 79.Duarte J.D., Zineh I., Burkley B. et al. Effects of genetic variation in H3K79 methylation regulatory genes on clinical blood pressure and blood pressure response to hydrochlorothiazide. J Transl Med. 2012; 10: 56 doi: 10.1186/1479-5876-10-56 &nbsp; 80.Kone B.C. Epigenetics and the Control of the Collecting Duct Epithelial Sodium Channel. Semin Nephrol. 2013; 33(4): 383&ndash;391 doi: 10.1016/j.semnephrol.2013.05.010 &nbsp; 81.Yu Z., Kong Q., Kone B.C. Aldosterone reprograms promoter methylation to regulate <em>&alpha;</em><em>ENaC</em> transcription in the collecting duct. Am J Physiol Renal Physiol. 2013; 305(7): F1006&ndash;F1013 doi: 10.1152/ajprenal.00407.2013 &nbsp; 82.Welch A.K., Jeanette Lynch I., Gumz M.L. et al. Aldosterone alters the chromatin structure of the murine endothelin-1 gene. Life Sci. 2016;159:121-126 doi: 10.1016/j.lfs.2016.01.019 &nbsp; 83.Ueda K., Fujiki K., Shirahige K. et al. Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor. Biochem Biophys Res Commun. 2014; 445(1): 132&ndash;137 doi: 10.1016/j.bbrc.2014.01.125 &nbsp; 84.Liu R., Lee K., He J.C. Genetics and Epigenetics of Diabetic Nephropathy. Kidney Dis (Basel). 2015; 1(1): 42&ndash;51 doi: 10.1159/000381796 &nbsp; 85.Kato M., Dang V., Wang M. et al. TGF-&beta; Induces Acetylation of Chromatin and of Ets-1 to Alleviate Repression of miR-192 in Diabetic Nephropathy. Sci Signal. 2013; 6(278): ra43 doi: 10.1126/scisignal.2003389 &nbsp; 86.Hilliard S.A., El-Dahr S.S. Epigenetics of Renal Development and Disease. Yale J Biol Med. 2016; 89(4): 565&ndash;573 &nbsp; 87.Dressler G.R., Patel S.R. Epigenetics in Kidney Development and Renal Disease. Transl Res. 2015; 165(1): 166&ndash;176 doi: 10.1016/j.trsl.2014.04.007 &nbsp; 88.Sun G., Cui W., Guo Q., Miao L. Histone Lysine Methylation in Diabetic Nephropathy. J Diabetes Res. 2014; 2014: 654148 doi: 10.1155/2014/654148 &nbsp; 89.Wing M.R., Ramezani A., Gill H.S. et al. Epigenetics of Progression of Chronic Kidney Disease: Fact or Fantasy? Semin Nephrol. 2013; 33(4): 10.1016/j.semnephrol.2013.05.008 doi: 10.1016/j.semnephrol.2013.05.008 &nbsp; 90.Zager R.A., Johnson A.C.M., Becker K. Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and &ldquo;end-stage&rdquo; kidney disease. Am J Physiol Renal Physiol. 2011; 301(6): F1334&ndash;F1345 doi: 10.1152/ajprenal.00431.2011 &nbsp; 91.Bonventre J.V., Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011; 121(11): 4210&ndash;4221 doi: 10.1172/JCI45161 &nbsp; 92.Zager R.A., Johnson A.C.M. Progressive histone alterations and proinflammatory gene activation: consequences of heme protein/iron-mediated proximal tubule injury. Am J Physiol Renal Physiol. 2010; 298(3): F827&ndash;F837 doi: 10.1152/ajprenal.00683.2009 &nbsp; 93.Zeisberg M., Zeisberg E.M. Precision renal medicine: a roadmap towards targeted kidney fibrosis therapies. Fibrogenesis Tissue Repair. 2015; 8: 16 doi: 10.1186/s13069-015-0033-x &nbsp; 94.Doi S., Zou Y., Togao O. et al. Klotho Inhibits Transforming Growth Factor-&beta;1 (TGF-&beta;1) Signaling and Suppresses Renal Fibrosis and Cancer Metastasis in Mice. J Biol Chem. 2011; 286(10): 8655&ndash;8665 doi: 10.1074/jbc.M110.174037 &nbsp; 95.Guo W., Shan B., Klingsberg R.C. et al. Abrogation of TGF-&beta;1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol. 2009; 297(5): L864&ndash;L870 doi: 10.1152/ajplung.00128.2009 &nbsp; 96.Liu N., He S., Ma L. et al. Blocking the Class I Histone Deacetylase Ameliorates Renal Fibrosis and Inhibits Renal Fibroblast Activation via Modulating TGF-Beta and EGFR Signaling. PLoS One. 2013; 8(1): e54001 doi: 10.1371/journal.pone.0054001 &nbsp; 97.Yuan H., Reddy M.A., Sun G. et al. Involvement of p300/CBP and epigenetic histone acetylation in TGF-&beta;1-mediated gene transcription in mesangial cells. Am J Physiol Renal Physiol. 2013; 304(5): F601&ndash;F613 doi: 10.1152/ajprenal.00523.2012 &nbsp; 98.Van Beneden K., Mannaerts I., Pauwels M. et al. HDAC inhibitors in experimental liver and kidney fibrosis. Fibrogenesis Tissue Repair. 2013; 6: 1 doi: 10.1186/1755-1536-6-1 &nbsp; 99.Tang J., Zhuang S. Epigenetics in acute kidney injury. Curr Opin Nephrol Hypertens. 2015; 24(4): 351&ndash;358 doi: 10.1097/MNH.0000000000000140 &nbsp; 100.Sasaki K., Doi S., Nakashima A. et al. Inhibition of SET Domain&ndash;Containing Lysine Methyltransferase 7/9 Ameliorates Renal Fibrosis. J Am Soc Nephrol. 2016; 27(1): 203&ndash;215 doi: 10.1681/ASN.2014090850 &nbsp; 101.Yuan H., Reddy M.A., Deshpande S. et al. Epigenetic Histone Modifications Involved in Profibrotic Gene Regulation by 12/15-Lipoxygenase and Its Oxidized Lipid Products in Diabetic Nephropathy. Antioxid Redox Signal. 2016; 24(7): 361&ndash;375 doi: 10.1089/ars.2015.6372 &nbsp; 102.Hewitson T.D., Holt S.D., Tan S.J. et al. Epigenetic Modifications to H3K9 in Renal Tubulointerstitial Cells after Unilateral Ureteric Obstruction and TGF-&beta;1 Stimulation. Front Pharmacol. 2017; 8: 307 doi: 10.3389/fphar.2017.00307 &nbsp; 103.Ohtani K., Vlachojannis G.J., Koyanagi M. et al. Epigenetic Regulation of Endothelial Lineage Committed Genes in Pro-Angiogenic Hematopoietic and Endothelial Progenitor Cells. Novelty and Significance. Circulation Research. 2011;109:1219-1229 doi.org/10.1161/CIRCRESAHA.111.247304 &nbsp; 104.Kheirandish-Gozal L., Khalyfa A., Gozal D. et al. Endothelial Dysfunction in Children With Obstructive Sleep Apnea Is Associated With Epigenetic Changes in the <em>eNOS</em> Gene. Chest. 2013; 143(4): 971&ndash;977 doi: 10.1378/chest.12-2026 &nbsp; 105.Harvey N.C., Lillycrop K.A., Garratt E. et al. Evaluation of methylation status of the eNOS promoter at birth in relation to childhood bone mineral content. Calcif Tissue Int. 2012; 90(2): 120&ndash;127 doi: 10.1007/s00223-011-9554-5 &nbsp; 106.Schmidt Dellamea B., Bauermann Leit&atilde;o C., Friedman R., Canani L.H. Nitric oxide system and diabetic nephropathy. Diabetol Metab Syndr. 2014; 6: 17. doi: 10.1186/1758-5996-6-17 &nbsp; 107.Advani A., Huang Q., Thai K. et al. Long-Term Administration of the Histone Deacetylase Inhibitor Vorinostat Attenuates Renal Injury in Experimental Diabetes through an Endothelial Nitric Oxide Synthase-Dependent Mechanism. Am J Pathol. 2011; 178(5): 2205&ndash;2214 doi: 10.1016/j.ajpath.2011.01.044 &nbsp; 108.Khan S., Jena G. Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-&beta;1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem Toxicol. 2014;73:127-139 doi: 10.1016/j.fct.2014.08.010 &nbsp; 109.Fish J.E., Yan M.S., Matouk C.C. et al. Hypoxic Repression of Endothelial Nitric-oxide Synthase Transcription Is Coupled with Eviction of Promoter Histones. J Biol Chem. 2010; 285(2): 810&ndash;826 doi: 10.1074/jbc.M109.067868 &nbsp; 110.Bonventre J.V., Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011; 121(11): 4210&ndash;4221 doi: 10.1172/JCI45161 &nbsp; 111.Sattarinezhad E., Panjehshahin M.R., Torabinezhad S. et al. Protective Effect of Edaravone Against Cyclosporine-Induced Chronic Nephropathy Through Antioxidant and Nitric Oxide Modulating Pathways in Rats. Iran J Med Sci. 2017; 42(2): 170&ndash;178 &nbsp; 112.Tain Y.-L., Joles J.A. Reprogramming: A Preventive Strategy in Hypertension Focusing on the Kidney. Int J Mol Sci. 2016; 17(1): 23 doi: 10.3390/ijms17010023 &nbsp; 113.Vasudevan D., Bovee R.C., Thomas D.D. Nitric oxide, the new architect of epigenetic landscapes. Nitric Oxide. 2016;59:54-62 doi: 10.1016/j.niox.2016.08.002 &nbsp; 114.Socco S., Bovee R.C., Palczewski M.B. et al. Epigenetics: The third pillar of nitric oxide signaling. Pharmacol Res. 2017;121:52-58 doi: 10.1016/j.phrs.2017.04.011 &nbsp; 115.Cerkezkayabekir A., Sanal F., Bakar E. et al. Naringin protects viscera from ischemia/reperfusion injury by regulating the nitric oxide level in a rat model. Biotech Histochem. 2017;92(4):252-263 doi: 10.1080/10520295.2017.1305499 &nbsp; 116.Chappell M.C. The Non-Classical Renin-Angiotensin System and Renal Function. Compr Physiol. 2012; 2(4): 2733&ndash;2752 doi: 10.1002/cphy.c120002 &nbsp; 117.Thoonen R., Sips P.Y., Bloch K.D. et al. Pathophysiology of Hypertension in the Absence of Nitric Oxide/Cyclic GMP Signaling. Curr Hypertens Rep. 2013; 15(1): 47&ndash;58 doi: 10.1007/s11906-012-0320-5 &nbsp; 118.Murgatroyd C. Epigenetic programming of neuroendocrine systems during early life. Exp Physiol. 2014;99(1):62-65 doi: 10.1113/expphysiol.2013.076141 &nbsp; 119.Lesse A., Rether K., Gr&ouml;ger N. et al. Chronic Postnatal Stress Induces Depressive-like Behavior in Male Mice and Programs second-Hit Stress-Induced Gene Expression Patterns of OxtR and AvpR1a in Adulthood. Mol Neurobiol. 2017;54(6):4813-4819 doi: 10.1007/s12035-016-0043-8 &nbsp; 120.Park E.-J., Kwon T.-H. A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells. Electrolyte Blood Press. 2015; 13(1): 1&ndash;6 doi: 10.5049/EBP.2015.13.1.1 &nbsp; 121.MacManes M.D. Severe acute dehydration in a desert rodent elicits a transcriptional response that effectively prevents kidney injury. Am J Physiol Renal Physiol. 2017;313(2):F262-F272 doi: 10.1152/ajprenal.00067.2017 &nbsp; 122.Sergeeva I.A., Hooijkaas I.B., Van Der Made I. et al. A transgenic mouse model for the simultaneous monitoring of ANF and BNP gene activity during heart development and disease. Cardiovasc Res. 2014;101(1):78-86 doi: 10.1093/cvr/cvt228 &nbsp; 123.Sergeeva I.A., Hooijkaas I.B., Ruijter J.M. et al. Identification of a regulatory domain controlling the Nppa-Nppb gene cluster during heart development and stress. Development. 2016;143(12):2135-2146 doi: 10.1242/dev.132019 &nbsp; 124.Kumar S., Pamulapati H., Tikoo K. Fatty acid induced metabolic memory involves alterations in renal histone H3K36me2 and H3K27me3. Mol Cell Endocrinol. 2016;422:233-242 doi: 10.1016/j.mce.2015.12.019 &nbsp; 125.Perez-Perri J.I., Acevedo J.M., Wappner P. Epigenetics: New Questions on the Response to Hypoxia. Int J Mol Sci. 2011; 12(7): 4705&ndash;4721 doi: 10.3390/ijms12074705 &nbsp; 126.Liu J., Wei Q., Guo C. et al. Hypoxia, HIF, and Associated Signaling Networks in Chronic Kidney Disease. Int J Mol Sci. 2017; 18(5): 950 doi: 10.3390/ijms18050950 &nbsp; 127.Shiels P.G., McGuinness D., Eriksson M. et al. The role of epigenetics in renal ageing. Nat Rev Nephrol. 2017;13(8):471-482 doi: 10.1038/nrneph.2017.78 &nbsp; 128.Liu X., Zheng N., Shi Y.N. et al. Thyroid hormone induced angiogenesis through the integrin &alpha;v&beta;3/protein kinase D/histone deacetylase 5 signaling pathway. J Mol Endocrinol. 2014;52(3):245-254 doi: 10.1530/JME-13-0252 &nbsp; 129.Re A., Nanni S., Aiello A. et al. Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways. Endocrine. 2016;53(3):681-688 doi: 10.1007/s12020-015-0751-2 &nbsp; <strong>ГЛАВА 4. БЕЛКИ РЕНИН-АНГИОТЕНЗИНОВОЙ СИСТЕМЫ ПРИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ </strong> &nbsp; По нашему мнению, обсуждение роли патофизиологических механизмов контроля экспрессии генов белков, принимающих участие в регуляции деятельности почек, предполагает использование в виде иллюстрации какой-либо определенной модели патологии. В качестве такой модели нами были выбраны процессы малигнизации и метастазирования опухолей. С одной стороны, одним из важных маркеров малигнизации клеток, есть изменения в процессах биосинтеза белков, в норме не характерных для данной популяции клеток. С другой стороны, онкологические заболевания, выбранные в качестве примера, на первый взгляд, не имеют прямого отношения к системам контроля водно-солевого гомеостаза. Тем не менее, они, во-первых, демонстрируют некоторые специфические, нельзя сказать, что второстепенные, свойства протеинов, объединяемых общим термином &laquo;компоненты РАС&raquo;. Во-вторых, описываемые закономерности изменения экспрессии белков &mdash; &laquo;компонентов РАС&raquo; при онкологических заболеваниях дают повод оценить широкий спектр функций данной группы протеинов. По данным литературы, компоненты ренин-ангиотензиновой системы (РАС) могут принимать участие в процессах малигнизации тканей, стимулировать рост и метастазирование опухолей (Regulska K. et al., 2013; Gomez R.A., Sequeira-Lopez M.L.S., 2016; Pinter M., Jain R.K., 2017; Pinter M. et al., 2017). Более ранние исследования продемонстрировали диагностическую ценность анализа экспрессии компонентов РАС в онкологии (Rоmer F. K., 1981). Результаты современных исследований подтверждают тезис о диагностической ценности анализа экспрессии компонентов РАС, подчеркивая также их значение в составлении прогноза течения заболевания и выборе способа лечения злокачественных опухолей (Regulska K. et al., 2013; Tawinwung S. et al., 2015; Gomez R.A., Sequeira-Lopez M.L.S., 2016). Наряду с этим, следует указать, что пептиды-компоненты РАС рассматривают в качестве ключевых патогенетических механизмов роста и метастазирования злокачественных опухолей, включая стимуляцию локальной продукции ангиотензина-II (А<strong>-</strong>II), повышение экспрессии рецепторов к А-II, изменение баланса экспрессии ангиотензин-I-превращающих ферментов (АСЕ-1 и АСЕ-2) и уровень образования продуктов их реакции (А-II и А-1-7 соответственно) (Regulska K. et al., 2013; Sobczuk P. et al., 2017; Sun H. et al., 2017). Объектом внимания некоторых исследований является изучение степени риска индукции канцерогенеза ингибиторами РАС (Connolly S. et al., 2011; Azoulay L. et al., 2012; Yang Y. et al., 2015; Sobczuk P. et al., 2017). Вместе с тем, патогенетические механизмы, индуцирующие увеличение экспрессии белков-компонентов РАС в малигнизированных клетках, их роль в процессах роста и метастазирования остаются мало изученными. <strong>4.1. ДИАГНОСТИЧЕСКАЯ ЦЕННОСТЬ АНАЛИЗА ЭКСПРЕССИИ БЕЛКОВ-КОМПОНЕНТОВ РАС В ОНКОЛОГИИ</strong> &nbsp; <strong>4.1.1. Рецепторы к А-</strong><strong>II</strong> &nbsp; А-II оказывает свое влияние через АТ1 и АТ2 популяции рецепторов. Установлено, что в клетках астроцитомы человека частота выявления АТ1 рецепторов у пациентов с высокой степенью злокачественности опухоли (степень III и IV) возрастает до 67% против 10% в группе с низким уровнем злокачественности, что положительно коррелирует с интенсивностью пролиферации клеток и плотностью неоангиогенеза (Arrieta O. et al., 2008). В исследованиях на лабораторных животных, привитых культурой клеток колоректального рака (CRC), было установлено, что А-II через АТ1 и АТ2 рецепторы стимулирует миграцию малигнизированных клеток и их метастазирование в печень (Nguyen L. et al., 2016). Сообщается, что при некоторых онкологических заболеваниях легких раковые клетки, демонстрирующие высокие уровни экспрессии АТ1-рецепторов, обладают резистентностью к воздействию цитостатиков (Cheng Q. et al., 2016). Анализ клинических наблюдений позволяет сделать вывод о том, что повышение экспрессии АТ1 рецепторов малигнизированными клетками свидетельствует о неблагоприятном прогнозе течения заболевания, обусловленном стимуляцией неоангиогенеза, роста и метастазирования опухоли (Keizman D. et al., 2011; Sun H. et al., 2017). Подчеркивается, что активация плейотропных АТ1-зависимых проонкогенных эффектов А-II может затрагивать в том числе лимфоциты и связанные с опухолью макрофаги, что приводит к снижению противоракового иммунитета, изменению продукции интерлейкинов и провоспалительных цитокинов (Coulson R. et al., 2017; Pinter M., Jain R.K., 2017). Значительный прирост АТ1 белка в трансформированных клетках происходит за счет активации гена <em>AGTR</em><em>1</em> (Coulson R. et al., 2017). Возможно, стимуляция неоангиогенеза, реализуемая через АТ1 рецепторы, является одним из универсальных патогенетических механизмов прогрессирования опухолей различного генеза (Osumi H. et al., 2015; Pinter M., Jain R.K., 2017). Приводятся данные о синэргических эффектах систем рецепторов АТ1/А-II и АТ2/А-II в стимуляции неоангиогенеза (Ager E.I. et al., 2011), а также усилении миграции клеток, воспаления формирование внеклеточного матрикса через AT1 и AT2 рецепторы к А-II (Aydiner A. et al., 2015). Показано, что изменения экспрессии АТ1 и АТ2 рецепторов допустимо рассматривать в качестве маркеров малигнизации слизистой желудка, индуцированной патогенными микроорганизмами, например <em>Helicobacter</em><em> </em><em>pylori</em> (Sugimoto M. et al., 2012), а также при прогрессировании плоскоклеточного рака языка (Itinteang T. et al., 2016), прогрессировании колоректального рака и оценке степени риска его метастазирования (Kuniyasu H., 2012; Shimizu Y. et al., 2017), диагностике онкологических заболеваний легких (Gallagher P.E. et al., 2011) и молочной железы (Vinson G.P. et al., 2012). Уровень экспрессии рецепторов А-II рассматривается в качестве прогностического критерия течения плоскоклеточного рака пищевода (Li S.-H. et al., 2016) и светлоклеточного рака почки (Dolley-Hitze T. et al., 2010). Возможно, динамика изменения экспрессии <em>АТ1 и АТ2 </em>может рассматриваться в качестве интегрального индикатора чувствительности малигнизированной ткани к воздействию гуморальных индукторов канцерогенеза (Rhodes D.R. et al., 2009; Vinson G.P. et al., 2012; Sugimoto M. et al., 2012; Regulska K. et al., 2013; Pinter M., Jain R.K., 2017). В ряде обзорных публикаций достаточно подробно изложена оценка результатов исследования особенностей экспрессии АТ1 и АТ2 рецепторов А-II при различных онкологических заболеваниях, их диагностическая и прогностическая ценность. Представлены аргументы с точки зрения их роли в патогенезе заболеваний, прогрессировании и диссеминации опухолей, а также перспективность клинического применения селективных антагонистов рецепторов А-II в целях повышения эффективности химиотерапии, иммунотерапии и ингибиторов неоангиогенеза в онкологии (Vinson G.P. et al., 2012; Regulska K. et al., 2013; Wegman-Ostrosky T. et al., 2015; Sobczuk P. et al., 2017; Pinter M., Jain R.K., 2017). &nbsp; <strong>4.1.2. Ангиотензин-</strong><strong>I</strong><strong>-превращающий фермент (АСЕ-1).</strong><strong> </strong> &nbsp; Ангиотензин-I-превращающий фермент (<strong>АСЕ-1</strong>), карбоксипедиптидаза, один из ключевых факторов, осуществляющих превращение ангиотензина-I (А-1) в физиологически активный ангиотензин-II (А-II). Вместе с тем, при патологии, включая онкологические заболевания, роль АСЕ-1 в образовании А-II может изменяться за счет усиления вклада АСЕ-независимого пути конверсии А-1 в А-II в присутствии альфа-химазы и других пептидаз, формируя резистентность опухолевых клеток к современным методам противораковой терапии (Xie G. et al., 2017; Sobczuk P. et al., 2017). Широко известен и тот факт, что АСЕ-1, обладая относительно низкой субстратной специфичностью, может участвовать не только в образовании А-II, но и в метаболизме кининов, а также других физиологически активных молекул, потенциально актуальных для процессов канцерогенеза, роста и диссеминации опухолей (Regulska K. et al., 2013; Sobczuk P. et al., 2017). Привлекают внимание сведения о том, что АСЕ-1, помимо пептидазной активности, может непосредственно участвовать во внутриклеточной передаче сигнала А-II, фактически являясь рецептором октапептида (de Alvarenga E.C. et al., 2016). По мнению авторов цитируемой публикации, механизм АСЕ-зависимой рецепции А-II может выполнять важную роль в управлении миграции и пролиферации раковых клеток. Следовательно, динамика изменения топологии и уровней экспрессии АСЕ при онкологических заболеваниях может служить маркером локализации проонкогенных эффектов А-II и других гуморальных факторов, метаболизм которых связан с функциями компонентов РАС. Например, при онкологических заболеваниях почек наблюдается закономерное изменение активности и топологии экспрессии белков АСЕ (Errarte P. et al., 2017; Sobczuk P. et al., 2017). В норме эпителий корковых сегментов канальцевого отдела нефрона, в частности, эпителий проксимального отдела, демонстрирует высокие показатели экспрессии АСЕ, который отсутствует в клетках светлоклеточного рака почки (CCRCC) и выявляется только в кровеносных сосудах опухоли (Errarte P. et al., 2017). Авторами показано, что уровень экспрессии белка в опухоли и величина его энзиматической активности в плазме крови могут служить маркером CCRCC агрессивности опухоли и является индикатором выживаемости пациентов с CCRCC. С другой стороны, перспектива применения широко известных ингибиторов АСЕ в целях подавления неоангиогенеза в злокачественных новообразованиях рассматривается в качестве одного из основных аргументов к применению препаратов данной группы в онкологии (Shen J. et al., 2016). Показано, что способствующее ускользанию от противоракового иммунитета микроокужение опухолевых клеток мышей, может формироваться макрофагами и связанными с опухолью фибробластами (Nakamura K. et al., 2018). По мнению авторов, резко повышенный в макрофагах уровень экспрессии АСЕ указывает на повышение интенсивности локальной продукции физиологически активных веществ, вызывающих иммуносупрессию: оксид азота, трансфомирующий фактор роста-бета1 и PGE2. В норме экспрессия АСЕ критически важна для формирования специфического микроокружения в процессах цитодифференцировки на стадии эмбрионального развития органа или в некоторых интенсивно пролиферирующих тканях взрослого человека. Однако, чрезмерно высокий уровень экспрессии не только ассоциируется с нарушениями гемопоэза, но и рассматривается, как эффект ACE в онкогематологии (Haznedaroglu I.C., Malkan U.Y., 2016). Существенное повышение экспрессии АСЕ рака гортани свидетельствует о неблагоприятном течении заболевания и высоком риске метастазирования опухоли (Han C., Ge W., 2016). Следовательно, изменение экспрессии АСЕ-1 наряду с изучением полиморфизма гена АСЕ широко используется в современной онкологии в качестве маркера тяжести течения заболевания и его прогноза (Regulska K. et al., 2013). Вместе с тем, уровень экспрессии АСЕ-1 клетками злокачественных опухолей не всегда коррелирует с интенсивностью локального продукции А-II, по причине усиления активности, например, химазы, регулирующей АСЕ-независимый путь образования А-II (Xie G. et al., 2017). Помимо этого, необходимо учитывать, что АСЕ непосредственно принимает участие в регуляции иммунных реакций организма (Haznedaroglu I.C., Malkan U.Y., 2016). &nbsp; <strong>4.1.3. Ангиотензин-</strong><strong>I</strong><strong>-превращающий фермент-2 (АСЕ-2) и ось ACE2/Ang-(1&ndash;7)/M</strong><strong>AS</strong><strong>1.</strong><strong> </strong> &nbsp; АСЕ-2, гомолог АСЕ-1, отвечает за метаболический клиренс А-II, используемого ферментом в качестве субстрата для синтеза ангиотензина-1-7 (А-1-7). В свою очередь, А-1-7, осуществляя регуляторное влияние через МAS1-рецепторы, оказывает оппозиционное действие вазотоническим, провоспалительным и просклерозирующим эффектам А-II (Clarke N.E., Turner A.J., 2012). Снижение уровня экспрессии АСЕ-2 клетками рака молочной железы рассматривается в качестве маркера тяжелой формы течения заболевания с высоким риском метастазирования (Yu С. et al., 2016). По мнению авторов, уровень экспрессии АСЕ-2 отражает степень влияния ACE2/Ang-(1&ndash;7)/MAS1 оси на ограничение трансформации кальций-зависимых путей внутриклеточной передачи сигнала, характерной для процесса малигнизации клеток. Показано, что уровень экспрессии АСЕ-2 отрицательно коррелирует с интенсивностью неоангиогенеза в некоторых опухолях легких и чувствительностью раковых клеток к цитостатикам. Активность оси ACE2/Ang-(1-7)/MAS1 может угнетать секрецию VEGFа и подавлять активности матричных металлопротеиназ MMP-2 и MMP-9, тем самым способствуя ограничению неоангиогенеза, повышению чувствительности опухоли к цитостатикам и снижению риска метестазирования (Feng Y. et al., 2011; Cheng Q. et al., 2016). В ряде публикаций указывается, что гипоксия является признаком солидных опухолей, подчеркивая, что условия гипоксии способствуют усилению проонкогенного влияния АСЕ-1/А-II на фоне снижения эффектов оси ACE-2/Ang-(1-7)/MAS1 (Fan L. et al., 2014). Авторами цитируемой публикации показано, что in vitro в культуре клеток карциномы легких Льюиса гипоксия способствует снижению экспрессии АСЕ-2 на фоне АСЕ-1/А-II-зависимой индукции VEGFа. Приводятся аргументы в пользу перспективности клинического использования А-1-7, как фактора противораковой терапии опухоли груди, клетки которой не экспрессируют рецепторы эстрогенов, рецепторы прогестерона и рецептора-2 эпидермального фактора роста (Luo Y. et al., 2015). Некоторые обзоры также содержат позитивную оценку перспектив ACE-2/Ang-(1-7)/MAS1 оси в противораковой фармакологии (Regulska K. et al., 2013). Наряду с этим, подчеркивается, что характер влияния ACE-2/Ang-(1-7)/MAS1 оси на раковые клетки и прогрессирование опухоли может зависеть от локализации опухоли (Wegman-Ostrosky T. et al., 2015; Haznedaroglu I.C., Malkan U.Y., 2016; Sobczuk P. et al., 2017). В частности, приводятся данные о том, что А-1-7 стимулирует метастазирование почечно-клеточного рака (RCC), индуцирует активацию генов провоспалительных факторов, в целом способствуя прогрессированию заболевания (Sobczuk P. et al., 2017). Принимая к сведению изложенные факты, авторы склоняются к мнению о том, что А-1-7 в отношении RCC обладает, скорее, пронкогенным действием. &nbsp; <strong>4.1.4. Ангиотензиноген.</strong> &nbsp; Ангиотензиноген (<strong>Agt</strong>) является универсальным предшественником А-II и А-1-7. В норме Agt, главным образом, синтезируется в печени. При онкологических заболеваниях, как правило, печень сохраняет роль основного источника Agt (Vinson G.P. et al., 2012). Однако, представляют интерес данные о диагностической ценности локальной продукции Agt, как маркера канцерогенеза. Также привлекают внимание особенности метаболизма Agt раковыми клетками. С одной стороны, локальная продукция Agt рассматривается в качестве одного из наиболее информативных маркеров активности опухолевого неоангиогенеза (Choi J.-H. et al., 2014). С другой стороны, согласно данным цитируемой публикации, доминирующим продуктом конверсии Agt в опухолевых тканях является А-II. При этом, комбинированное влияние HIF-1-альфа и А-II, на фоне более высокой продукции Agt, рассматривается в качестве базового патогенетического механизма стимуляции ростовых факторов (в частности, VEGFа), активирующих опухолевый неоангиогенез. Действительно, результаты клинических исследований показали, что, во-первых, повышенная экспрессия гена Agt у пациентов с глиобластомой, может расцениваться, как маркер резистентности опухоли к противораковой терапии, направленной на угнетение опухолевого неоангиогенеза (Urup T. et al., 2016). Во-вторых, более высокая экспрессия гена Agt опухолевой тканью сопровождается усилением локальной продукции А-II. Тем не менее, в литературе приводятся данные о том, что также Agt обладает способностью угнетать неоангиогенез (Wegman-Ostrosky T. et al., 2015). Обсуждая локальную продукцию Agt, необходимо уточнить, что, по мнению некоторых авторов, стимуляция локальной экспрессии компонентов РАС, включая Agt, рассматривается в качестве центрального индуктора внутриклеточного каскада регуляторных белков, определяющих процессы малигнизации клеток и метастазирования (Sugimoto M. et al., 2012). Более того, опубликованные результаты не исключают возможности активации и перестройки внутриклеточного метаболизма компонентов РАС в раковых клетках (Blanco L.. et al., 2014). Что не противоречит мнению об универсальной патогенетической роли активации внутриклеточной РАС, причастной также и к процессам модуляции экспрессии генов (Ellis B. et al., 2012; De Mello W.C., 2015). Вместе с тем, указывается на тканеспецифические особенности экспрессии Agt, как маркера риска онкологических заболеваний. Например, риск возникновения рака легких ассоциируется со снижением продукции Agt белка (Wang H. et., 2015). По мнению авторов, эпигенетические механизмы снижения экспрессии гена <em>Agt</em> и точечные мутации гена <em>Agt</em> могут рассматриваться в качестве факторов, усиливающих риск онкологических заболеваний легких. Возможно, динамика локальной продукции Agt протеина и его уровни в плазме крови могут по-разному формировать прогноз течения метастазов колоректального рака (Martin P. et al., 2014). Авторами установлено, что повышение уровня Agt протеина в сыворотке крови достоверно ассоциировалось с худшей общей выживаемостью, а эпителиальная экспрессия Agt достоверно ассоциировалась с улучшенной выживаемостью без прогрессирования заболевания. Еще один аспект диагностической ценности локальной продукции Agt протеина опухолевыми тканями может быть обусловлен закономерным изменением экспрессии гена <em>Agt</em> по мере течения заболевания (Vinson G.P. et al., 2012). &nbsp; <strong>4.1.5. (Про)Ренин.</strong> &nbsp; В последнее время молекула (про)ренина и ее рецепторы привлекает все большее внимание не только, в качестве регуляторного фермента РАС, но и как важный элемент механизмов контроля онтогенеза, заживления ран и патогенеза ряда заболеваний (Gomez R.A., Sequeira-Lopez M.L.S., 2016). В некоторых обзорах, посвященных анализу патогенетической роли РАС в онкологических заболеваниях, встречаются сведения о важном влиянии ренина на процессы малигнизации клеток и прогрессирования опухоли (Vinson G.P. et al., 2012; Sugimoto M. et al., 2012). В исследованиях in vitro установлено, что ренин может оказывать стимулирующее влияние на рост культуры клеток почечно-клеточного рака (Hu J. et al., 2015). Экспрессия ренина может рассматриваться, как маркер нормального созревания предшественников клеток крови или их малигнизации (Haznedaroglu I.C., Malkan U.Y., 2016). Авторы цитируемого обзора подчеркивают, что экспрессия ренина была обнаружена в клетках острого миелоидного лейкоза, в клетках хронического миелоидного лейкоза и острого лимфолейкоза. Высказывается мнение о том, что стволовые клетки костного мозга, которые экспрессируют ренин являться источником лимфобластного лейкоза (Belyea B.C. et al., 2014). По данным литературы, экспрессия гена ренина в процессе нормального и малигнизированного емопоэза может регулироваться эпигенетическими механизмами (Belyea B.C. t al., 2014; Haznedaroglu I.C., Malkan U.Y., 2016). В контексте обсуждаемой емы уместно напомнить, что сложно функционирующая, относительно мало зученная, система рецепторов к (про)ренину имеет отношение не только к АС, но и к регуляции экспрессии генов белков-индукторов процессов оспаления и фиброза тканей (Nguyen G., 2011). Дальнейшие исследования одтвердили РАС-независимые эффекты системы рецепторов к (про)ренину, родемонстрировав их роль в регуляции фундаментальных механизмов онтроля гомеостаза клетки (M&uuml;ller D.N. et al., 2012). Также было установлено, то уровни в плазме крови рецепторов к (про)ренину ((P)RR) в группе нкологических пациентов были резко повышены (Shibayama Y. et al., 2015). На сновании анализа динамики экспрессии (P)RR в клетках на различной стадии алигнизации авторами цитируемой публикации делается вывод о том, что P)RR могут быть тесно вовлечены в процессы онкогенез в поджелудочной елезе. Результаты изучения in vitro экспрессии PRR в культивируемых клетках лиомы человека позволяютс сделать вывод о том, что этот рецептор может ыть как прогностическим маркером, так и мишенью в лечении заболевания Kouchi M. et al., 2017). Приводятся данные о том, что изменение экспрессии P)RR в процессе гемопоэза может рассматриваться в качестве перспективного аркера диагностики в онкогематологии (Haznedaroglu I.C., Malkan U.Y., 2016). <strong>4.2. ЭПИГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ, КАК ВОЗМОЖНЫЕ РЕГУЛЯТОРЫ ЭКСПРЕССИИ ПРОТЕИНОВ-КОМПОНЕНТОВ РАС ПРИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ </strong> &nbsp; Представленная выше краткая информация о динамике экспрессии протеинов-компонентов РАС в опухолевых тканях свидетельствует о том, что, во-первых, этот показатель может существенно повышаться в тканях, для которых в норме не характерны высокие уровни экспрессии данной группы протеинов (Sugimoto M. et al., 2012; Shibayama Y. et al., 2015; Han C., Ge W., 2016; Itinteang T. et al., 2016; Yue Z. et al., 2016). И напротив, при некоторых онкологических заболеваниях клетки постепенно утрачивают присущую им в норме способность экспрессировать белки РАС (Errarte P. et al., 2017; Sobczuk P. et al., 2017). Во-вторых, отмечается закономерное изменение экспрессии и топологии белков РАС в опухолевых тканях в зависимости от стадии течения и степени тяжести заболевания (Vinson G.P. et al., 2012; Haznedaroglu I.C., Malkan U.Y., 2016; Kouchi M. et al., 2017). В ряде публикаций приводятся доказательства ведущей роли эпигенетических механизмов в изменении синтеза белков, способных стимулировать процессы малигнизации, воспаления, фиброза и метастазирования (Tsai<sup> </sup>Y.-P., Wu K.-J., 2012; Tan W. et al., 2014; Harb-De la Rosa A.et al., 2015; Cheng Y. et al., 2016; Haznedaroglu I.C., Malkan U.Y., 2016; Semenza G.L., 2016). При этом, уделяется внимание эпигенетической перестройке экспрессии генов протеинов-компонентов РАС в процессах малигнизации и роста раковых клеток (Tsai<sup> </sup>Y.-P., Wu K.-J., 2012; Han C.-D., Ge W.-S., 2016; Haznedaroglu I.C., Malkan U.Y., 2016; ie G. et al., 2017). Эпигенетическая перестройка экспрессии компонентов РАС тносительно новое и мало изученное направление в онкологии. В норме, л ние пигенетических механизмов на динамику экспрессии генов белков АС про еживается на ранних стадиях гисто- и органогенеза, а также в нтенсивно про ферирующих тканях (Belyea B.C. et al., 2014; Haznedaroglu .C., Malkan U.Y , 016). Сообщается, что одним из универсальных индукторов кспрессии ген в елков-компонентов РАС, по мере прогрессирования локачественных нов бразований, может являться <em>HIF</em><em>-1альфа </em>(Tsai<sup> </sup>Y.-P., Wu .-J., 2012; Choi J.-H. et l., 2014; Xie G. et al., 2017). Установлено, что ряд акторов, соп тствующих ечению сахарного диабета, также может оказывть лияние на экс рессию генов елков РАС, усиливая риск онкологических аболеваний (Ya g X. et al., 2012; eddy M.A. et al., 2012; Reddy M.A., Natarajan<sup> </sup>., 2015; Weg an-Ostrosky T. et al., 015).<em> Возможно, </em><em>HIF</em><em>-1альфа епосредственно при имает участие в егуляции экспрессии нгиотензиногена (</em>Agt) (Choi J.- . et al., 2014). В свою чередь, локальная родукция Agt критически важна для усиления образования -II, тимулирующего опухолевый неоангиогенез и мет стазирование через Т1-рецепторы. Сообщается, что антагонист АТ1-рецепторов олмесартан ожет ерез активацию синтеза микроРНК-205 инг бировать экспрессию VEGF-а аковыми клетками (Yue Z. et al., 2016). В дан ом случае А-II рассматривается ачестве регулятора процессов тра скрипции. Действительно, спериментальные исследования показывают, что А-II может усиливать дукцию провоспалительных цитокинов (IFN&gamma;, TNF ) и матричных ме аллопротеиназ (MMP2, MMP9), стимулируя адгезию раковых клеток к эндотелиальным клеткам, а также активируя их трансэндотелиальную миграцию и миграцию опухолевых клеток через белки внеклеточного матрикса (Rodrigues-Ferreira S., et al. 2012). Наряду с этим, высказывается мнение об универсальности эпигенетической перестройки экспрессии компонентов РАС в патогенезе, в том числе, и онкологических заболеваний (Kemp J.R. et al., 2014; Reddy M.A., Natarajan<sup> </sup>R., 2015). С другой стороны, приводятся сведения об эпигенетических эффектах А-1-7, направленных на ограничение подвижности раковых клеток и их способности к метастазированию (de Oliveira da Silva B. et al., 2016). С этой точки зрения особое значение приобретают данные о способности АСЕ-1 участвовать в механизмах внутриклеточной передачи сигнала А-II (de Alvarenga E.C. et al., 2016). Не менее актуальной является информация о важности системы (про)ренин &mdash; рецепторы к (про)ренину в управлении экспрессии генов, независимо от состояния активности РАС (Nguyen G., 2011; M&uuml;ller D.N. et al., 2012). Результаты дальнейших исследований подтверждают тезис о том, что система (про)ренин &mdash; рецепторы к (про)ренину могут выполнять важную функцию в патогенезе и течении онкологических заболеваний (Shibayama Y. et al., 2015; Wang C. et al., 2016; Kaneko K. et al., 2017). <strong>4.3. ОНКОЛОГИЧЕСКИЕ АСПЕКТЫ ЭКСПРЕССИИ КОМПОНЕНТОВ РАС И ЛОКАЛЬНАЯ РЕНИН-АНГИОТЕНЗИНОВАЯ СИСТЕМА</strong> &nbsp; Само понятие &laquo;локальная РАС&raquo; формировалось, как представление об элементе внутриорганного гуморального комплекса контроля гомеостатических функций данного органа. На примере локальной РАС почек эту мысль можно проиллюстрировать следующим примером. В норме, адекватным стимулом активации внутриренальной РАС есть два различных механизма, обусловленных внутриорганными изменениями кровяного давления и интенсивности транспорта хлорида натрия в области macula densa. В результате активации системы происходит усиление секреции клетками юкста-гломерулярного аппарата регуляторного фермента РАС &mdash; ренина и повышение продукции А-II. Основные ренотропные физиологические эффекты А-II реализуются, в основном, в отношении параметров внутрипочечной гемодинамики, процессов фильтрации и канальцевого транспорта веществ (г.о. натрия) на уровне проксимального отдела нефрона. В том числе через инициацию эффектов, контролирующих транскрипцию транспортных и регуляторных белков в проксимальных нефроцитах (Li X.C. et al., 2012; Satou R., Gonzalez-Villalobos R.A., 2012). В физиологических условиях, индукция секреции ренина (Sparks M.A. et al., 2014) и А-II-зависимая стимуляция транскрипции транспортных белков канальцевого эпителия (Shao W. et al., 2013) адекватны текущему состоянию водно-солевого баланса организма. Например, вызванная гипонатриевой диетой физиологическая стимуляция РАС не сопряжена с повышением ренальных потерь Agt или с развитием повреждений ренальной паренхимы (Shao W. et al., 2013). Следовательно, конечным результатом деятельности сложного комплекса гуморальных регуляторов внутрипочечной системы контроля гомеостаза является поддержание стабильных параметров кровяного давления, ионного гомеостаза, кислотно-основного равновесия, постоянства объема внеклеточной жидкости организма (Satou R., Gonzalez-Villalobos R.A., 2012; Zhuo J.L. et al., 2013; Sparks M.A. et al., 2014; Ferr&atilde;o F.M. et al., 2014). При этом, топология основной массы ренин-секретирующих клеток почки в области ЮГА, скорее всего, имеет принципиально важное значение. Поскольку данная популяция клеток непосредственно получает информацию о параметрах гемодинамики и о состоянии транспорта ионов хлора и натрия в дистальных извитых сегментах нефрона. Напротив, появление эктопических очагов секреции, например, ренина за пределами ЮГА (в канальцевом эпителии, клетках мезангиума) лишает клетки-продуценты адекватной стимуляции. По нашему мнению, такие события, в совокупности с локализацией продукции всех белков-компонентов РАС в одной клетке может создавать предпосылки для неограниченной активации сформировавшихся эктопических очагов РАС, нацеленных на инициацию и каскадное усиление патологических изменений в ренальной паренхиме. С другой стороны, гипоксия, оксидативный стресс, высокий уровень глюкозы в крови и другие неблагоприятные факторы способны индуцировать эпигенетические механизмы активации фиброза и воспаления ренальной паренхимы, в том числе и изменений топологии компонентов РАС через механизмы контроля экспрессии генов (Macconi D.et al., 2014; Reddy M.A., Natarajan<sup> </sup>R. , 2015, Nangaku M. et al., 2017). Одним из важных результатов указанных событий есть усиление секреции ренина в паренхиме мозгового слоя почки (Zhuo<sup> </sup>J.L., 2011), в гладкомышечных клетках артериол, мезангиальных клетках и в интерстиции через эпигенетические механизмы контроля экспрессии генов (Sparks M.A. et al., 2014; De Mello W.C., 2015). Ренин &mdash; регуляторный фермент РАС, детерминирующий интенсивность дальнейшей продукции А-II. Накопление активных форм кислорода (ROS) в почечной ткани способствует усилению экскреции Agt почками, усиливая цепь обратной связи между активацией ROS и дальнейшей активацией ROS синтеза Agt (Nguyen M.T.X. et al., 2015). Показано, что инфузия животным А-II существенно активирует биосинтез Agt в проксимальных нефроцитах, приводя к дальнейшему росту канальцевой продукции А-II и повышению его патогенетического влияния (Ramkumar N. et al., 2016). В целом, аккумуляция компонентов РАС в проксимальных нефроцитах, усиление внутриклеточной продукции А-II и его эффектов на процессы транскрипции, функции митохондрий, усиление продукции ROS &mdash; один из базовых патогенетических механизмов нарушений гомеостатических функций почек (Navar L.G. et al., 2011; Ellis B. et al., 2012; Li X.C., Zhuo J.L., 2016). В качестве диагностического критерия патологической трансформации внутрипочечной РАС рекомендуется использование ренальной экскреции ангиотензиногена (Kobori H.et al., 2002; Navar L.G. et al., 2011; Alge J.L. et al., 2013). Таким образом, патологическая трансформация внутрипочечной РАС осуществляется: 1.Под контролем эпигенетических механизмов, изменяющих процессы транскрипции, в том числе белков-компонентов РАС. 2.В результате формирования эктопических очагов биосинтеза ключевых белков-компонентов РАС. 3.В результате усиления внутриклеточной продукции А-II и усиления влияния октапептида на транскрипцию белков. 4.Ослаблением экспрессии АСЕ-2, снижением продукции А-1-7, эффекты которого носят оппозиционный характер по отношению к А-II. В результате, в отличии от физиологических условий, патологическое изменение топологии и уровня экспрессии компонентов РАС приводит: 1.К появлению эктопических очагов РАС, в т.ч. усилению внутриклеточной РАС канальцевого эпителия.2.К образованию эктопических очагов РАС (ренин, ангиотензиноген) способствующих ускользанию пусковых механизмов активации РАС от базовых егуляторных стимулов параметров водно-солевого баланса организма и гемодинамики. 3.К изменению вектора регуляторных эффектов эктопических очагов РАС, которые больше не направлены на поддержание гомеостаза. Сформировавшиеся эктопические очаги экспрессии компонентов РАС обеспечивает дальнейшую неограниченную индукцию фиброза, воспаления и гипертрофии клеток ренальной паренхимы. 4.К изменению внутриклеточных систем передачи сигнала (Satou R., Gonzalez-Villalobos R.A., 2012) и баланса регуляторного влияния А-II и А-1-7, в сторону усиления активности АСЕ-1 и альфа-химазы на фоне снижения экспрессии АСЕ-2 (Sparks M.A. et al., 2014).Отметим, что подобные изменения происходят и в результате перестройки экспрессии компонентов РАС в клетках злокачественных опухолей, индуцирующих малигнизацию клеток, фиброз и воспаление ткани, неоангиогенез, метастазирование и иммуносупрессию (Regulska K. et al., 2013; Pinter M., Jain R.K., 2017; Sobczuk P. et al., 2017). Также, как в патогенезе и прогрессировании почечной недостаточности, компоненты РАС раковых клеток не причастны к выполнению гомеостатических функций. Следовательно, по нашему мнению, локальной РАС не являются. С точки зрения интересов практической медицины речь идет о целесообразности использования блокаторов РАС в лечении онкологических заболеваний. По нашему мнению, в этом вопросе можно выделить несколько аспектов. С одной стороны, усиление экспрессии эктопических очагов РАС клетками злокачественной опухоли, на первый взгляд, дает основание ожидать результативности использования ингибиторов АСЕ и антагонистов рецепторов А-II в лечении онкологических заболеваний. В действительности, монотерапия блокаторами РАС онкологических заболеваний может демонстрировать достаточно умеренный терапевтический результат. Сообщается о путях усиления противораковых эффектов ингибиторов РАС в комплексе с мероприятиями иммунотерапии и химиотерапии (Pinter M., Jain R.K., 2017). Наряду с этим, указывается на потенциальные риски, связанные с использованием определенных блокаторов РАС в лечении конкретных онкологических заболеваний (Sobczuk P. et al., 2017), вплоть до полной нецелесообразности их применения (S&oslash;rensen G.V. et al., 2013; Chae Y.K. et al., 2014; Nakai Y. et. al., 2016). С другой стороны, на основе анализа природы экспрессии эктопических очагов РАС, предполагаются качественно иные способы их фармакологической коррекции, основанные на модулировании эпигенетических механизмов подавления активности эктопической РАС (Zhong Y. et al., 2013; Reddy M.A. et al., 2014). Высказывается мнение об универсальной роли эпигенетических механизмов в патогенезе формирования эктопической РАС при онкологических и неонкологических заболеваниях (Kemp J.R. et al., 2014; Tang J., Zhuang S., 2015; Reddy M.A., Natarajan<sup> </sup>R., 2015). Анализируются перспективные способы лечения онкологических заболеваний, полностью базирующиеся на управлении эпигенетическими механизмами при помощи синтетических microRNA (Tan W. et al., 2014; Felipe A.V. et al., 2014). Новые перспективы использования селективных модуляторов эпигенетических процессов в практической медицине, представляющих интерес и для онкологии, подтверждаются сведениями о готовности применения данной группы фармакологических препаратов (ингибиторы деацетилаз) в доклинических испытаниях (Van Beneden K. et al., 2013). Таким образом, проведенный обзор литературы показал, что изменение экспрессии компонентов РАС тесно связано с патогенезом малигнизации клеток, прогрессированием раковых опухолей, а также стимуляцией процессов метастазирования. Сведения о состоянии экспрессии белков компонентов РАС способствуют пониманию механизмов канцерогенеза и диссеминации клеток опухоли. Эти данные позволяют использовать качественные и количественные параметры экспрессии компонентов РАС в качестве маркеров тяжести течения онкологического заболевания. Тесная вовлеченность компонентов РАС вканцерогенез послужила основой для использования ингибиторов РАС (ингибиторов АСЕ-1 и антагонистов рецепторов А-II) в терапии онкологических заболеваний. Вместе с тем, анализ причин изменения экспрессии белков РАС в клетках опухоли позволил выявить, что весьма значимая функция в этих процессах принадлежит эпигенетическим механизмам регуляции экспрессии генов. Благодаря исследованиям состояния эпигенетических механизмов при онкологических заболеваниях были разработаны принципиально новые методы их коррекции, основанные на применении селективных регуляторов систем ковалентной модификации белков-гистонов (например, ингибитор деацетилаз) и технология синтеза микро РНК. Имеющиеся в литературе данные о фармакологических свойствах указанных препаратов позволяют предположить их перспективность в эффективном лечении онкологических заболеваний. СПИСОК ЛИТЕРАТУРЫ К ГЛАВЕ &laquo;<strong>БЕЛКИ РЕНИН-АНГИОТЕНЗИНОВОЙ СИСТЕМЫ ПРИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ&raquo;</strong> 1.Regulska K., Stanisz B., Regulski M. The renin-angiotensin system as a target of novel anticancer therapy. Curr Pharm Des. 2013;19(40):7103-7125 doi: 10.2174/13816128113199990508 &nbsp; 2.Gomez R.A., Sequeira-Lopez M.L.S. Novel Functions of Renin Precursors in Homeostasis and Disease. Physiology (Bethesda). 2016; 31(1): 25&ndash;33 doi: 10.1152/physiol.00039.2015 &nbsp; 3.Pinter M., Weinmann A., W&ouml;rns M.-A. et al. Use of inhibitors of the renin&ndash;angiotensin system is associated with longer survival in patients with hepatocellular carcinoma.United European Gastroenterol J. 2017; 5(7): 987&ndash;996 doi: 10.1177/2050640617695698 &nbsp; 4.Pinter M., Jain R.K. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Science Translational Medicine. 2017; 9(410):eaan5616 doi: 10.1126/scitranslmed.aan5616 &nbsp; 5.Rоmer F. K. Angiotensin-converting enzyme and its association with outcome in lung cancer. Br. J. Cancer 1981;43:135-142 &nbsp; 6.Tawinwung S., Ninsontia C., Chanvorachote P. Angiotensin II Increases Cancer Stem Cell-like Phenotype in Lung Cancer Cells. Anticancer Res. 2015;35(9):4789-4797 &nbsp; 7.Sobczuk P., Szczylik C., Porta C., Czarnecka A.M. Renin angiotensin system deregulation as renal cancer risk factor. Oncol Lett. 2017;14(5): 5059&ndash;5068 doi: 10.3892/ol.2017.6826 &nbsp; 8.Sun H., Li T., Zhuang R. et al. Do renin&ndash;angiotensin system inhibitors influence the recurrence, metastasis, and survival in cancer patients? Evidence from a meta-analysis including 55 studies. Medicine (Baltimore). 2017; 96(13): e6394 doi: 10.1097/MD.0000000000006394 &nbsp; 9.Connolly S., Yusuf S., Swedberg K. et al. Effects of telmisartan, irbesartan, valsartan, candesartan, and losartan on cancers in 15 trials enrolling 138,769 individuals. ARB Trialists Collaboration. J Hypertens. 2011;29(4):623-635 doi: 10.1097/HJH.0b013e328344a7de &nbsp; 10.Azoulay L., Assimes T.L., Yin H. et al. Long-Term Use of Angiotensin Receptor Blockers and the Risk of Cancer. PLoS One. 2012; 7(12): e50893 doi: 10.1371/journal.pone.0050893 &nbsp; 11.Yang Y., Zhang F., Skrip L. et al. Lack of an Association between Angiotensin Receptor Blocker Based Therapy and Increased Risk of Cancer: Evidence from Large Observational Studies. PLoS One. 2015; 10(3): e0119775 doi: 10.1371/journal.pone.0119775 &nbsp; 12.Aydiner A., Ciftci R., Sen F. Renin-Angiotensin System Blockers May Prolong Survival of Metastatic Non-Small Cell Lung Cancer Patients Receiving Erlotinib. Medicine (Baltimore). 2015; 94(22): e887 doi: 10.1097/MD.0000000000000887 &nbsp; 13.Arrieta O., Pineda-Olvera B., Guevara-Salazar P. et al. Expression of AT1 and AT2 angiotensin receptors in astrocytomas is associated with poor prognosis. Br J Cancer. 2008; 99(1): 160&ndash;166 doi: 10.1038/sj.bjc.6604431 &nbsp; 14.Nguyen L., Ager E.I., Neo J., Christophi C. Regulation of colorectal cancer cell epithelial to mesenchymal transition by the renin angiotensin system. J Gastroenterol Hepatol. 2016;31(10):1773-1782 doi: 10.1111/jgh.13307 &nbsp; 15.Cheng Q., Zhou L., Zhou J<sup> </sup> et al. ACE2 overexpression inhibits acquired platinum resistance-induced tumor angiogenesis in NSCLC. Oncol Rep. 2016;36(3):1403-1410 doi: 10.3892/or.2016.4967 &nbsp; 16.Keizman D., Huang P., Eisenberger M.A. et al. Angiotensin system inhibitors and outcome of sunitinib treatment in patients with metastatic renal cell carcinoma: A retrospective examination. Eur J Cancer. 2011; 47(13): 1955&ndash;1961 doi: 10.1016/j.ejca.2011.04.019 &nbsp; 17.Coulson R., Liew S.H., Connelly A.A. et al. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget. 2017; 8(12): 18640&ndash;18656 doi: 10.18632/oncotarget.15553 &nbsp; 18.Osumi H., Matsusaka S., Wakatsuki T. et al. Angiotensin II type-1 receptor blockers enhance the effects of bevacizumab-based chemotherapy in metastatic colorectal cancer patients. Mol Clin Oncol. 2015; 3(6): 1295&ndash;1300 doi: 10.3892/mco.2015.630 &nbsp; 19.Ager E.I., Wen S.W., Chan J. et al. Altered efficacy of AT1R-targeted treatment after spontaneous cancer cell-AT1R upregulation. BMC Cancer. 2011; 11: 274 doi: 10.1186/1471-2407-11-274 &nbsp; 20.Aydiner A., Ciftci R., Sen F. Renin-Angiotensin System Blockers May Prolong Survival of Metastatic Non-Small Cell Lung Cancer Patients Receiving Erlotinib. Medicine (Baltimore). 2015; 94(22): e887 doi: 10.1097/MD.0000000000000887 &nbsp; 21.Sugimoto M., Yamaoka Y., Shirai N., Furuta T. Role of renin-angiotensin system in gastric oncogenesis. J Gastroenterol Hepatol. 2012; 27(3): 442&ndash;451 doi: 10.1111/j.1440-1746.2011.06964.x &nbsp; 22.Itinteang T., Dunne J.C., Chibnall A.M. et al. Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma express components of the renin&ndash;angiotensin system. J Clin Pathol. 2016; 69(10): 942&ndash;945 doi: 10.1136/jclinpath-2016-203736 &nbsp; 23.Kuniyasu H. Multiple roles of angiotensin in colorectal cancer. World J Clin Oncol. 2012; 3(12): 150&ndash;154 doi: 10.5306/wjco.v3.i12.150 &nbsp; 24.Shimizu Y., Amano H., Ito Y. et al. Angiotensin II subtype 1a receptor signaling in resident hepatic macrophages induces liver metastasis formation. Cancer Sci. 2017;108: 1757&ndash;1768 doi: 10.1111/cas.13306 &nbsp; 25.Gallagher P.E., Cook K., Soto-Pantoja D. et al. Angiotensin Peptides and Lung Cancer. Curr Cancer Drug Targets. 2011; 11(4): 394&ndash;404 &nbsp; 26.Vinson G.P., Barker S., Puddefoot J.R. The renin&ndash;angiotensin system in the breast and breast cancer. Endocr Relat Cancer. 2012;19 (1): R1-R19 doi: 10.1530/ERC-11-0335 &nbsp; 27.Li S.-H., Lu H.-I., Chang A.Y.W. et al. Angiotensin II type I receptor (AT1R) is an independent prognosticator of esophageal squamous cell carcinoma and promotes cells proliferation via mTOR activation. Oncotarget. 2016; 7(41): 67150&ndash;67165 doi: 10.18632/oncotarget.11567 &nbsp; 28.Dolley-Hitze T., Jouan F., Martin B. et al. Angiotensin-2 receptors (AT1-R and AT2-R), new prognostic factors for renal clear-cell carcinoma? Br J Cancer. 2010; 103(11): 1698&ndash;1705 doi: 10.1038/sj.bjc.6605866 &nbsp; 29.Rhodes D.R., Ateeq B., Cao Q. et al. AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc Natl Acad Sci U S A. 2009; 106(25):10284&ndash;10289 doi: 10.1073/pnas.0900351106 &nbsp; 30.Wegman-Ostrosky T., Soto-Reyes E., Vidal-Mill&aacute;n S., S&aacute;nchez-Corona J. The renin-angiotensin system meets the hallmarks of cancer. J Renin Angiotensin Aldosterone Syst. 2015;16:227&ndash;233 doi: 10.1177/1470320313496858 &nbsp; 31.Errarte P., Beitia M., Perez I. et al. Expression and activity of angiotensin-regulating enzymes is associated with prognostic outcome in clear cell renal cell carcinoma patients. PLoS One. 2017; 12(8): e0181711 doi: 10.1371/journal.pone.0181711 &nbsp; 32.Xie G., Liu Y., Yao Q. et al. Hypoxia-induced angiotensin II by the lactate-chymase-dependent mechanism mediates radioresistance of hypoxic tumor cells. Sci Rep. 2017; 7: 42396 doi: 10.1038/srep42396 &nbsp; 33.de Alvarenga E.C., de Castro Fonseca M., Coelho Carvalho C. et al. Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration. PLoS One. 2016; 11(12): e0165371 doi: 10.1371/journal.pone.0165371 &nbsp; 34.Shen J., Huang Y.-M., Wang M. et al. Renin&ndash;angiotensin system blockade for the risk of cancer and death. Journal of the Renin-Angiotensin-Aldosterone System. 2016;17(3):1&ndash;14 doi: 10.1177/1470320316656679 &nbsp; 35.Nakamura K., Yaguchi T., Ohmura G. et al. Involvement of local renin-angiotensin system in immunosuppression of tumor microenvironment. Cancer Science. 2018;109(1):54&ndash;64 doi:10.1111/cas.13423 &nbsp; 36.Haznedaroglu I.C., Malkan U.Y. Local bone marrow renin-angiotensin system in the genesis of leukemia and other malignancies. European Review for Medical and Pharmacological Sciences. 2016;20(19):4089-4111 &nbsp; 37.Han C., Ge W. Up-Regulation of Angiotensin-Converting Enzyme (ACE) Enhances Cell Proliferation and Predicts Poor Prognosis in Laryngeal Cancer. Med Sci Monit, 2016; 22: 4132-4138 doi:10.12659/MSM.896933 &nbsp; 38.Clarke N.E., Turner A.J. Angiotensin-ConvertingEnzyme2: The first Decade. International Journal of Hypertension.2012; 2012: 307315 Article ID307315 doi:10.1155/2012/307315 &nbsp; 39.Yu С., Tang W., Wang Y. et al., Downregulation of ACE2/Ang-(1&ndash;7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Letters. 2016;376(2):268-277 doi: 10.1016/j.canlet.2016.04.006 &nbsp; 40.Cheng Q., Zhou L., Zhou J. et al. ACE2 overexpression inhibits acquired platinum resistance-induced tumor angiogenesis in NSCLC. Oncology Reports. 2016;36: 1403-1410 doi: 10.3892/or.2016.4967 &nbsp; 41.Feng Y., Ni L., Wan H. et al. Overexpression of ACE2 produces antitumor effects via inhibition of angiogenesis and tumor cell invasion in vivo and in vitro. Oncology Reports. 2011; 26: 1157-1164 doi: 10.3892/or.2011.1394 &nbsp; 42.Fan L., Feng Y., Wan H.Y. et al. Hypoxia induces dysregulation of local renin-angiotensin system in mouse Lewis lung carcinoma cells. Genetics and Molecular Research. 2014;13(4): 10562-10573 doi<strong>:</strong>10.4238/2014.December.12.19 &nbsp; 43.Luo Y., Tanabe E., Kitayoshi M. et al. Expression of MAS1 in breast cancer. Cancer Sci. 2015;106(9):1240&ndash;1248 doi: 10.1111/cas.12719 &nbsp; 44.Choi J.-H., Nguyen M.-P., Lee D. et al. Hypoxia-Induced Endothelial Progenitor Cell Function Is Blunted in Angiotensinogen Knockout Mice. Mol Cells. 2014; 37(6): 487&ndash;496 doi:10.14348/molcells.2014.0119 45.Urup T., Michaelsen S.R.,<sup> </sup>Olsen L.R. et al. Angiotensinogen and HLA class II predict bevacizumab response in recurrent glioblastoma patients. Mol Oncol. 2016; 10(8): 1160&ndash;1168 doi: 10.1016/j.molonc.2016.05.005 &nbsp; 46.Blanco L., Sanz B., Perez I. et al. Altered glutamyl-aminopeptidase activity and expression in renal neoplasms. BMC Cancer. 2014; 14:386 doi:10.1186/1471-2407-14-386 &nbsp; 47.Ellis B., Li X.C., Miguel-Qin E. et al. <strong>Review:</strong> Evidence for a functional intracellular angiotensin system in the proximal tubule of the kidney. Am J Physiol Regul Integr Comp Physiol. 2012; 302(5): R494&ndash;R509 doi:10.1152/ajpregu.00487.2011 &nbsp; 48.De Mello W.C. Chemical Communication between Heart Cells is Disrupted by Intracellular Renin and Angiotensin II: Implications for Heart Development and Disease. Front Endocrinol (Lausanne). 2015; 6: 72 doi: 10.3389/fendo.2015.00072 &nbsp; 49.Wang H., Zhang K., Qin H. et. Genetic Association Between Angiotensinogen Polymorphisms and Lung Cancer Risk. Medicine (Baltimore). 2015; 94(37): e1250 doi:10.1097/MD.0000000000001250 &nbsp; 50.Martin P., Noonan S., Mullen M.P. et al. Predicting response to vascular endothelial growth factor inhibitor and chemotherapy in metastatic colorectal cancer. BMC Cancer. 2014; 14: 887 Doi: 10.1186/1471-2407-14-887 &nbsp; 51.Gomez R.A., Sequeira-Lopez M.L.S. Novel Functions of Renin Precursors in Homeostasis and Disease. Physiology (Bethesda). 2016; 31(1): 25&ndash;33 doi: 10.1152/physiol.00039.2015 &nbsp; 52.Hu J., Zhang L.-C., Song X. et al. KRT6 interacting with notch1 contributes to progression of renal cell carcinoma, and aliskiren inhibits renal carcinoma cell lines proliferation in vitro. Int J Clin Exp Pathol. 2015; 8(8): 9182&ndash;9188 53.Nguyen G. Renin, (pro)renin and receptor: an update. Clinical Science. (2011) 120, 169&ndash;178 doi:10.1042/CS20100432 54.M&uuml;ller D.N., Binger K.J., Riediger F. Prorenin receptor regulates more than the renin-angiotensin system. Annals of Medicine. 2012; 44(Suppl 1): S43&ndash;S48 &nbsp; 55.Shibayama Y., Fujimori T., Nguyen G. et al. (Pro)renin receptor is crucial for Wnt/&beta;-catenin-dependent genesis of pancreatic ductal adenocarcinoma. Sci Rep. 2015; 5: 8854 doi: 10.1038/srep08854 56.Kouchi M., Shibayama Y., Ogawa D. et al. (Pro)renin receptor is crucial for glioma development via the Wnt/b-catenin signaling pathway. J. Neurosurg. 2017; 127:819&ndash;828 57.Belyea B.C., Xu F., Pentz E.S. et al. Identification of renin progenitors in the mouse bone marrow that give rise to B-cell leukaemia. Nat Commun. 2014; 5: 3273 doi:10.1038/ncomms4273 58.Yue Z., Yun-shan Z., Feng-xia X. miR-205 mediates the inhibition of cervical cancer cell proliferation using olmesartan. Journal of the Renin-AngiotensinAldosterone System. 2016; 17(3): 1&ndash;8 doi: 10.1177/1470320316663327 &nbsp; 59.Itinteang T., Dunne J.C., Chibnall A.M. et al. Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma express components of the renin&ndash;angiotensin system. J Clin Pathol. 2016; 69(10): 942&ndash;945 doi: 10.1136/jclinpath-2016-203736 &nbsp; 60.Tsai<sup> </sup>Y.-P., Wu K.-J. Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci. 2012; 19(1): 102. doi: 10.1186/1423-0127-19-102 &nbsp; 61.Tan W., Li Y., Lim S.-G., Tan T.M.C. <em>miR-106b-25/miR-17-92</em> clusters: Polycistrons with oncogenic roles in hepatocellular carcinoma. World J Gastroenterol. 2014; 20(20): 5962&ndash;5972 doi:10.3748/wjg.v20.i20.5962 &nbsp; 62.Cheng Y., Guo Y., Zhang Y. et al. MicroRNA-106b is involved in transforming growth factor &beta;1&ndash;induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J Exp Clin Cancer Res. 2016; 35: 11 doi: 10.1186/s13046-016-0290-6 &nbsp; 63.Harb-De la Rosa A., Acker M., Swain S., Manoharan M. The role of epigenetics in kidney malignancies. Cent European J Urol. 2015; 68(2): 157&ndash;164 doi:10.5173/ceju.2015.453 &nbsp; 64.Semenza G.L. The Hypoxic Tumor Microenvironment: A Driving Force for Breast Cancer Progression. Biochim Biophys Acta. 2016; 1863(3): 382&ndash;391 doi:10.1016/j.bbamcr.2015.05.036 &nbsp; 65.Han C.-D., Ge W.-S. Up-Regulation of Angiotensin-Converting Enzyme (<em>ACE</em>) Enhances Cell Proliferation and Predicts Poor Prognosis in Laryngeal Cancer. Med Sci Monit. 2016; 22: 4132&ndash;4138 doi: 10.12659/MSM.896933 &nbsp; 66.Choi J.-H., Nguyen M.-P., Lee D. et al. Hypoxia-Induced Endothelial Progenitor Cell Function Is Blunted in Angiotensinogen Knockout Mice. Mol Cells. 2014; 37(6): 487&ndash;496 doi: 10.14348/molcells.2014.0119 &nbsp; 67.Yang X., So W.Y., Ma R.C. et al. Diabetes and cancer: the mechanistic implications of epidemiological analyses from the Hong Kong Diabetes Registry. Diabetes Metab Res Rev. 2012;28(5):379-387 doi: 10.1002/dmrr.2287 &nbsp; 68.Reddy M.A., Park J.T., Natarajan<sup> </sup>R. Epigenetic modifications and diabetic nephropathy. Kidney Res Clin Pract. 2012; 31(3): 139&ndash;150 doi:10.1016/j.krcp.2012.07.004 &nbsp; 69.Reddy M.A., Natarajan<sup> </sup>R. Recent Developments in Epigenetics of Acute and Chronic Kidney Diseases. Kidney Int. 2015; 88(2): 250&ndash;261 doi:10.1038/ki.2015.148 &nbsp; 70.Rodrigues-Ferreira S., Abdelkarim M., Dillenburg-Pilla P. et al. Angiotensin II Facilitates Breast Cancer Cell Migration and Metastasis. PLoS One. 2012; 7(4): e35667 doi: 10.1371/journal.pone.0035667 &nbsp; 71.Kemp J.R., Unal H., Desnoyer R. et al. Angiotensin II-regulated microRNA 483-3p directly targets multiple components of the Renin-Angiotensin System. J Mol Cell Cardiol. 2014; 75: 25&ndash;39 doi: 10.1016/j.yjmcc.2014.06.008 &nbsp; 72.de Oliveira da Silva B., Furtado Lima K., Gon&ccedil;alves L. et al. MicroRNA Profiling of the Effect of the Heptapeptide Angiotensin-(1-7) in A549 Lung Tumor Cells Reveals a Role for miRNA149-3p in Cellular Migration Processes. PLoSOne. 2016; 11(9): e0162094 doi: 10.1371/journal.pone.0162094 &nbsp; 73.Wang C., Guo D., Wang Q. et al. Aliskiren targets multiple systems to alleviate cancer cachexia. Oncol Rep. 2016;36(5):3014-3022 doi: 10.3892/or.2016.5118 74.Kaneko K., Ohba K., Hirose T. et al. Expression of (Pro)renin Receptor During Rapamycin-Induced Erythropoiesis in K562 Erythroleukemia Cells and Its Possible Dual Actions on Erythropoiesis. Tohoku J. Exp. Med. 2017; 241:35-43 doi: 10.1620/tjem.241.35 &nbsp; 75.Li X.C., Hopfer U., Zhuo J.L. Novel signaling mechanisms of intracellular angiotensin II-induced NHE3 expression and activation in mouse proximal tubule cells. Am J Physiol Renal Physiol. 2012; 303(12): F1617&ndash;F1628 doi: 10.1152/ajprenal.00219.2012 76.Satou R., Gonzalez-Villalobos R.A.<sup> </sup>The role of the JAK-STAT pathway in blood pressure and intrarenal renin-angiotensin system regulation. JAKSTAT. 2012; 1(4): 250&ndash;256 doi: 10.4161/jkst.22729 &nbsp; Shao W., Seth D.M., Prieto M.C. et al. Activation of the renin-angiotensin system by a low-salt diet does not augment intratubular angiotensinogen and angiotensin II in rats. Am J Physiol Renal Physiol. 2013; 304(5): F505&ndash;F514 doi: 10.1152/ajprenal.00587.2012 Sparks M.A., Crowley S.D., Gurley S.B. et al. Classical Renin-Angiotensin System in Kidney Physiology. Compr Physiol. 2014; 4(3): 1201&ndash;1228 doi: 10.1002/cphy.c130040 Ferr&atilde;o F.M., Lara L.S., Lowe J. Renin-angiotensin system in the kidney: What is new? World J Nephrol. 2014; 3(3): 64&ndash;76 doi: 10.5527/wjn.v3.i3.64 Zhuo J.L., Ferrao F.M., Zheng Y., Li X.C. New Frontiers in the Intrarenal Renin-Angiotensin System: A Critical Review of Classical and New Paradigms. Front Endocrinol (Lausanne). 2013; 4: 166 doi: 10.3389/fendo.2013.00166 &nbsp; Macconi D., Remuzzi G., Benigni A. Key fibrogenic mediators: old players. Renin&ndash;angiotensin system. Kidney Int Supp l. 2014; 4(1): 58&ndash;64 doi: 10.1038/kisup.2014.11 &nbsp; Nangaku M., Hirakawa Y., Mimura I. et al. Epigenetic Changes in the Acute Kidney Injury-to-Chronic Kidney Disease Transition. Nephron. 2017;137:256&ndash;259 doi.org/10.1159/000476078 &nbsp; Zhuo<sup> </sup>J.L. Augmented intratubular renin and prorenin expression in the medullary collecting ducts of the kidney as a novel mechanism of angiotensin II-induced hypertension. Am J Physiol Renal Physiol. 2011; 301(6): F1193&ndash;F1194 doi: 10.1152/ajprenal.00555.2011 &nbsp; Nguyen M.T.X., Han J., Ralph D.L. et al. Short-term nonpressor angiotensin II infusion stimulates sodium transporters in proximal tubule and distal nephron. Physiol Rep. 2015; 3(9): e12496 doi: 10.14814/phy2.12496 Ramkumar N.,<sup> </sup>Stuart D.,<sup> </sup>Calquin M. et al. Possible role for nephron‐derived angiotensinogen in angiotensin‐II dependent hypertension. Physiol Rep. 2016; 4(1): e12675 doi: 10.14814/phy2.12675 Navar L.G., Kobori H., Prieto M.C., Gonzalez-Villalobos R.A. Intratubular renin-angiotensin system in hypertension. Hypertension. 2011; 57(3): 355&ndash;362 doi: 10.1161/HYPERTENSIONAHA.110.163519 &nbsp; Ellis B., Li X.C., Miguel-Qin E. et al. <strong>Review:</strong> Evidence for a functional intracellular angiotensin system in the proximal tubule of the kidney. Am J Physiol Regul Integr Comp Physiol.2012;302(5):R494&ndash;R509 doi:10.1152/ajpregu.00487.2011 &nbsp; Li X.C., Zhuo J.L. Recent Updates on the Proximal Tubule Renin-Angiotensin System in Angiotensin II-Dependent Hypertension. Curr Hypertens Rep. 2016; 18(8): 63 doi:10.1007/s11906-016-0668-z &nbsp; Kobori H., Harrison-Bernard L.M., Navar L.G. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int. 2002; 61(2): 579&ndash;585 doi:10.1046/j.1523-1755.2002.00155.x &nbsp; Alge J.L., Karakala N., Neely B.A. et al. Urinary Angiotensinogen and Risk of Severe AKI. Clin J Am Soc Nephrol. 2013; 8(2): 184&ndash;193 doi:10.2215/CJN.06280612 &nbsp; S&oslash;rensen G.V., Ganz P.A., Cole S.W. et al. Use of &beta;-Blockers, Angiotensin-Converting Enzyme Inhibitors, Angiotensin II Receptor Blockers, and Risk of Breast Cancer Recurrence: A Danish Nationwide Prospective Cohort Study. J.Clin Oncol. 2013;31(18):2265&ndash;2272 doi:10.1200/JCO.2012.43.9190 &nbsp; Chae Y.K.,, Dimou A., Pierce S. et al. The effect of calcium channel blockers on the outcome of acute myeloid leukemia. Leuk. Lymphoma. 2014;55(12): 2822&ndash;2829 doi:10.3109/10428194.2014.901513 &nbsp; Nakai Y., Isayama H., Sasaki T. et al. No Survival Benefit from the Inhibition of Renin&ndash;Angiotensin System in Biliary Tract Cancer. Anticancer research. 2016; 36: 4965-4970 doi:10.21873/anticanres.11065 Zhong Y., Chen E.Y., Liu R. et al. Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase. J Am Soc Nephrol. 2013; 24(5):801&ndash;811 doi:10.1681/ASN.2012060590 &nbsp; Reddy M.A., Sumanth P., Lanting L. et al. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int. 2014; 85(2): 362&ndash;373 doi:10.1038/ki.2013.387 &nbsp; Felipe A.V., de Oliveira J., Chang P.Y. et al. RNA Interference: a Promising Therapy for Gastric Cancer. Asian Pac J Cancer Prev. 2014; 15(14):5509-5515 doi.org/10.7314/APJCP.2014.15.14.5509 &nbsp; Tang J., Zhuang S. Epigenetics in acute kidney injury. Curr Opin Nephrol Hypertens. 2015;24(4):351&ndash;358 doi:10.1097/MNH.0000000000000140 &nbsp; Van Beneden K., Mannaerts I., Pauwels M. et al. HDAC inhibitors in experimental liver and kidney fibrosis. Fibrogenesis Tissue Repair. 2013; 6: 1 doi:10.1186/1755-1536-6-1 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <strong>Dolomatov S.I., Zukow W. </strong><strong>Эпигенетика почек</strong><strong> = Kidneys epigenetics</strong><strong>. </strong><strong>RSW. Radom,</strong><strong> 144 </strong><strong>p. ISBN </strong><strong>9780359774524</strong><strong>.</strong><strong> DOI </strong><strong>http://dx.doi.org/10.5281/zenodo.3270699</strong><strong> PBN Poland </strong><strong>https://pbn.nauka.gov.pl/sedno-webapp/works/917606</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &copy; The Author(s) 2019. This monograph is published with Open Access. Open Access This monograph is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. &nbsp; &nbsp; Attribution &mdash; You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial &mdash; You may not use this work for commercial purposes. Share Alike &mdash; If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. &nbsp; Zawartość jest objęta licencją Creative Commons Uznanie autorstwa-Użycie niekomercyjne-Na tych samych warunkach 4.0 &nbsp; <strong>ISBN 9780359774524</strong> &nbsp; <strong>DOI </strong><strong>http://dx.doi.org/10.5281/zenodo.</strong><strong>3270699</strong> &nbsp; <strong>PBN Poland </strong><strong>https://pbn.nauka.gov.pl/sedno-webapp/works/917606</strong> &nbsp; Radomska Szkoła Wyższa w Radomiu, Polska ul. 1905 roku 26/28 26-600 Radom Tel: 048 383 66 05 mail: med@rsw.edu.pl &nbsp; <strong>144</strong><strong> p. Number of characters: </strong><strong>250</strong><strong> 000 (with abstracts). Number of images:</strong><strong> 4 </strong><strong>x 1000 characters (lump sum) =</strong><strong> 4 </strong><strong>000 characters.</strong> <strong>Total: Number of characters: 2</strong><strong>54</strong><strong> 000 (with abstracts, summaries and graphics) = 6,</strong><strong>35</strong><strong> sheet publications.</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <strong>ISBN 9780359774524</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <strong>ISBN 9780359774524</strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
APA, Harvard, Vancouver, ISO, and other styles
9

Weerth, Carsten. "COVID-19-Pandemie in: Gabler Wirtschaftslexikon Online (7.9.2020)." September 7, 2020. https://doi.org/10.5281/zenodo.4017260.

Full text
Abstract:
<strong>COVID-19-Pandemie in: Gabler Wirtschaftslexikon Online (7.9.2020)</strong> Weltweite Verbreitung des&nbsp;SARS-CoV-2-Virus&nbsp;(ein&nbsp;Corona-Virus) von einem Wildtiermarkt in der 11-Millionen-Metropole Wuhan, Provinz Hubei, China (offizielle Version), in 188 Staaten (nach WHO-Angaben: 216 Staaten, L&auml;ndern und Wirtschaftsgebieten). Durch das Virus wird&nbsp;COVID-19&nbsp;ausgel&ouml;st (Coronavirus disease 2019), die von einem symptomlosen Verlauf bis hin zu einem schweren Atemwegsyndrom (Lungenentz&uuml;ndung) f&uuml;hren kann.. Mehr als 27,1 Millionen Menschen haben sich Anfang September 2020 weltweit infiziert, mehr als 883.000 Menschen sterben an COVID-19 (Daten f&uuml;r Deutschland: Mehr als 251.000 infizierte, mehr als 9.500 verstorbene) (Stand: 7.9.2020). Das &ouml;ffentliche Leben in Deutschland und vielen europ&auml;ischen Staaten und weltweit kommt zwischen Mitte M&auml;rz 2020 und Ende Mai 2020 zum Stillstand (Lockdown&nbsp;oder Shutdown; weltweit je nach Infektionsgeschen ggf. sp&auml;ter und l&auml;nger): Schulen, Kinderg&auml;rten und Spielpl&auml;tze werden in Deutschland Mitte M&auml;rz 2020 geschlossen, der Flugverkehr wird stark reduziert und zum Teil eingestellt, der Einzelhandel und Restaurants werden geschlossen, Gottesdienste, Konzerte, Kultur- und Sportveranstaltungen werden abgesagt, Hotels und Kinos schlie&szlig;en. Die Industrie stellt in vielen Unternehmen freiwillig ihre Produktion ein, in Teilen wird auf Pandemie-, Krisen- oder&nbsp;Kriegswirtschaft&nbsp;umgestellt (z.B. Produktion einfacher Schutzmasken und alkoholbasierter Desinfektionsmittel), andere Unternehmen beteiligen sich in Form von Spenden (Airbus fliegt mehrfach nach China und bringt Atemschutzmasken nach Europa, um sie in Deutschland, Frankreich, Spanien und dem UK zu verteilen, sog.&nbsp;<em>Airbus airlift</em>). Eine langsame &Ouml;ffnung der Gesellschaft und Wirtschaft wird Anfang Mai 2020 eingeleitet. Eine Maskenpflicht wird in allen Bundesl&auml;ndern f&uuml;r die Benutzung des &ouml;ffentlichen Nahverkehrs und f&uuml;r das Einkaufen im Einzelhandel eingef&uuml;hrt. Die Fu&szlig;ball-Bundesliga spielt seit 16.5.2020 wieder (ohne Zuschauer f&uuml;r das TV). Mitte Juni 2020 werden die EU-Binnengrenzen wieder ge&ouml;ffnet werden (zun&auml;chst nicht f&uuml;r Spanien, Schweden und Finnland, die Ende Juni 2020 folgen). Urlaub in den Sommerferien ist seit Juli 2020 in vielen EU-L&auml;ndern m&ouml;glich (z.B. Spanien, Italien, Portugal, Griechenland, Zypern, Malta, Kroatien, &Ouml;sterreich, D&auml;nemark, Niederlande). Seit 1.7.2020 sind auch Reisen in wenige Drittl&auml;nder m&ouml;glich (Australien, Georgien, Japan, Kanada, Neuseeland, S&uuml;dkorea, Thailand und Uruguay). Mit der R&uuml;ckreisewelle Ende Juli 2020 werden neue Maskenpfichten in Belgien, Frankreich, in Teilen Spaniens und in der Schweiz eingef&uuml;hrt. Ende Juli 2020 beginnen die Infektionszahlen in Deutschland wieder anzusteigen, eine zweite Welle scheint zu beginnen. Freiwillige, kostenlose SARS-CoV-2-Test an Flugh&auml;fen f&uuml;r Reiser&uuml;ckkehrer werden eingef&uuml;hrt (verpflichtende Tests f&uuml;r R&uuml;ckreisende aus Risikogebieten). Zweite Wellen sind insbesondere auf dem Balkan, in Spanien und Frankreich aber auch in Polen, Ungarn, Tschechien und Israel gro&szlig;. Gro&szlig;veranstaltungen werden bis Ende Dezember 2020 abgesagt (u.a. das Oktoberfest 2020). Auch die Fu&szlig;ball-Bundesliga soll weiter ohne Zuschauer spielen (bis Ende Oktober 2020). Weltweit ist die Lage in den USA, Brasilien und Indien mit stark ansteigenden Infektionen (in der ersten Welle) dramatisch. Mit dem Neustart des Schuljahres (seit 3.8.2020 in MV, Berlin, Brandenburg, Hamburg, SH, NRW, Hessen, RLP, Saarland, Bremen, Niedersachen, Sachsen, Sachsen-Anhalt und Th&uuml;ringen) werden in vielen Schulen Masken verbindlich eingef&uuml;hrt. Am 4.8.2020 wird die Reisewarnung f&uuml;r vier K&uuml;stenprovizen der T&uuml;rkei aufgehoben (Antalya, Izmir, Aydin und Mugla). Neue Reisewarnugnen werden f&uuml;r ganz Spanien und Ungarn, sowie von Teilen von Belgien, Bulgarien, Frankreich, Kroatien und Rum&auml;nien eingef&uuml;hrt (Stand: 1.9.2020). Reisewarnungen und Quarantaine-Anordnungen werden in der 2. Welle seit August 2020 von EU-Mitgliedstaaten uneinheitlich ausgesprochen und gehandhabt. Die Bundesregierung sieht Ende August 2020 erneut Koordinierungsbedarf f&uuml;r die unterschiedlich agerienden 16 Bundesl&auml;nder und die 27 EU-Mitgliedstaaten. Eine einheitliche Untergrenze von Bu&szlig;geldern f&uuml;r Maskenverweigerer von 50 Euro wird von 15 Bundesl&auml;ndern abgesprochen (Sachsen-Anhalt beteiligt sich nicht). Ungarn f&uuml;hrt am 1.9.2020 erneut Grenzkontrollen zu EU-Mitgliedstaaten f&uuml;r einen Monat ein und schlie&szlig;t&nbsp;<em>de facto</em>&nbsp;die Grenzen. Seit Anfang September 2020 wird in Deutschland eine verk&uuml;rzte Quarant&auml;ne von nur noch f&uuml;nf oder zehn Tagen diskutiert. Erste Impfstoffe k&ouml;nnten Ende 2020 zugelassen werden - eine breite Verf&uuml;gbarkeit wird von der WHO ab Mitte 2021 erwartet. Autoren dieser Definition <strong>GEPR&Uuml;FTES WISSEN</strong> &Uuml;ber 200 Experten aus Wissenschaft und Praxis. Mehr als 25.000 Stichw&ouml;rter kostenlos Online. Das Original: Gabler Wirtschaftslexikon Ausf&uuml;hrliche Definition im Online-Lexikon Weltweite Verbreitung des&nbsp;SARS-CoV-2-Virus&nbsp;von einem Wildtiermarkt in der 11-Millionen-Metropole Wuhan, Provinz Hubei, China (so die offizielle Begr&uuml;ndung), in 188 Staaten (nach WHO-Angaben: 216 Staaten, L&auml;ndern und Wirtschaftsgebieten). 1. Ursprung des Virus: Das Schwere Atemwegssyndrom&nbsp;COVID-19&nbsp;wird von einem&nbsp;Corona-Virus&nbsp;ausgel&ouml;st, das vermutlich von einem Wildtier (Fledermaus oder durch ein Schuppentier) auf den Menschen &uuml;bergesprungen ist (sog.&nbsp;<em>Zoonose</em>). In China entstehen auf den Wildtierm&auml;rkten auf Grund der N&auml;he zu Menschen in engbewohnten St&auml;dten h&auml;ufig neue&nbsp;Virus-Erkrankungen - insbesondere&nbsp;Influenza-Viren&nbsp;(z.B. Vogelgrippe, Schweinegrippe) und&nbsp;Corona-Viren&nbsp;(z.B.&nbsp;SARS,&nbsp;MERS). Der Ursprung des Virus ist vermutlich eine Fledermaush&ouml;hle. Bereits 2012 waren verschiedene Minen-Arbeiter an einer neuartigen Lungenkrankheit schwer erkrankt und drei sind verstorben. Diese Virenproben sind an das Wuhan-Virus-Labor versendet worden. Eine Arbeitshypothese ist, dass das Virus ungewollt dem Virus-Labor entwischt ist. Derartige Entweichungen sind in der Medizingeschichte anderen Pandemien vorausgegangen (z.B. H1N1-Grippe-Pandemie 1977,&nbsp;Influenza-Virus). Der erste Patient (Patient 0) mit COVID-19 ist nicht identifziert worden. 2. Inkubationszeit und Erkrankung: Das SARS-CoV-2-Virus hat eine Inkubationszeit von vermutlich 1 bis 14 Tagen (im Mittel 5-6 Tage) und wird daher erst sp&auml;t (bei einem symptomlosen Verlauf gar nicht) erkannt. Im Gegensatz zum ersten SARS-Virus, das sich tief in der Lunge repliziert und vervielf&auml;ltigt hat, ist der Hauptangriffspunkt des SARS-CoV-2-Virus der Rachen, weswegen die COVID-19-Erkrankung &uuml;ber eine Tr&ouml;pfcheninfektion und Schmierinfektion schnell verbreitet wird. Aber auch andere Organsysteme wie der Darm, die Leber, die Nieren, das Gehirn und/oder das Herz-Kreislaufsystem k&ouml;nnen betroffen werden (sog.&nbsp;<em>Mulit-Organ-Virus</em>&nbsp;und&nbsp;<em>Mikro-vascul&auml;rer Virus</em>). Besonders schwer betroffen sind &auml;ltere Menschen und Menschen mit Vorerkrankungen sowie M&auml;nner mehr als Frauen. 3. Auftreten, Verbreitung und weltweite Pandemie: Der COVID-19-Ausbruch l&auml;sst sich auf Dezember 2019 und die 11-Millionen Metropole Wuhan in der chinesischen Provinz Hubei zur&uuml;ckf&uuml;hren. Beobachtungen und wissenschaftliche Erkenntnisse legen einen fr&uuml;heren Ausbruch nahe (Daten sprechen f&uuml;r einen Zeitraum zw. September und November 2020). China ist bis Ende Januar 2020 das Epizentrum des COVID-19-Ausbruchs. Danach verbreitet sich die COVID-19-Erkrankung weltweit &uuml;ber Gesch&auml;ftsreisende und Urlauber. Die Verbreitung &uuml;ber asymptomatische Verbreiter im Flugzeug ist selbst bei sozialer Distanzierung und dem Tragen von medizinischem Mund-Nasenschutz nachgewiesen worden. Neben der Tr&ouml;pfchen- und Schmierinfektion ist die Verbreitung &uuml;ber Aeorosole nachgewiesen worden - trockene Raumluft beg&uuml;nstigt dabei die Verbreitungsweite von Viren in kleinsten Partikeln. &Uuml;ber Forschungen zum Mutationsstammbaum des SARS-CoV-2-Virus l&auml;sst sich die zeitliche und geografische Verbreitung genau nachvollziehen. Zun&auml;chst sind nach China S&uuml;dkorea und Singapur betroffen, sp&auml;ter kommen Iran und Frankreich/Italien/Spanien hinzu. Das SARS-CoV-19-Virus wird in Deutschland Ende Januar 2020 fast zeitgleich aus drei R&iacute;chtungen von Belgien/Niederlande, Italien und Iran eingeschleppt. Karnevalsveranstaltungen in Nordrhein-Westfalen tragen zur Verbreitung genauso bei wie Ausbr&uuml;che in Norditalien und &Ouml;sterreich in Skigebieten und R&uuml;ckreisende aus dem Iran und aus China. Da sich COVID-19 weltweit schnell verbreitet wird am 11.3.2020 der weltweite&nbsp;Pandemiefall von der&nbsp;Weltgesundheitsorganisation&nbsp;(WHO) ausgerufen. Bereits Mitte Mai 2020 ist COVID-19 in 188 Staaten der Welt verbreitet. Die WHO beschreibt die Verbreitung mit 216 Staaten, L&auml;ndern und Wirtschaftsgebieten. Mehr als 27,1 Millionen Menschen haben sich Anfang September 2020 weltweit infiziert, mehr als 883.000 Menschen sterben an COVID-19 (Daten f&uuml;r Deutschland: Mehr als 251.000 infizierte, mehr als 9.500 verstorbene) (Stand: 7.9.2020). Ende Juni 2020 wird eine Mutation von SARS-CoV-2 bekannt, die sich bereits seit April 2020 schneller verbreitet (infekti&ouml;ser ist) und mehr Oberfl&auml;chen-Glykoproteine herstellt. 4. Auswirkungen auf das &ouml;ffentliche Leben: Durch die dynamische Entwicklung in Italien ist die Politik und das &ouml;ffentliche Gesundheitswesen alarmiert und durch viele Testungen wird Ende Januar 2020 die erste COVID-19-Infektion in Deutschland nachgewiesen. Mitte M&auml;rz 2020 werden von allen 16 Bundesl&auml;ndern die Schulen und Kinderg&auml;rten (sowie Spielpl&auml;tze) bis Ende der Osterferien 2020 geschlossen. Diese Schlie&szlig;ungen werden dann bis 3.5.2020 verl&auml;ngert, nur Abschluss- und &Uuml;bergangsklassen d&uuml;rfen in Kleingruppen zur&uuml;ck in die Schule. Universit&auml;ten stellen ihren Betrieb ein. Gottesdienste und Gro&szlig;veranstaltungen in Sport und Kultur werden untersagt. Der Spielbetrieb vieler Sportligen in Deutschland und Europa wird eingestellt. International werden u.a. die Fu&szlig;ball-EM 2020, die Olympischen Sommerspiele 2020 in Japan und die IRONMAN-Triathlon-WM auf Hawaii verschoben (Wimbeldon 2020 wird abgesagt). Am 23.3.2020 spricht das Ausw&auml;rtige Amt eine noch nie dagewesene weltweite Reisewarnung aufgrund der Pandemie aus (die bis 31.6.2020 f&uuml;r alle L&auml;nder und bis 31.8.2020, bzw. bis 14.9.2020 f&uuml;r etwa 160 L&auml;nder au&szlig;erhalb der EU verl&auml;ngert wird). R&uuml;ckholaktionen aus zahlreichen Urlaubsl&auml;ndern f&uuml;r mehr als 200.000 Reisende werden organisiert. In manchen L&auml;ndern mit totalit&auml;ren Systemen werden Ausgangssperren verh&auml;ngt. Auch in der EU werden in Teilen von Italien, Spanien und Frankreich aufgrund der Schwere des Ausbruchs Ausgangssprerren verh&auml;ngt. In Deutschland entschlie&szlig;en sich die Bundesl&auml;nder leicht unterschiedlich ausgestaltete&nbsp;<em>Kontaktsperren&nbsp;</em>auszusprechen, die kontrolliert und sanktioniert werden (Bu&szlig;geldkataloge werden in der Folge erstellt - Bu&szlig;gelder und Strafen variieren zw. 0 Euro und 25.000 Euro). Innerhalb der EU und des Binnenmarktes wird der freie Personenverkehr im&nbsp;Schengenraum&nbsp;eingeschr&auml;nkt. Grenzkontrollen werden wieder eingef&uuml;hrt: von &Ouml;sterreich nach Italien, von Frankreich nach Deutschland und Deutschland nach Polen und Tschechien werden Grenzen stark kontrolliert und f&uuml;r grundlos Reisende geschlossen (Deutschland schlie&szlig;t die Grenzen in die Schweiz, nach &Ouml;sterreich, Frankreich, Polen und Tschechien; Grenzpendlern aus der Gesundheitsbranche bleibt der Grenz&uuml;bertritt erlaubt). Die Europ&auml;ische Union ist zun&auml;chst von der Dynamik &uuml;berfordert und die nationalstaatliche, mitgliedstaatliche Handlung der Mitgliedstaaten f&uuml;hrt zu einer Versch&auml;rfung der&nbsp;Krise der Europ&auml;ischen Union. Erst mit einem Monat Versp&auml;tung beginnt eine mitgliedstaat&uuml;bergreifende Solidarit&auml;t und Kranke aus Spanien, Frankreich, Luxemburg und Italien werden in Deutschland behandelt, Hilfslieferungen treffen in Italien ein. Auch Cuba, Russland und China helfen in Italien, das besonders schwer von der Pandemie betroffen ist. In Deutschland wir die Kapazit&auml;t von Notfallbetten mit Beatmungsger&auml;ten im M&auml;rz 2020 verdoppelt. Die Bundeswehr spendet 60 Beatmungsger&auml;te an das besonders schwer betroffene UK und der Vatikan spendet 35 Beatmungsger&auml;te an besonderrs stark betroffene Entwicklungsl&auml;nder. Besonders stark betroffen sind die USA und hier zun&auml;chst die Metropole New York City und der gesamte Bundesstaat New York. Ausgangssperren werden weltweit in vielen Staaten, so auch in Teilen der USA und in Indien verh&auml;ngt.&nbsp; In einem Gef&auml;ngnis in Chicago werden alle 450 H&auml;ftlinge positiv auf SARS-CoV-2 getestet. Auf einem US-Flugzeugtr&auml;ger und dem franz&ouml;sischen Flugzeugtr&auml;ger&nbsp;<em>Charles de Gaulle</em>&nbsp;bricht COVID-19 aus. Auf einem Gasfeld im Nordosten Russlands werden 3.000 von 10.000 Arbeiter postitiv auf SARS-CoV-2 getestet. Nach einem Epizentrum von COVID-19 in Europa und den USA im M&auml;rz/April 2020 verlagert sich das Infektionsgeschehen weiter in Richtung Mexiko, Brasilien/Chile/Ecuador/Peru, (S&uuml;d-) Afrika, T&uuml;rkei, Saudi-Arabien/Vereinigte Arabische Emirate, Russland, Bangladesch, Pakistan und Indien. In China, S&uuml;dkorea, Singapur und den USA kommt es zu zweiten und dritten Wellen von Infektionen. Behelfskliniken werden erstellt in China, Moskau, Madrid und Berlin. In den USA werden Marine-Klinikschiffe in den Hafen von New York verlegt. In Indien werden 500 Eisenbahnwaggons zu Behelfs-Isolierstationen umfunktioniert. 5. Wirtschaftliche Auswirkungen: Durch den dynamischen Verlauf der Pandemie entscheiden mehr und mehr L&auml;nder, die Ausbreitung von COVID-19 durch Einschr&auml;nkung des &ouml;ffentlichen Lebens und der Wirtschaftsaktivit&auml;ten zu verlangsamen (Lockdown, Shutdown). Besonders schwer betroffen sind der Einzelhandel, die Gastronomie und der Tourismus/die Reisebranche, die produzierende Industrie sowie alle Unternehmen, die im Rahmen ihrer Produktionsprozesse auf Vormaterialien aus China angewiesen sind. Aus Gr&uuml;nden des Infektionsschutzes und wegen fehlender Vormaterialien stellen gro&szlig;e Unternehmen wie Volkswagen, Audi, Mercedes und BMW ihre Produktion ein. Neben dem Schutz der Arbeiter sind oftmals weltweit die just-in-time Lieferketten unterbrochen. Weltweit gehen die B&ouml;rsen auf Talfahrt. Der&nbsp;Deutsche Aktienindex&nbsp;(DAX) verlor in der Zeit vom 19.2.2020 bis 23.3.2020&nbsp; 37 %. Die Wirtschaftskrise ist gr&ouml;&szlig;er als die Immobilienkrise 2008. Das&nbsp;Institut f&uuml;r Weltwirtschaft&nbsp;geht je nach Verlauf der Pandemie in Deutschland von einem Einbruch der deutschen Wirtschaftskraft f&uuml;r 2020 zwischen 4,5 und 9 % des BIP aus. F&uuml;r die EU wird von der Europ&auml;ischen Kommission ein historischer Wirtschaftseinbruch f&uuml;r 2020 von 7,7 % (BIP) vorhergesagt - zwischen 4,5 % (Polen) und 9,75 % (Griechenland). Hilfsprogramme werden in Deutschland und der EU auf den Weg gebracht, welche Steuerstundungen, Kredite und Kurzarbeitergeld umfassen. Viele kleine und mittlere Unternehmen und sog. Solo-Selbstst&auml;ndige f&uuml;rchten um ihre Existenz und Insolvenzen drohen. Das Insolvenzrecht (Insolvenzordnung) wird in Deutschland angepasst (PandemiefolgenabmilderungsG) aber auch viele andere Gesetze (z.B. BGB, EGBGB, EGStPO, SGG, ArbGG, SGB V, Infektionsschutzgesetz, Vereinsgesetz, GmbHG, Bundespersonalvertretungsgesetz, Haushaltsgesetz, uvm.). Der wirtschaftliche Abschwung ist nicht auf Deutschland und die EU beschr&auml;nkt, sondern betrifft den&nbsp;Welthandel&nbsp;und die&nbsp;Weltwirtschaft. Die deutsche Exportwirtschaft erleidet den gr&ouml;&szlig;ten Einbruch seit 1950. Rufe nach einer teilweisen R&uuml;ckabwicklung der&nbsp;Globalisierung, insbes. f&uuml;r krisenrelevante G&uuml;ter (Schutzmasken, Medikamente) werden lauter. Der Flugverkehr und Luftfrachtverkehr werden fast vollst&auml;ndig eingestellt. Fraglich ist in der Folge, in welcher Form die wirschaftliche Erholung erfolgen wird: mit L-, U- oder V-f&ouml;rmigen Kurvenverlauf. Nach den Wirtschaftsunterst&uuml;tzungen der Regierungen und Notenbanken wird deutlich, dass die Erholung am Aktienmarkt zun&auml;chst V-f&ouml;rmig verl&auml;uft. Aber verschiedene Branchen sind besonders hart betroffen, u.a. Reiseindustrie, Luftfahrtverkehrsgesellschaften und Flugh&auml;fen sowie Unterhaltungsk&uuml;nstler, Theater-Schauspieler und Musiker. 6. Haushaltspolitische Auswirkungen: In Deutschland wurde seit 2014 die Haushaltspolitik der schwarzen Null (ausgeglichene Staatshaushalte) verfolgt. Mit der Corona-Krise und der COVID-19-Pandemie erfolgte im M&auml;rz 2020 sofort eine deutliche Abkehr von der Haushaltsdisziplin und die Wirtschaft mit verschiedenen Unterst&uuml;tzungshandlungen umgehend stark gest&uuml;tzt (Kurzarbeitergeld, Kredite, zinslose Stundungen von Steuern durch die Finanzbeh&ouml;rden). Der urspr&uuml;nglich ausgeglichene Bundeshaushalt 2020 wurde mit einem Nachtragshaushalt entsprechend ge&auml;ndert (156 Mrd. Euro Mehrausgaben, sog. Neuverschuldung oder Schuldenaufnahme). Es ist absehbar, dass aufgrund der Gr&ouml;&szlig;e der wirtschaftlichen Auswirkungen der COVID-19-Pandemie diese Abkehr von Dauer sein wird und sein muss, um die Wirtschaft zu st&uuml;tzen und wieder auf die Beine zu bringen.&nbsp;Corona-Bonds&nbsp;werden in der EU von s&uuml;dlichen Mitgliedstaaten gefordert aber verworfen. Corona-Hilfen&nbsp;werden in Deutschland von Bund und L&auml;ndern, in der EU und weltweit im Rahmen der&nbsp;Entwicklungshilfe&nbsp;und Wiederaufbauhilfe gew&auml;hrt. Der Bund erwartet Steuermindereinnahmen von 81,5 Mrd. Euro (f&uuml;r Bund, St&auml;dte und Gemeinden; lt. Steuersch&auml;tzung v. 14.5.2020). In einem zweiten Konkunkturpaket werden im Juni 2020 weitere Ausgaben von 130 Mrd. Euro beschlossen und die Umsatzsteuer wird vom 1.7.2020 bis 31.12.2020 befristet von 19 % auf 16 % befristet abgesenkt (erm&auml;&szlig;igter USt-Satz von 7 % auf 5 % sog.&nbsp;Zweites Corona-Steuerhilfegesetz, BGBl. I 2020, 1512). Gleichzeitig wird die F&auml;lligkeit f&uuml;r die Umsatzsteuer auf den 26. Tag des Folgemonats (dauerhaft) verschoben. In einem zweiten Nachtragshaushalt werden 57 Ma&szlig;nahmen zusammengefasst, was zu weiteren Haushaltsbelastungen von mehr als 60 Mrd. Euro (ges. Nettokreditaufnahmne 2020: 217,8 Mrd. Euro) f&uuml;hrt. 7. Au&szlig;enwirtschaftsrechtliche und zollrechtliche Auswirkungen: Deutschland f&uuml;hrt aufgrund von &sect; 6&nbsp;Au&szlig;enwirtschaftsgesetz&nbsp;(AWG) eine Ausfuhrbeschr&auml;nkung f&uuml;r pers&ouml;nliche Schutzausr&uuml;stungen wie Schutzkittel, Handschuhe, Schutzbrillen, chirurgische Masken und Mund-Nase-Atemschutzmasken ein (BMWi v. 4.3.2020, BAnz. AT 04.03.2020 B1, BMWi v. 12.3.2020, BAnz. AT 12.03.2020 B1, aufgehoben v. BMWi am 19.3.2020,&nbsp; BAnz AT 19.03.2020 B11). Europaweite Ausfuhrbeschr&auml;nkungen wurden mit der Verordnung (EU) 2020/402 (ELI:&nbsp;http://data.europa.eu/eli/reg_impl/2020/402/oj), ge&auml;ndert mit der VO (EU) 2020/426&nbsp; (ELI:&nbsp;&nbsp;http://data.europa.eu/eli/reg_impl/2020/426/oj) geschaffen, die f&uuml;r sechs Wochen galt (bis 25.4.2020). Seit dem 26.4.2020 galt die Ausfuhrbeschr&auml;nkung der VO (EU) 2020/568 (ELI:&nbsp;http://data.europa.eu/eli/reg_impl/2020/568/oj) f&uuml;r 30 Tage befristet (am 25.5.2020 ausgelaufen). Ausnahmen f&uuml;r die Einfuhr von Arnzeimitteln ohne Erf&uuml;llung der strengen gesetzlichen Vorschriften nach &sect; 79 Abs. 5 Arzneimittelgesetz (AMG) wurden vom Bundesgesundheitsministerium am 27.2.2020 (BAnz.AT 27.02.2020 B4) geschaffen. Mit dem Beschluss (EU) 2020/491 (ELI:&nbsp;http://data.europa.eu/eli/dec/2020/491/oj) wird von der&nbsp;Europ&auml;ischen Kommission&nbsp;die Einfuhrabgabenbefreiung f&uuml;r Hilfsg&uuml;ter beschlossen (die zun&auml;chst bis 31.7.2020 gegolten hatte und mit dem Beschluss (EU) 2020/1101 bis 31.10.2020 verl&auml;ngert worden ist, ELI:&nbsp;http://data.europa.eu/eli/dec/2020/1101/oj). Zahlreiche Umsetzungen erfolgen auf nationaler Ebene, um bei der Einfuhr von Waren Erleichterungen bei der Vorlage von Dokumenten bei den Zollstellen zu erm&ouml;glichen, welche im Herkunftsland nicht abgesendet werden k&ouml;nnen. Das gilt auch f&uuml;r die sog.&nbsp;Verbote und Beschr&auml;nkungen&nbsp;des grenz&uuml;berschreitenden Warenverkehrs. Insbesondere die hohen Qualit&auml;tsanforderungen an medizinische Schutzausr&uuml;stung auf dem Gebiet der Produktsicherheit (Produktsicherheitsgesetz) werden aufgrund der Mangellage zeitweise heruntergesetzt (das CE-Kennzeichen f&uuml;r Schutzmasken und andere medizinische Hilfsg&uuml;ter ist nicht mehr erforderlich, wenn der hohe Sicherheitsstandard f&uuml;r die USA, Japan oder Australien eingehalten wird). 8. Politische Auswirkungen und Populismus: Bundeskanzerlin Angela Merkel und Bundespr&auml;sident Frank-Walter Steinmeier richten Fernsehansprachen an die deutschen B&uuml;rger. Sie beschw&ouml;ren den Zusammenhalt und das Durchhalteverm&ouml;gen im gesellschaftlichen Lockdown. Vize-Kanzler und Bundesfinanzminister Olaf Scholz, Gesundheitsminister Spahn, Wirtschaftsminister Altmeier, Arbeitsminister Heil und verschiedene Ministerpr&auml;sidenten treten wiederholt in Fernseh-Talkshows zum Thema&nbsp;Corona-Krise&nbsp;auf und erl&auml;utern die Abkehr von der Haushaltsdisziplin und die Aufgaben, die auf die Gesamtgesellschaft zukommen. Innerhalb der Europ&auml;ischen Union (EU) kommt es zun&auml;chst auf eine R&uuml;ckbesinnung nationaler Interessen und die Schlie&szlig;zung von Binnengrenzen im Schengenraum (z.B. zw. Frankreich und Deutschland, &Ouml;sterreich und Italien, Deutschland und Polen). Die COVID-19-Pandemie wird in der EU zu einem weiteren Faktor der&nbsp;Krise der Europ&auml;ischen Union&nbsp;(Poly-Krise), welche den Zusammenhalt der EU als Ganzes bedroht. Nach etwa vier Wochen dreht sich die Abschottung in eine Welle der Solidarit&auml;t und COVID-19-Patienten aus Frankreich und Italien werden in Deutschland aufgenommen, Hilfsg&uuml;ter werden von Deutschland nach Italien, Spanien und ins UK versandt. Politische Debatten wie die Verhandlungen nach dem&nbsp;Brexit&nbsp;&uuml;ber ein UK-EU-Handelsabkommen treten im April 2020 den Hintergrund, zumal sowohl der britische Premierminister Boris Johnson als auch der EU-Verhandlungsf&uuml;hrer Michel Barnier an COVID-19 erkranken (sie werden Ende April 2020 als Video-Konferenz wieder aufgenommen, stocken jedoch). Gleichzeitig halten die EU und das UK am engen Zeitplan mit der Zwischenbewertung im Juni 2020 fest - das UK hat dabei die m&ouml;gliche Verl&auml;ngerung der Verhandlungen &uuml;ber den 31.12.2020 hinaus f&ouml;rmlich abgelehnt. Kanzlerin Merkel begibt sich nach einem Kontakt mit einem COVID-19-infizierten Arzt in eine 12-t&auml;gige h&auml;usliche Quarant&auml;ne. Ministerpr&auml;sidenten und Bundesminister nutzen die COVID-19-Pandemie zum Schaulaufen um die Nachfolge von Kanzerlin Merkel f&uuml;r die Kanzlerschaft. Im Mai 2020 werden die Verhandlungen &uuml;ber das Brexit-Folgeabkommen wieder aufgenommen und Anfang Juni 2020 bekr&auml;ftigt das UK keine Verl&auml;ngerung &uuml;ber das Ende 2020 hinaus vorzunehmen. Populisten&nbsp;haben in der COVID-19-Pandemie in Deutschland, Europa und der Welt einen schweren Stand. Sie tendieren zun&auml;chst dazu, die Pandemie zu untersch&auml;tzen und in den betroffenen L&auml;ndern deutlich zu sp&auml;t zu reagieren. Die Folge sind besonders hohe Todeszahlen im UK, in den USA und in Brasilien. Danach suchen sie die Schuld bei anderen. Pr&auml;sident Trump ruft seine Gefolgschaft zum Widerstand gegen den Lockdown demokratisch regierter Bundesstaaten auf. In Deutschland formiert sich im Protest &uuml;ber den Lockdown eine neue Partei mit dem Namen&nbsp;<em>Widerstand2020.de</em>, welche Populismus und Schwarmintelligenz in den MIttelpunkt stellt (sie will u.a. ein sog. Notstandsparlament einf&uuml;hren). Immer mehr Demonstrationen werden gegen die Einschr&auml;nkungen des &ouml;ffentlichen Lebens durchgef&uuml;hrt - Populisten, Verschw&ouml;rungstheoretiker, Impfgegner, Esoteriker und Reichsb&uuml;rger versuchen diesen Protest zu unterwandern und nutzen ihn f&uuml;r ihre Zwecke - eine schwer &uuml;bersehbare Allianz gegen den Rechtsstaat entsteht. Beispielhaft hierf&uuml;r steht die Gruppe &quot;<em>Querdenken 711 - Wir f&uuml;r das Grundgesetz</em>&quot;, die Demonstrationen in Stuttgart abh&auml;lt. Besonders von COVID-19 betroffen sind Entwicklungsl&auml;nder mit mangelnder Wasserversorgung und besonders beengten Lebensverh&auml;ltnissen (z.B. Armenviertel, Slums) und in Europa die Fl&uuml;chtlingscamps in Griechenland und auf Malta, wo COVID-19 ebenfalls festgestellt wird. In Deutschland wird COVID-19 in der Folge in Fl&uuml;chtlingsunterk&uuml;nften, auf Schlachth&ouml;fen und Erntebetrieben festgestellt, in welchen die Billiglohnarbeiter beengt unter schlechten hygienischen Bedingungen zusammenleben. Weltweit besonders bedroht sind indigene V&ouml;lker, alle (ethnischen) Minderheiten, Queer-Personen und Allein-Erziehende. 9. Gesellschaftlicher Zusammenhalt, Soziale Medien und Fake News: Ein Gro&szlig;teil der Gesellschaft in Deutschland aber auch in Italien, Frankreich und Spanien (und weltweit in den USA oder Indien) h&auml;lt sich an die Ausgangsbeschr&auml;nkungen oder Kontaktsperren. Besonders betroffene Menschen erhalten Einkaufshilfe und Zuspruch, genauso wie die Helfer im medizinischen Bereich. Konzerte werden auf Balkonen und im Internet veranstaltet. Die sozialen Medien bekommen f&uuml;r die eingeschr&auml;nkte Gesellschaft eine besondere neue Funktion, genauso wie die Fernsehprogramme zu t&auml;glichen &quot;Corona-Lagen&quot;. Hashtags entstehen auf&nbsp;twitter&nbsp;und stehen f&uuml;r Corona-Botschaften: #Maskeauf, #CoronaDE, #wirbleibenzuause, #FlattenTheCurve, #Coronahilfe, #Gemeinsamzuhause, #zusammengegencorona, #Miteinanderstark,&nbsp;#wirhaltenzusammen, uvm. Allerdings werden die sozialen Medien auch von Populisten und Gesellschaftskritkern f&uuml;r die Verbreitung von Falschmeldungen und Angst genutzt (sog.&nbsp;Fake News). 10. Weltweite Suche nach Therapieans&auml;tzen und Impfungen; Immunit&auml;tsrate; Schutz vor &Uuml;bertragung: Zun&auml;chst gibt es gegen SARS-CoV-2 keine offizielle Medikation, aber verschiedene antivirale Medikamente gegen&nbsp;Virus-Erkrankungen&nbsp;werden im Krankheitsverlauf getestet, u.a. Medikation gegen HIV, Ebola, Grippe aber auch Malaria oder Bauchspeicheldr&uuml;senentz&uuml;ndung - Avigan, Chloroquin, Remdesivir, Camostad, etc. Verschiedene internationale Arbeitsgruppen und Unternehmen arbeiten an Impfmitteln und erste Versuche sind in klinische Studien am Menschen eingetreten (ohne zuvorige Tierversuche). Die WHO koordiniert medikament&ouml;se Studien u.a. mit Remdesivir und Chloroquin und wird kurzfristig Behandlungsergebnisse erhalten und ver&ouml;ffentlichen. Anfang Mai 2020 stellt sich heraus, dass weder Choroquin noch Lopinavir-Ritonavir positive Effekte haben. Diese sind dagegen in klinischen Studien f&uuml;r den antiviralen Wirkstoff Remdesivir nachweisbar. Das Universit&auml;tsklikium Erlangen versucht aus dem Blutplasma gesundeter COVID-19-Patienten Antik&ouml;rper zu Therapiezwecken zu isolieren (Immunplasma) und anzuwenden (Immuntherapie). Diese Versuche sind erfolgversprechend und sollen bis Ende des Jahres 2020 in klinische Studien am Menschen m&uuml;nden. In der britischen Recovery-Studie wird nach vorl&auml;ufig vorliegenden Ergebnissen Mitte Juni 2020 nachgewiesen, dass die Gabe von niedrig dosiertem Dexamethason (ein corticoid) bei schweren Covid-19-F&auml;llen, die k&uuml;nstilich beatmet werden zu einem Drittel weniger Todesf&auml;llen f&uuml;hrt - die WHO begr&uuml;&szlig;t diese vorl&auml;ufigen Ergebnisse ausdr&uuml;cklich zumal der Wirkstoff in allen L&auml;ndern verf&uuml;gbar ist und g&uuml;nstig ist. Vom Paul-Ehrlich-Institut (Bundesinstitut f&uuml;r Impfstoffe) wird eine klinische Studie f&uuml;r einen mRNA-Impfstoff zugelassen (zun&auml;chst am Tiermodell, sp&auml;ter auch f&uuml;r Menschen). Mitte Juni 2020 stellt die WHO die Studien mit dem Wirkstoff Hydroxychlorquin/Chloroquin ein. Weltweit sind Ende August 2020 neun SARS-CoV-2-Impfstoffversuche in breiten Phase-III-Studien am Menschen und weitere 14 Impfstoffe in kleinen Phase-II-Studien am Menschen (Stand: 28.8.2020). Gleichzeitig forschen weltweit mehr als 170 Arbeitsgruppen an unterschiedlichen Impfans&auml;tzen gegen das SARS-CoV-2-Virus (Stand: 19.8.2020). Die WHO best&auml;tigt sieben bis acht sehr erfolgversprechende Ans&auml;tze. Seit 4.5.2020 wurden unter Federf&uuml;hrung der EU in einer internationalen Geberkonferenz 15,9 Mrd. Euro f&uuml;r die wissenschaftliche Suche nach einem Impfstoff gesammelt (Stand: 28.6.2020). Seit Juni 2020 sind vielversprechende Laborergebnisse f&uuml;r das Parasitenmedikament&nbsp;<em>Ivermectin&nbsp;</em>bekannt geworden, das f&uuml;r die Behandlung von parasiten zugelassen ist und in der Folge erfolgreich als Notfallmedikation eingesetzt wird - weitere klinische Studien m&uuml;ssen die Effiktivit&auml;t nachweisen. Am 29.6.2020 wurde bekannt, dass in China der chinesische COVID-19-Impfstoff f&uuml;r die milit&auml;rische Nutzung zugelassen worden ist. Am 11.8.2020 wurde bekannt, dass der russische Impfstoffkandidat f&ouml;rmlich in Russland f&uuml;r die &ouml;ffentliche Nutzung zugelassen worden ist (Sputnik Vaccine - bereits ab September 2020 soll die Anwendung in Russland erfolgen). Am 31.8.2020 wird bekannt, dass China die Notzulassung f&uuml;r den Impfstoff von SinoVac erteilt hat. Anfang Juli 2020 wird bekannt, dass die USA etwa 90 % der Remdesivir-Vorr&auml;te bestellt und bezahlt hat, die bis Ende September 2020 produziert werden kann. Mit Hilfe sog. freiwilliger Lizenz-Abkommen erm&ouml;glicht die Hersteller-Firma in 127 L&auml;ndern die Herstellung durch Lizenznehmer (Herstellung und Verkauf von sog. Generika). Vorl&auml;ufige Ergebnisse bundesweiter Untersuchungen von etwa 12.000 Blutspender ergaben Ende Juni 2020 eine Immunit&auml;t in Deutschland von nur 1,3 %. Ende Juli 2020 werden aus drei sehr eng besiedelten indischen Slums in Mumbai Immunit&auml;tsraten von 57 % berchtet (die in etwa der Herdenimmunit&auml;t entsprechen d&uuml;rfte). Ende August 2020 wird in Neu Delhi von Immunit&auml;tsraten von 29 % berichtet. Rufe nach einem COVID-19-Schnelltest werden lauter. Die COVAX-Impfiniative der WHO vereinigt 172 Staaten der Welt im gemeinsamen Ansatz des Impfstoffs f&uuml;r alle - die USA schlie&szlig;en sich dieser Initative ausdr&uuml;cklich nicht an. Die Yale-University erh&auml;lt die FDA-Notzulassung f&uuml;r einen Speichelschnelltest. Ein Antik&ouml;rper-Schnelltest eines Schweizer Gro&szlig;unternehmens kommt ebenfalls im September 2020 auf den Markt, der innerhalb von 15 Minuten Ergebnisse auf eine SARS-CoV-2 Infektion liefert. Ein gemeinsamer Corona-/Influenza-Antik&ouml;rper-Schnelltest ist ebenfalls in Vorbereitung und in den USA bereits mit einer Notzulassung versehen worden, der in der kalten Jahreszeit die Differenzdiagnose erleichtern soll. In Deutschland wurde zun&auml;chst (seit Anfang August 2020) die kostenlose und vollst&auml;ndige Testung der Reiser&uuml;ckkehrer bef&uuml;rwortet und durchgef&uuml;hrt. Die PCR-Methodik ist jedoch zeit-, kosten- und ressourcenaufw&auml;ndig und da sowohl die &Uuml;berlastung der Labore als auch die Reduzierung der Laborreagenzien drohte, wurde die Testung f&uuml;r alle Reiser&uuml;ckkehrer (auch aus Nicht-Risikogebieten) Ende August 2020 wieder aufgehoben. Anfang September 2020 wird eine Untersuchung der Florida Atlantic University bekannt, mit welcher nachgewiesen wird, dass weder Gesichtsschilder noch N95-Masken mit Ventilen hinreichend vor der SARS-CoV-2-&Uuml;bertragung durch Aerosole sch&uuml;tzen. Ebenfalls Anfang September 2020 empfielt die WHO einen Therapieansatz einer Kombination von drei Kortikosteroiden f&uuml;r schwerkranke COVID-19-Patienten (Hydrokortison, Dexametason und Methylprednisolon). Anfang September 2020 werden erfolgreiche Laborstudien der Goethe-Universit&auml;t Frankfurt mit Krebsmedikamenten bekannt, welche die Ausbreitung des SARS-CoV-2 im K&ouml;rper stoppen k&ouml;nnen. Erste Impfstoffe k&ouml;nnten Ende 2020 zugelassen werden - eine breite Verf&uuml;gbarkeit wird von der WHO ab Mitte 2021 erwartet. 11. Diskussion um den Exit vom COVID-19-Lockdown, Urteile, gesellschaftliche &Ouml;ffnung, die neue Normalit&auml;t und eine zweite Welle: Seit Anfang April 2020 wird in Deutschland und anderen L&auml;ndern von verschiedenen Stimmen eine Exit-Strategie des totalen wirtschaftlichen und gesellschaftlichen Lockdowns gefordert. Wissenschaftler und Politiker mahnen zur Vorsicht, um nicht umgehend eine zweite Welle der COVID-19-Erkrankungen zu erhalten. Nach Ostern 2020 - am 15. April 2020 wurde bundesweit von den Ministerpr&auml;sidenten und der Bundesregierung abgestimmt, welche Ma&szlig;nahmen gelockert und welche beibehalten werden m&uuml;ssen und ob alle Bundesl&auml;nder gleich verfahren m&uuml;ssen (Bayern, Baden-W&uuml;rttemberg und NRW sind mit Abstand am meisten von den Erkrankungen betroffen). Am 15. April 2020 werden erste Lockerungen der Kontaktsperren bekanntgegeben: Kleine Gesch&auml;fte des Einzelhandels d&uuml;rfen wieder &ouml;ffnen (Gesch&auml;ftsgr&ouml;&szlig;e bis 800 m<sup>2</sup>). Kfz-H&auml;ndler, Fahrradh&auml;ndler, Buchh&auml;ndler d&uuml;rfen &ouml;ffnen. Schulen sollen wieder ab dem 4. Mai 2020 nach Jahrg&auml;ngen &ouml;ffnen (Abschlussklassen und &Uuml;bergangsjahrg&auml;nge zuerst). Grenzkontrollen zu Frankreich, &Ouml;sterreich, Polen und Tschechien werden vom&nbsp;Corona-Kabinett&nbsp;um f&uuml;nf Wochen bis 15.5.2020 verl&auml;ngert. Das Tragen einfacher Schutzmasken im &ouml;ffentlichen Personennahverkehr und in Gesch&auml;ften wird dringend empfohlen, aber bundesweit zun&auml;chst nicht verpflichtend angeordnet. Die folgenden Bundesl&auml;nder ordnen eine&nbsp;Maskenpflicht&nbsp;f&uuml;r den Personennahverkehr und die Nutzung von Ladengesch&auml;ften an: Baden-W&uuml;rttemberg, Brandenburg, Bayern, Berlin, Bremen, Hamburg, Hessen, Mecklenburg-Vorpommern, Niedersachsen, NRW, Rheinland-Pfalz, Sachsen, Sachsen-Anhalt, Saarland, Schleswig-Holstein und Th&uuml;ringen (Stand: 22.4.2020). Behelfsmasken werden oftmals in Handarbeit gefertigt und sind wiederverwendbar. Gottesdienste d&uuml;rfen nach und nach wieder gefeiert werden. Alle Gro&szlig;veranstaltungen werden zun&auml;chst bis Ende August, sp&auml;ter bis Ende Oktober 2020 abgesagt. Auch das Oktoberfest 2020 in M&uuml;nchen wird abgesagt. In den Bundesl&auml;ndern laufen die schriftlichen Abitur-Pr&uuml;fungen an. Das Corona-Kabinett der Bundesregierung tagt w&ouml;chentlich und bespricht sich 14-t&auml;gig mit den Ministerpr&auml;sidenten der Bundesl&auml;nder. Am 30.4.2020 wird die baldige &Ouml;ffnung der Spielpl&auml;tze verk&uuml;ndet. Ende April 2020 setzt sich die Einsicht durch, dass die Bundesl&auml;nder unterschiedlich stark von COVID-19 betroffen sind und in einigen Bereichen daher auch unterschiedlich verfahren d&uuml;rfen. Gerichte urteilen zur umstrittenen 800 m<sup>2</sup>-Begrenzung unterschiedlich. In NRW und Baden-W&uuml;rttemberg scheitern Klagen (Eilantr&auml;ge), in Hamburg und Bayern sind Klagen (Eilantr&auml;ge) erfolgreich: In Hamburg &auml;ndert das OVG jedoch den Erfolg in der ersten Instanz vor dem VG und in Bayern urteilt der BayrVGH, dass die Ma&szlig;nahmen verfassungswidrig sind und dem Gleichheitsgrundsatz widersprechen. Das Bundesverfassungsgericht verk&uuml;ndet mit dem Beschluss v. 29.4.2020 (1 BvO 44/20) die vorl&auml;ufige Aufhebung der nieders&auml;chsischen Verordnung zum Schutze vor Neuinfektionen mit dem Corona-Virus vom 17. April 2020 in der Fassung der &Auml;nderungsverordnung vom 24. April 2020 hinsichtlich des absoluten Verbots religi&ouml;ser Zusammenk&uuml;nfte und Gottesdienste. Sachsen-Anhalt verk&uuml;ndet am 2.5.2020 die Abkehr von der strengen Kontaktsperre und Schleswig-Holstein und das Saarland k&uuml;ndigen die &Ouml;ffnung alle Gesch&auml;fte (auch &uuml;ber 800 m<sup>2</sup>) an. Am 1.5.2020 finden nur sehr eingeschr&auml;nkt Demonstrationen statt, einige Versammlungen werden verboten. Gewerkschaften demonstrieren vorwiegend im Internet (vorher aufgezeichnet und online abrufbar). Seit dem 4.5.2020 gilt f&uuml;r den Eurostar-Fernzug von Br&uuml;ssel/Paris nach London eine Maskenpflicht. Der Bundesverkehrsminister k&uuml;ndigt an, dass die Maskenpflicht auch f&uuml;r Fernreisez&uuml;ge gelten solle. Die Lufthansa denkt &uuml;ber eine Maskenpflicht f&uuml;r die Wiederer&ouml;ffnung des Luftverkehrs nach. Am 4.5.2020 kehren viele Sch&uuml;ler der Abgangs- und &Uuml;bergangsklassen sowie der davorliegenden Jahrg&auml;nge unter gro&szlig;en Abstands- und Hygieneregeln in die Schulen zur&uuml;ck. Ebenfalls am 4.5.2020 darf das Friseurhandwerk unter Abstands- und Hygieneregelungen wieder &ouml;ffnen. Am 4.5.2020 k&uuml;ndigt Niedersachsen ein eingeschr&auml;nktes &Ouml;ffnen der Gastronomie ab dem 11.5.2020 an. Auch Mecklenburg-Vorpommern k&uuml;ndigt die &Ouml;ffnung der Gastronomie ab 9.5.2020 und die &Ouml;ffnung f&uuml;r den Tourismus ab Pfingsten 2020. Am 6.5.2020 wird nach der Konferenz der Bundesregierung mit den Ministerpr&auml;sidenten der L&auml;nder deutlich, dass die gesellschaftliche und wirtschaftliche &Ouml;ffnung in Verantwortung der Bundesl&auml;nder beginnt und bei neuen regionalen Ausbr&uuml;cken es wieder zu lokalen Versch&auml;rfungen der Kontaktsperren kommen kann. Alle Ladengesch&auml;fte (unabh&auml;ngig von der Verkaufsfl&auml;che) sollen wieder &ouml;ffenen und Gastronomie und Tourismus im Innenland werden schrittweise ge&ouml;ffnet. Eine neue (umstrittene) Messgr&ouml;&szlig;e zur Ermittlung der Neuinfektionen wird eingef&uuml;hrt (50 Neuinfektionen pro 100.000 Einwohner in sieben Tagen; ab dieser H&ouml;chstgrenze soll die Lockerung zur&uuml;ckgef&uuml;hrt werden; zun&auml;chst sind vier Kreise davon betroffen in Bayern, NRW, SH und Th&uuml;ringen). Bayern f&uuml;hrt abweichend von der Bundesh&ouml;chstgrenze eine abweichende H&ouml;chstgrenze ein (35 Neuinfektionen pro 100.000 Einwohner in sieben Tagen). Berlin erl&auml;sst ein eigenes Warnsystem, das unterhalb dieser Grenze liegt und ein Ampelwarnsystem ist. Die erste und zweite Fu&szlig;ball-Bundesliga starten ab 16.5.2020 erneut in die Saison mit sog. Geisterspielen (ohne Publikum f&uuml;r Fernsehkameras). Die 3. Liga und die Frauen-Bundesliga starten am 29./30.5.2020 (die 2. Bundesliga der Frauen wird abgebrochen). Auch die Basketball-Bundesliga und die Tischtennis-Bundesliga f&uuml;hren einen Neustart mit einem Saison-Abschluss-Turnier durch. In anderen Sportarten wurde die Saison beendet (Eishockey, Handball, Volleyball). Anfang Mai waren nach Angaben des Deutschen Richterbundes mehr als 1.000 Klagen und Eilverfahren gegen die Corona-Ma&szlig;nahmen vor Verwaltungsgerichten und Verfassungsgerichten anh&auml;ngig. Mehr und mehr werden &ouml;ffentliche Demonstrationen und Proteste gegen die Ma&szlig;nahmen durchgef&uuml;hrt. Politiker u.a. aus Luxemburg, fordern die Grenz&ouml;ffnung. Die Grenzen zu &Ouml;sterreich, Frankreich und der Schweiz werden ab 16.5.2020 zun&auml;chst schrittweise ge&ouml;ffnet und nur noch stichprobenweise kontrolliert. Seit 16.5.2020 wird die Grenze zu Luxemburg nicht mehr Kontrolliert. Die belgische und d&auml;nische Grenze wird jeweils von Belgien und D&auml;nemark weiter kontrolliert. Die Grenzen zu Polen und Tschechien werden von diesen Mitgliedstaaten weiter kontrolliert. Am 26.5.2020 &ouml;ffnet Tschechien seine Grenzen nach Deutschland und &Ouml;sterreich wieder. Die &Ouml;ffnung aller EU-Binnengrenzen wird von der Europ&auml;ischen Kommission f&uuml;r Mitte Juni 2020 angek&uuml;ndigt. Sommerurlaub soll in einigen EU-L&auml;ndern m&ouml;glich sein (z.B. Spanien, Italien, Kroatien, Griechenland, Zypern, Malta, &Ouml;sterreich, D&auml;nemark, Niederlande) aber auch in Nordafrika (z.B. Tunesien). Bilaterale Verhandlungen werden mit der Bundesregierung gef&uuml;hrt. Der Flugbetrieb wird Ende Mai 2020 langsam wieder aufgenommen. Am 23.5.2020 werden zwei lokale Ausbr&uuml;che bekannt: in einem Restaurant in Leer/Niedersachsen infizieren sich 11 Menschen und in einer Baptisten-Kirche in Frankfurt am Main infizieren sich mehr als 100 Menschen - in der Folge werden Quarant&auml;ne-Ma&szlig;nahmen ergriffen und es entsteht eine erneute Debatte um die Lockerungen der Kontaktsperren. Weitere lokale Ausbr&uuml;che werden in Bremerhaven und G&ouml;ttingen in Gemeinden und Gro&szlig;familien festgestellt. In G&ouml;ttingen werden Kinderg&auml;rten und Schulen f&uuml;r eine Woche geschlossen. Bis Mitte Juni 2020 beruhigt sich das Covid-19-Infektionsgeschehen bundesweit und nur wenige Lankreise sind kurzfristig oberhalb der vereinbarten Grenzwerte. Seit Mitte Juni 2020 werden Reisen in 23 EU-Mitgliedstaaten, Island, die Schweiz und Liechtenstein m&ouml;glich. Seit 1.7.2020 sind auch Reisen in einige Drittl&auml;nder m&ouml;glich (Australien, Georgien, Japan, Kanada, Neuseeland, S&uuml;dkorea, Thailand, Tunesien und Uruguay). Die weltweite Reisewarnung der Bundesregierung wird f&uuml;r knapp 160 L&auml;nder (au&szlig;erhalb der EU) bis Ende August 2020 verl&auml;ngert. Sie werden durch regionale Reisehinweise des RKI erg&auml;nzt (RKI-Risikogebiete). Bei der R&uuml;ckkehr aus diesen Risikogebieten droht eine 14-t&auml;gige Quarantaine. Anfang Juli 2020 wird die Debatte er&ouml;ffnet, ob nicht die Maskenpflicht in Gesch&auml;ften wegfallen sollte - einzelne Bundesl&auml;nder wie Meckenburg-Vorpommern und Sachsen bef&uuml;rworten dieses. Am 7.6.2020 beschlie&szlig;en alle Gesundheitsminister die Aufrechterhaltung der Maskenpflicht in Gesch&auml;ften. In anderen europ&auml;ischen L&auml;ndern werden aufgrund zweiter Wellen &ouml;rtliche Lockdowns vorgenommen (z.B. in Bulgarien, Spanien und Serbien) und in der Schweiz wird erstmals eine Maskenpflicht im &ouml;ffentlichen Nahverkehr eingef&uuml;hrt. Belgien, Frankreich und &Ouml;sterreich f&uuml;hren aus Angst vor einer zweiten Welle erneut eine Maskenpflicht f&uuml;r Eink&auml;ufe in Gesch&auml;ften ein. In Deutschland steigen Ende Juli 2020 die Infektionszahlen deutlich, eine zweite Welle steht bevor. Freiwillige und kostenlose SARS-CoV-2-Tests an Flugh&auml;fen f&uuml;r Reiser&uuml;ckkehrer werden eingef&uuml;hrt (verpflichtend f&uuml;r R&uuml;ckreisende aus Risikogebieten). Das Ausw&auml;rtige Amt warnte seit dem 31.7.2020 zu Reisen in drei spanische Regionen (Katalonien, Navarra und Arag&oacute;n). Mit dem Neustart des Schuljahres (seit 3.8.2020 in MV, Berlin, Brandenburg, Hamburg, SH, NRW, Hessen, RLP, Saarland, Bremen, Niedersachsen, Sachsen-Anhalt, Sachsen, Th&uuml;ringen) werden in vielen Schulen Masken verbindlich eingef&uuml;hrt: Eine Maskenpflicht wird f&uuml;r den Schulunterricht oder in Schulen (in unterschiedlicher Auspr&auml;gung) in Bayern, Baden-W&uuml;rttemberg, Berlin, Brandenburg, Bremen, Hamburg, Hessen, Mecklenburg-Vorpommern, Niedersachsen, Nordrhein-Westfalen, Rheinland-Pfalz, Saarland, Schleswig-Holstein und Th&uuml;ringen eingef&uuml;hrt (Stand: 20.8.2020). Die Bundesbildungsministerin fordert eine generelle Maskenpflicht in Schulen. Am 4.8.2020 wird die Reisewarnung f&uuml;r 4 K&uuml;stenprovinzen der T&uuml;rkei aufgehoben (Antalya, Izmir, Aydin und Mugla). Neue Reisewarnugen werden f&uuml;r ganz Spanien, sowie von Teilen von Belgien, Bulgarien, Frankreich, Kroatien und Rum&auml;nien eingef&uuml;hrt (Stand: 2.9.2020). Reisewarnungen und Quarantaine-Anordnungen werden in der 2. Welle seit August 2020 von EU-Mitgliedstaaten uneinheitlich ausgesprochen und gehandhabt. Die Bundesregierung sieht Ende August 2020 erneut Koordinierungsbedarf f&uuml;r die unterschiedlich agerienden 16 Bundesl&auml;nder und die 27 EU-Mitgliedstaaten. Ein einheitliches Mindest-Bu&szlig;geld von 50 Euro wird f&uuml;r Maskenverweigerer und Quarantaine-Brecher am 27.8.2020 vereinbart (15 Bundesl&auml;nder stimmen zu, Sachsen-Anhalt macht nicht mit). Gro&szlig;veranstaltungen bleiben bis Ende Dezember 2020 verboten. Internationale Sportveranstaltungen finden unter Ausschluss (oder fast ohne) &Ouml;ffentlichkeit seit Anfang August 2020 statt, z.B. die beiden Europa League und Champions League Final-Tourniere, die US-Open (Tennis), British Open (Damen-Golf), die Tour de France (Radfahren). Am 22.8.2020 wird unter dem Titel &quot;Restart-19&quot; in der Leipzig Arena in der Halle ein Pop-Konzert von Tim Bendzko unter klinischen Versuchsbedingungen in drei Szenarien mit 1.400 freiwilligen Probanden unter Verwendung von FFP2-Masken und unterschiedlichen Hygienkonzepten unter Federf&uuml;hrung der Universt&auml;t Halle durchgef&uuml;hrt, welche die Verbreitung von SARS-CoV-2 Aerosolen und die Ansteckungsgefahr f&uuml;r die gesellschaftliche &Ouml;ffung im Herbst/Winter untersuchen sollen. Mit Hygiene-Konzepten sollen in der 1. DFB-Pokalrunde Zuschauer beim Fu&szlig;ball erlaubt werden. Sachsen will Heimspiele f&uuml;r die Fu&szlig;ballvereine mit 20 % der Zuschauer zulassen. Auch Karnaval-Umz&uuml;ge und Jahrm&auml;rkte sollen mit Besuchereinschr&auml;nkungen im Herbst 2020 m&ouml;glich sein. Seit 1.9.2020 schlie&szlig;t Ungarn auf Grund steigender Infektionszahlen die EU-Binnengrenzen f&uuml;r einen Monat. Die Europ&auml;ische Kommission erkennt erneuten Koordiationsbedarf und k&uuml;ndigt ein einheitliches Vorgehen f&uuml;r Herbst und Winter an. Seit Anfang September 2020 wird in Deutschland eine verk&uuml;rzte Quarant&auml;ne von nur noch f&uuml;nf oder zehn Tagen diskutiert. 12. Verbrechen und Betrug rund um die COVID-19-Pandemie: In Deutschland ist es Anfang April 2020 zu gro&szlig;em Betrug um die Soforthilfen der Landesregierung von Berlin und NRW f&uuml;r betroffene Unternehmer bekommen, indem Kriminelle die Antragsdaten der Unternehmer abgegriffen haben. Weltweit warnen die World Customs Organization (WCO), INTERPOL und&nbsp;EUROPOL&nbsp;vor gef&auml;lschten Medizinprodukten, gef&auml;lschten Medikamenten und Online-Betrug durch gef&auml;lschte, bzw. nicht gelieferte Medizinprodukte/Medikamente. 13. Debatte &uuml;ber die Genauigkeit der ver&ouml;ffentlichten Fallzahlen In Deutschland ver&ouml;ffentlicht das Robert-Koch-Institut t&auml;glich die ihm gemeldeten F&auml;lle best&auml;tigter COVID-19-Infektionen und -Todesf&auml;lle. Gleichzeitig sammeln verschiedene andere Universit&auml;ten und Insitute Daten aus verschiedenen Quellen (z.B. L&auml;nder und Landkreise Deutschlands), so dass u.a. die Johns Hopkins University t&auml;glich h&ouml;here Zahlen meldet als das RKI. Weltweit sind die ver&ouml;ffentlichten Zahlen schwer vergleichbar, weil sich sowohl die Zahlen der Testungen als auch die Testmethoden deutlich voneinander unterscheiden und gleichzeitig verschiedene politische Regime kein Interesse an der Bekanntgabe der COVID-19-Zahlen in ihrem Land haben, z.B. Nordkorea. Die Stagnation der Zahlen von COVID-19-Erkrankten und -Opfern in China wird von vielen Seiten bezweifelt. Australien fordert eine neutrale Untersuchung der WHO-Reaktion und die US-Regierung und teile der deutschen Politik hinterfragen die Lage in China. Frankreich und das UK ver&ouml;ffentlichen zun&auml;chst nur Tote, die in Krankenh&auml;user an COVID-19 verstorben sind und m&uuml;ssen sp&auml;ter die Zahlen deutlich korrigieren, da auch Tote in Seniorenheimen und zuhause verstorbene hinzugez&auml;hlt werden. Erste Nachweise werden gef&uuml;hrt, dass COVID-19 in Europa und weltweit fr&uuml;her als angenommen verbreitet worden ist (nachtr&auml;gliche Obduktionen und Testungen erzielen positive Testergebnisse auf SARS-CoV-2 bei verstorbenen). 14. Weltwirtschaftskrise und Debatte um das Ende der Globalisierung Die wirtschaftlichen Auswirkungen der COVID-19-Pandemie nur lokal und nationalstaatlich zu betrachten ist unzureichend. Neben nationalen&nbsp;Wirtschaftskrisen&nbsp;kommt es zu einer&nbsp;Weltwirtschaftskrise. Die&nbsp;Globalisierung&nbsp;war aufgrund der Globalisierungskritik und der Re- oder Deglobalisierung und Entflechtung durch Populisten wie US-Pr&auml;sident Trump und dem&nbsp;Brexit&nbsp;des UK in Kritik geraten und die neue Krise gibt der&nbsp;<em>Globalisierungskritik</em>&nbsp;einen neuen Schub. 15. Internationale Organisationen und internationale Kooperation Die globale COVID-19-Pandemie ist auch die Stunde der internationalen Gemeinschaft, der internationalen Kooperation und der Internationalen Organisationen. Forschungsgemeinschaften und Arbeitsgruppen arbeiten bei der Suche nach Medikamenten, Immuntherapien und Impfstoffen weltweit zusammen. Viele Wissenschaftsverlage stellen alle Forschung zu SARS-CoV-2 und COVID-19 kostenlos ins Internet, um die Kooperation zu befruchten. Die Vereinten Nationen (United Nations) bekr&auml;ftigen &quot;We are all in this together&quot;. Die Weltgesundheitsorganisation (World Health Organization, WHO) unterstreicht Ende Juni 2020, dass die Pandemie noch lange nicht &uuml;berstanden ist. Die&nbsp;Weltzollorganisation&nbsp;(World Customs Organization, WCO) und die&nbsp;Welthandelsorganisation&nbsp;(World Trade Organization, WTO) geben gemeinsam oder mit der&nbsp;Weltgesundheitsorganisation&nbsp;(World Health Organization, WHO), den Vereinten Nationen (United Nations, UN) und dem UN-Organisationen (z.B. der&nbsp;Food and Agricultural Organization, FAO, und der&nbsp;United Nations Conference on Development and Trade, UNCTAD), der Internationalen Handelskammer (International Chamber of Commerce, ICC), dem&nbsp;Weltw&auml;hrungsfonds&nbsp;(International Monetary Fund, IMF), der&nbsp;International Air Transport Association&nbsp;(IATA), der&nbsp;International Road Transport Union&nbsp;(IRU)&nbsp;und der International Maritime Organization (IMO) heraus, welche die Warenfl&uuml;sse aufrechterhalten und die Handelshemmnisse (nicht tarif&auml;re Handelshemmnisse, engl. non-tariff measures or barriers) abbauen sollen. Der Internationale W&auml;hrungsfonds (IMF), die&nbsp;Weltbank&nbsp;und die&nbsp;OECD&nbsp;unterst&uuml;tzten die Bek&auml;mpfung der Pandemie durch gezielte Informationen, Darlehen/Kredite und&nbsp;Schuldenerlass. Vgl.&nbsp;Weltwirtschaftskrise,&nbsp;Wirtschaftskrise,&nbsp;Kriegswirtschaft,&nbsp;Krise der Europ&auml;ischen Union,&nbsp;Brexit,&nbsp;World Health Organization,&nbsp;Robert-Koch-Institut,&nbsp;Lockdown,&nbsp;Maskenpflicht,&nbsp;Corona-Virus,&nbsp;Corona-Bonds,&nbsp;Corona-Hilfen,&nbsp;Corona-Kabinett,&nbsp;Influenza-Virus,&nbsp;Pandemie,&nbsp;PandemiefolgenabmilderungsG,&nbsp;Welthandelsorganisation,&nbsp;Weltzollorganisation,&nbsp;Weltw&auml;hrungsfonds,&nbsp;United Nations,&nbsp;Zoonose. Autor: Dr. Carsten Weerth BSc LLM MA FLS FZS FRGS FRHistS URL: https://wirtschaftslexikon.gabler.de/definition/covid-19-pandemie-122468 &nbsp; Literatur und weiterf&uuml;hrende Hinweise: Zeitschriften Armbr&uuml;ster: Corona - Zeit zum Nachverhandeln NJW-aktuell 16/2020, 3 Rixen: Gesundheitsschutz in der Coronavirus-Krise - (Neu-)Regelungen des IfSG NJW 2020, 1097 Schmidt-Kessel/M&ouml;llnitz: Coronavertragsrecht - Sonderregeln f&uuml;r Verbraucher und Kleinstunternehmen NJW 2020, 1103 R&ouml;mermann: DIe Aussetzung der Insolvenzantragspflicht im COVInsAG und ihre Folgen NJW 2020, 1108 Sagan/Brockfeld: Arbeitsrecht in Zeiten der Corona-Pandemie NJW 2020, 1112 Treffer: Grenzen der Krisen-Rechtsprechung NJW-aktuell 17/2020, 3 Sittner: Mietrechtspraxis unter &quot;Covid-19&quot; NJW 2020, 1169 Vetter/Tielmann: Unternehmensrechtliche Gesetzes&auml;nderungen in Zeiten von Corona NJW 2020, 1175 Burkiczak: &quot;Hartz IV&quot; in Zeiten von Corona NJW 2020, 1180 Kulhanek: Saal&ouml;ffnungen unter dem Infektionsschutzgesetz NJW 2020, 1183 Wolffgang: Pandemie und Globalisierung AW-Prax 2020, 143 Frank-Fahle/Cremers: Coronavirus, Lieferketten und Vertragsaufl&ouml;sung - Herausforderungen f&uuml;r deusche Unternehmen AW-Prax 2020, 147 Vorpeil: Auswirkungen der Corona-Krise auf internationale Liefergesch&auml;fte AW-Prax 2020, 187 Weerth: GZD zur Corona-Krise: Einfuhr von Hilfsg&uuml;tern, Zollbefreiungen AW-Prax Newsticker 2020, 97 Weerth: GZD zur Corona-Krise: Notfall-EORI f&uuml;r Hilfslieferungen AW-Prax Newsticker 2020, 98 Weerth: GZD zur Corona-Krise: Post-Abfertigung nur mit Termin AW-Prax Newsticker 2020, 98 Weerth: GZD zur Corona-Krise: Steuer-Ma&szlig;nahmen (Erleichterungen) AW-Prax Newsticker 2020, 99 Maltrecht: Corona-Krise: EU-Kommission erweitert staatliche Deckungsm&ouml;glichkeiten f&uuml;r kurzfristige Exportgesch&auml;fte AW-Prax Newsticker 2020, 99 M&ouml;ller: Corona-Krise: Kommission befreit Einfuhr von medizinischer Ausr&uuml;stung aus Nicht-EU-L&auml;ndern von Z&ouml;llen und Mehrwertsteuer AW-Prax Newsticker 2020, 100 Lohmann: Das Moratorium im Darlehnsrecht anl&auml;sslich der Covid-19-Pandemie NJW 2020, 1321 Engl&auml;nder/Zimmermann: &quot;Rettungst&ouml;tungen&quot; in der Corona-Krise? NJW 2020, 1398 St&ouml;&szlig;/Putzer: Entsch&auml;digung von Verdienstausfall w&auml;hrend der Corona-Pandemie NJW 2020, 1465 K&uuml;ling/Schildbach: Corona-Apps - Daten- und Grundrechteschutz in Krisenzeiten NJW 2020, 1545 Weller/Lieberknecht/Habrich: Virulente Leistungsst&ouml;rungen - Auswirkungen von Corona auf die Vertragsdurchf&uuml;hrung NJW 2020, 1017 auf der Heiden: Prozessrecht in Zeitden der Corona-Pandemie NJW 2020, 1023 M&uuml;ller-Bonanni/Bertke: Einhaltung von Arbeitsschutzstandards durch Arbeitgeber NJW 2020, 1617 Waclawik: BGH und Covid-19: Keine weitere Zeit f&uuml;r Anw&auml;lte? NJW 2020, 1621 Schmitt: Die Verfassungswidrigkeit der landesweiten Ausgangsverbote NJW 2020, 1626 Rutschmann: Corona-Soforthilfe-FAQs NJW-aktuell 23/2020, 3 G&ouml;rtz: Die Folgen der Corona-Pandemie: das Ende der Just-in-time-Produktion? Der Zoll-Profi 7/2020, 7 H&ouml;ink: Senkung der Umsatzsteuers&auml;tze - Coronabedingte Anpassung f&uuml;r die Zeit vom 1.7.2020 bis 31.12.2020 Der Zoll-Profi 7/2020, 11 Witte: Zoll: Homeoffice, Video Calls und andere Herausforderungen AW-Prax 2020 (Editorial 7/2020), 247 Frank-Fahle/Zimmermann: Relokalisierung als Reaktion auf die Corona-Krise AW-Prax 2020, 251 Vorpeil: Akkreditive und Bankgarantien in der Corona-Krise AW-Prax 2020, 254 Weerth, Carsten: INTERNATIONAL RESPONSE TO COVID-19: INITIATIVES AND DECLARATIONS BY THE UN, WHO, WCO, WTO AND OTHER STAKEHOLDERS ON WORLD TRADE, CUSTOMS LAW AND SOLIDARITY IN A HUMAN EMERGENCY LEX HUMANITARIAE 2020 Vol. I No. III, pp. 9-21. Kaushal: Immune Response and Pathogenesis of COVID-19 and The Strategies for Developing Target Drugs ACTA SCIENTIFIC MICROBIOLOGY, (2020), 3, 92-102 Weblinks Johns Hopkins University, Coronavirus Resource Center Robert-Koch-Institut, Informationen zum nCoV (SARS-CoV-2) Verbreitungskarte des SARS-CoV-2-- Genomic epidemiology of novel coronavirus Die Zeit, Dossier und Detailkarten zur Verbreitung des neuen Coronavirus in Deutschland BAFA, Ausfuhr medizinischer Schutzausr&uuml;stung GZD, Coronakrise, Informationen zu den Auswirkungen der Coronakrise Statistisches Bundesamt, Sonderseite zu den Auswirkungen des Corona-Virus in der COVID-19-Pandemie Rat der EU, COVID‑19 &ndash; Rat verabschiedet Ma&szlig;nahmen f&uuml;r sofortige Freigabe von Mitteln, Pressemitteilung v. 31.3.2020 Roser/Ritchie/Esteban Ortiz-Ospina, Coronavirus Disease (COVID-19) &ndash; Statistics and Research WHO, Coronavirus disease (COVID-19) Pandemic INTERPOL, COVID-19 Crimes EUROPOL, Staying safe during COVID-19: what you need to know Romaniuk/Burgers, Can China&rsquo;s COVID-19 Statistics Be Trusted?, The Diplomat, 26.3.2020 Therapie f&uuml;r Coronapatienten; Uni-Klinikum Erlangen darf SARS-COV-2 Immunplasma herstellen, Pressemitteilung v. 5.4.2020 Robert-Koch-Institut: Mund-Nasen-Bedeckung im &ouml;ffentlichen Raum als weitere Komponente zur Reduktion der &Uuml;bertragung von COVID-19, Epid Bull 2020; 19, 3-5; Online vorab: 14.04.2020. Die Zeit, Wissen, Infografik &quot;How to Mundschutz&quot;, Stand: 3. April 2020 Robert Koch-Institut: Mund-Nasen-Bedeckung im &ouml;ffentlichen Raum als weitere Komponente zur Reduktion der &Uuml;bertragungen von COVID-19. Strategie-Erg&auml;nzung zu empfohlenen Infektionsschutzma&szlig;nahmen und Zielen (3. Update). Epid Bull 2020;19: 3&ndash; 5. Melitta, Melitta stellt ab sofort Millionen Atemmasken her, Pressemitteilung v. 9.4.2020 BMI, Fragen und Antworten zum Corona-Virus und die Ma&szlig;nahmen und Kontaktsperren BMI, Beschluss der Bundeskanzlerin und Ministerpr&auml;sidenten der L&auml;nder der Ma&szlig;nahmen zum Corona-Virus v. 15.4.2020 Bundesregierung, Nachtragshaushalt 2020: Mit aller Kraft gegen die Krise, Pressemitteilung v. 27.3.2020 Bundesregierung, Telefonschaltkonferenz der Bundeskanzlerin mit den Regierungschefinnen und Regierungschefs der L&auml;nder am 30. April 2020, Pressemitteilung 144 v. 30.4.2020 Europ&auml;ische Kommission, Coronakrise, Gelebte europ&auml;ische Solidarit&auml;t BMI, Coronavirus, Fragen und Antworten Institut f&uuml;r Weltwirtschaft. Economic Outlook UPDATE: German GDP expected to slump between 4.5 and 9 percent in 2020 Tagesschau, Urteil zur 800 m2-Regel: Wo gilt die 800-Quadratmeter-Regel noch?, &Uuml;bersicht v. 30.4.2020 Oberverwaltungsgericht Hamburg: Coronavirus-Eind&auml;mmungsverordnung: Beschr&auml;nkung der Verkaufsfl&auml;che von Einzelhandelsgesch&auml;ften auf 800 m2 hat Bestand, Pressemitteilung v. 30.4.2020 Bayerischer VGH, Beschluss vom 27.04.2020 - 20 NE 20. 793 Beck acktuell v. 23.4.2020, VG Hamburg kippt 800-Quadratmeter-Grenze f&uuml;r &Ouml;ffnungen im Einzelhandel - Verf&uuml;gung stoppt &Ouml;ffnung University of Minnesota, COVID-19: The CIDRAP Viewpoint, Center for Infections Disease and Policy Research,30. April 2020 Deutsche Welle, Corona-Pandemie - Was wir von der Spanischen Grippe f&uuml;r die Zeit &quot;nach Corona&quot; lernen k&ouml;nnen, 26.4.2020 Callaway, The race for coronavirus vaccines: a graphical guide, Nature, News Feature, 28.4.2020 Cyranoski, Profile of a killer: the complex biology powering the coronavirus pandemic, News Feature, 4.5.2020 Geleris et.al., Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19, New England Journal of Medicine, 7.5.2020, DOI: 10.1056/NEJMoa2012410 Cao et. al., A Trial of Lopinavir&ndash;Ritonavir in Adults Hospitalized with Severe Covid-19, DOI: 10.1056/NEJMoa2001282 Universit&auml;tsklinikum Erlangen, Neue M&ouml;glichkeiten f&uuml;r Immundiagnostik und -therapie bei COVID-19, Pressemitteilung v. 2.4.2020 Puelles et.al., Multiorgan and Renal Tropism of SARS-CoV-2, Correspondence, New England Journal of Medicine, DOI: 10.1056/NEJMc201140013.5.2020. Gortanta et. al., Corona-Schutzma&szlig;nahmen, So lockern die Bundesl&auml;nder den Lockdown Grein et. al., Compassionate Use of Remdesivir for Patients with Severe Covid-19, NEJM 2020, DOI: 10.1056/NEJMoa2007016 Wu et. al., An Update on Current Therapeutic Drugs Treating COVID-19, Current Pharmacology Reports 2020, 11.5.2020 Milken Institute, Covid-19 Treatment and Vaccine Tracker Worldometer.org, Statistics on the CORONAVIRUS COVID-19 Pandemic vfa - Verband der forschenden Pharmafirmen, Impfstoffe zum Schutz vor Covid-19, der neuen Coronavirus-Infektion (Stand: 18.8.2020) Prather/Wang/Schooley, Reducing transmission of SARS-CoV-2, Science, 26.6.2020, DOI: 10.1126/science.abc6197 WHO, WHO welcomes preliminary results about dexamethasone use in treating critically ill COVID-19 patients, 16.6.2020 Coronavirus / Covid-19: Reisewarnung f&uuml;r Staaten au&szlig;erhalb der EU/Schengen-Gebiet Ledford, Coronavirus breakthrough: dexamethasone is first drug shown to save lives, Nature news, 16.6.2020, DOI: 10.1038/d41586-020-01824-5 Mahase, Covid-19: Low dose steroid cuts death in ventilated patients by one third, trial finds, BMJ, 16.6.2020, DOI: http://dx.doi.org/10.1136/bmj.m2422 BMF, Zwei&shy;ter Nach&shy;trags&shy;haus&shy;halt 2020 be&shy;schlos&shy;sen - Kraft&shy;vol&shy;le und ver&shy;ant&shy;wor&shy;tungs&shy;vol&shy;le Fi&shy;nanz&shy;po&shy;litk zur &Uuml;ber&shy;win&shy;dung der Co&shy;ro&shy;na-Kri&shy;se, 17.6.2020 RKI, Hinweise zu Erkennung, Diagnostik und Therapie von Patienten mit COVID-19, 18.6.2020 Corum/Grady/Wee/Zimmer, New York Times Corona Vaccine Tracker Reuters, CanSino&#39;s COVID-19 vaccine candidate approved for military use in China, 29.6.2020 SARS-CoV-2 Steckbrief zur Coronavirus-Krankheit-2019 (COVID-19) Stand: 10.7.2020 RKI, Informationen zur Ausweisung internationaler Risikogebiete, Stand: 20.7.2020 Gilead, Voluntary Licensing Agreements for Remdesivir, 4.7.2020 Korber et. al., Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity ofthe COVID-19 virus, CELL, accepted 26.6.2020, DOI: https://doi.org/10.1016/j.cell.2020.06.043, Journal Pre-Proof Grubaugh/Hanage/Rasmussen, Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear, CELL, DOI: https://doi.org/10.1016/j.cell.2020.06.040, Journal Pre-Proof. OECD, COVID-19 AND INTERNATIONAL TRADE: ISSUES AND ACTIONS, Updated 12.6.2020 Stickle/Felson, Crime Rates in a Pandemic: the Largest CriminologicalExperiment in History, American Journal of Criminal Justice, https://doi.org/10.1007/s12103-020-09546-0, Published Online 16.6.2020 Siebenand, Tr&auml;nen l&uuml;gen nicht: IgA-Antik&ouml;rper und der Covid-19-Verlauf, Pharmazeutische Zeitung, 22.6.2020 Juang/Tsai, N95 RESPIRATOR CLEANING AND REUSE METHODS PROPOSED BY THEINVENTOR OF THE N95 MASK MATERIAL, Journal of Emergency Medicine, Vol. 58, No. 5, pp. 817&ndash;820, 2020, 16.4.2020, DOI: https://doi.org/10.1016/j.jemermed.2020.04.036. Rothe et. al., Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany, The New England Medical Journal, March 5, 2020 N Engl J Med 2020; 382:970-971 DOI: 10.1056/NEJMc2001468. RKI, Stellungnahme des RKI zu Vorw&uuml;rfen, Erkenntnisse zu asymptomatischer &Uuml;bertragung ignoriert zu haben, Stand: 3.7.2020 RKI, Serologische Untersuchungen von Blutspenden auf Antik&ouml;rper gegen SARS-CoV-2 &ndash; SeBluCo-Studie, EpidBull, Vorab (Online), 13.7.2020 RKI, Serologische Untersuchungen von Blutspenden auf Antik&ouml;rper gegen SARS-CoV-2 (SeBluCo-Studie) Zwischenauswertung Datenstand 30.06.2020, Stand: 13.7.2020 Bundesverfassungsgericht, Beschluss vom 29. April 2020 - 1 BvQ 44/20 Karaginniaidis, Case characteristics, resource use, and outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: an observational study, DOI:https://doi.org/10.1016/S2213-2600, published 28.7.2020, The Lancet Respiratory Medicine Ausw&auml;rtiges Amt, COVID-19-Reisewarnung, 28.7.2020 Freie Hansestadt Bremen, Corona-Infos in vielen Sprachen Sadigh, Corona-Ma&szlig;nahmen f&uuml;r den Schulstart: Maskenpflicht fordern reicht nicht, Die Zeit Online, 2.8.2020 European Center for Disease Control and Prevention, COVID-19 pandemic Schulstart nach Sommerferien Bundesl&auml;nder bei Maskenpflicht uneins, Stand: Rathneytake et. al., 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice, Science Science Translational Medicine, 3.8.2020, DOI: 10.1126/scitranslmed.abc5332 van den Heuvel, Corona-Ursprung: Die Bergmann-Theorie, DocCheck, 18.8.2020 Yong, The Latest Theory That May Answer the Origin of Covid-19 - The Mojiang Miners Passage (MMP) hypothesis explains many oddities of the Covid-19 pandemic, 14.8.2020 Latham/Wilson, A Proposed Origin for SARS-CoV-2 and the COVID-19 Pandemic, Independent Science News, Biotechonolgy, Commentary, 15.7.2020 Zimmer/Burke, Historical Perspective &mdash; Emergence of Influenza A (H1N1) Viruses, NEJM, 16.7.2009, DOI: 10.1056/NEJMra0904322 Ye et. al., Zoonotic origins of human coronaviruses, Int J Biol Sci. 2020; 16(10): 1686&ndash;1697. Published online 2020 Mar 15. doi: 10.7150/ijbs.45472 Greenwook, Quick and affordable saliva-based COVID-19 test developed by Yale scientists receives FDA Emergency Use Authorization, Yale News, Yale University, 15.8.2020 Bae et. al, Asymptomatic Transmission of SARS-CoV-2 on Evacuation Flight, Journal of Emerging Infectius Diseases, Volume 26, Number 11&mdash;November 2020, DOI: 10.3201/eid2611.203353 Original Publication Date: August 21, 2020 Ahlawat/Wiedensohler/Mishra (2020), An Overview on the Role of Relative Humidity in Airborne Transmission of SARS-CoV-2 in Indoor Environments, Aerosol Air Quality Research 20: 1856&ndash;1861. https://doi.org/10.4209/aaqr.2020.06.0302 Perkins at al., Estimating unobserved SARS-CoV-2 infections in the United States, PNAS first published August 21, 2020 https://doi.org/10.1073/pnas.2005476117 Lu, The hunt to find the coronavirus pandemic&#39;s patient zero, New Scientist, 2020 Apr 4; 245(3276): 9. Published online 2020 Apr 3. doi: 10.1016/S0262-4079(20)30660-6 Huang et. al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet, Volume 395, ISSUE 10223, P497-506, February 15, 2020, 24.1.2020, DOI: https://doi.org/10.1016/S0140-6736(20)30183-5 Li et. al., Potential of large &ldquo;first generation&rdquo; human‐to‐human transmission of 2019‐nCoV, Journal of Medical Virology, 30.1.2020, https://doi.org/10.1002/jmv.25693 New York Times, Coronavirus Global Outbreak Map Heidary/Gharebaghi, Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen, The Journal of Antibiotics, Vol. 73, 593&ndash;602 (2020), DOI: https://doi.org/10.1038/s41429-020-0336-z Caly et. al., The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Research, Vol. 178, June 2020, 104787, DOI: https://doi.org/10.1016/j.antiviral.2020.104787 MDR, 1.400 Probanden bei Restart-19 Corona-Experiment: Tim Bendzko spielt in Leipziger Arena, 22.8.2020 Florida Atlantic University, Face shield or face mask to stop the spread of COVID-19?, News Release 1/9/2020 Verma et.al., Phys. Fluids 32, 091701 (2020); https://doi.org/10.1063/5.0022968. Published Online: 1/9/2020 WHO, 172 countries and multiple candidate vaccines engaged in COVID-19 vaccine Global Access Facility, 24.8.2020 WHO, Corticosteroids for COVID-19, Living Guidance, 2.9.2020 Prescott/Rice, Corticosteroids in COVID-19 ARDSEvidence and Hope During the Pandemic, JAMA. Published online September 2, 2020. doi:10.1001/jama.2020.16747 Mallapaty, The coronavirus is most deadly if you are older and male &mdash; new data reveal the risks, 28.8.2020, Nature News Emanuel et. al., An ethical framework for global vaccine allocation, Science, 3.9.2020, DOI: 10.1126/science.abe2803 &nbsp;
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "BGE 142 III 466"

1

Stańczykiewicz, Arkadiusz. Prawdopodobieństwo wystąpienia szkód w odnowieniach podokapowych wskutek pozyskiwania drewna oraz model ich szacowania. Publishing House of the University of Agriculture in Krakow, 2018. http://dx.doi.org/10.15576/978-83-66602-34-2.

Full text
Abstract:
An analysis of the existing literature on the issue of damage to regeneration caused by timber harvesting, revealed that a great majority of results reported in those publications was obtained through laborious and time-consuming field research conducted in two stages. Field research methods for gathering data, employed by various authors, differed in terms of the manner of establishing trial plots, the accuracy of counting and evaluating the number of saplings growing on the investigated sites, classification systems used for distinguishing particular groups of regeneration based on quantitative (diameter at breast height, tree height) and qualitative features (biosocial position within the certain layer and the entire stand), classification systems used for identifying types of damage caused by cutting and felling, as well as transporting operations, and finally the duration of observation intervals and time spent on gathering data on the response of damaged saplings from both, the individual and collective perspectives. Obviously, the most reliable manner of gathering such data would be to count all damaged elements of the environment being a subject of interest of particular investigators at the certain point of time. However, due to time and work consumption of this approach, which is besides very costly, any research should be designed in such a manner as to reduce the above-mentioned factors. This paper aimed to (1) analyse the probability of occurrence of damage to regeneration depending on the form of timber assortments dragged from the felling site to the skidding routes, and timber harvesting technology employed in logging works, and (2) identify a method ensuring that gathered data is sufficient for performing reliable evaluation of share of damage to regeneration at acceptable accuracy level, without necessity to establish trial plots before commencing harvesting works. The scope of these studies enclosed a comparison between two motor-manual methods of timber harvesting in thinned stands, with dragging of timber in the first stage of skidding from the stand to landings. According to one of these methods, a classical one, operations of felling and delimbing of trees were carried out by sawmen at the felling site. Timber obtained using different methods was skidded by carters and horses, and operators of a light-duty cable winch, driven by the chainsaw’s engine, as well as operators of cable winches combined with farm tractors. In the latter, alternative method, sawmen performed only cutting and felling of trees. Delimbing and cross-cutting of trunks, dragged from the felling sites, was carried out by operators of processors combined with farm tractors, worked on skidding routes. The research was conducted in the years 2002–2010 in stands within the age classes II–IV mostly, located in the territories of Regional Directorates of State Forests in Krakow and Katowice, and in the Forest Experimental Unit in Krynica-Zdrój. In the course of a preliminary stage of investigations 102 trial plots were established in stands within early and late tinning treatments. As a result of the field research carried out in two stages, more than 3.25 thsd. circular sites were established and marked, on the surface of which over 25 thsd. saplings constituting the regeneration layer were inventoried. Based on the results of investigations and analyses it was revealed that regardless of the category of thinning treatment, the highest probability of occurrence of destroying P(ZN) to regeneration (0.24–0.44) should be expected when the first stage of timber skidding is performed using cable winches. Slightly lower values of probability (0.17–0.33) should be expected in stands where timber is skidded by horses, while in respect to processor-based skidding technology the probability of destroying occurrence oscillates between 0.12 and 0.27, depending on the particular layer of regeneration. P(ZN) values, very close to those of skidding technology engaging processors, were recorded for skidding performed using the light-duty cable winch driven by the chainsaw’s engine (0.16–0.27). The highest probability of damage P(USZK) to regeneration (0.16–0.31) can be expected when processors are used in the first stage of timber skidding. Slightly lower values of probability (0.14–0.23) were obtained when skidding was performed with the use of cable winches, whereas engaging horses for hauling of trunks results in probability of damage occnrrence oscillating between 0.05–0.20, depending on the particular layer of regeneration. With regard to the probability of occurrence of both, destroying and damage P(ZNUSZK) to regeneration (0.33–0.54), the highest values can be expected when cable winches are engaged in the first stage of skidding. Little lower (0.30–0.43) was the probability of their occurrence if processor-based technology of skidding was employed, while in respect to horse skidding these values oscillated between 0.27–0.41, depending on the layer of regeneration. The lowest values of probability of occurrence of damage P(USZK), and destroying and damage treated collectively P(ZNUSZK), within all layers of regeneration, were recorded in stands where thinning treatments were performed using the light-duty cable winch driven by the chainsaw’s engine. The models evaluated and respective equations, developed based on those models, for evaluating the number of destroyed saplings ZNha (tab. 40, 42, 44, 46, 48) could be used for determining the share of damage expressed as a percentage, upon conducting only one field research at the investigated felling sites, once the timber harvesting and skidding would have been completed. As revealed by the results of analyses, evaluation of statistically significant regression models was possible for all layers of regeneration (tab. 39, 41, 43, 45, 47). Nevertheless, the smallest part of these models that could be considered positively verified, were those for the natural young regeneration, although almost a half of them revealed to be significant. Within the medium-sized regeneration over three-fourths of all models could be considered positively verified, four of which explained more than 50% of variability. Within the high-sized regeneration almost two-thirds of evaluated regression models were statistically significant, five of which were verified positively, moreover, one of them explained more than 50% of variability. The most promising results were those obtained for the advance growth. Nearly 90% of the evaluated models revealed to be statistically significant, ten of which could be considered positively verified. Furthermore, four statistically significant models explained over 50% of general variability. With regard to the entire regeneration more than 80% of evaluated models were statistically significant. However, due to insignificant coefficients of regression, eight of them could be considered positively verified. At this point it should be stressed that in respect to logging technology employing the light-duty cable winch FKS it was impossible to evaluate statistically significant models of regression. Whereas, in the case of processor-based logging technology, firstly regarding the advance growth, and then the entire regeneration, all of the evaluated statistically significant models could be considered positively verified, in terms of both, all of the stands, and particular categories of thinning treatments individually. This latter case also revealed the highest degree of matching of evaluated models (R2 popr 0.73–0.76 for advance growth and 0.78–0.94 for the entire regeneration). A significant impact of the kind of form of hauled timber on the probability of damage occurrence P(USZK), mainly in early thinning treatments, could have been reflected in the results obtained for all stands (early and late thinning treated collectively). Moreover, due to an insignificant impact of the form of hauled timber and logging technology employed, on the probability of occurrence of damage in late thinned stands, and a significant impact of the above-mentioned variables on early thinned stands, it should be assumed that for performing an evaluation of destroying and damage caused by timber harvesting the both thinning treatment categories should be analysed separately. Furthermore, when evaluating the probability of occurrence of destroying and damage caused by timber harvesting, the layers of natural young regeneration and advance growth should be analysed separately. As proved by the results presented in this paper, varying values of probability computed for each of the layers of regeneration seem to indicate that when investigating damage to regeneration caused by timber harvesting, it would be reasonable and recommended to perform a separate analysis of damage to the highest saplings as well, namely individuals with diameter at breast height close to 7 cm. In respect to studies on damage to regeneration caused by logging technologies mentioned above, the evaluation of number of destroyed saplings within the advance growth can be carried out using the proportions of damaged and undamaged saplings per 1 ha of the stand. The numbers evaluated in this manner can be used to calculate the damage share expressed in relative values (percentage of damaged saplings compared with the entire number of saplings before commencing the logging works). However, one should keep in mind that this is true only if the field research have been carried out based on the methodology described in this paper.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "BGE 142 III 466"

1

Michnik, Monika, and Karol Dzięgielewski. "Chronologia i rozwój przestrzenny nekropoli / Chronology and spatial development of the cemetery." In Cmentarzysko w wczesnej epoki żelaza w Świbiu na Górnym Śląsku. Tom 2. Wydawnictwo Profil-Archeo, 2022. http://dx.doi.org/10.33547/swibie2022.2.4.

Full text
Abstract:
By applying the seriation method to a group of 129 assemblages distinguished by a ‘non-male’ model of grave furnishing and containing at least two distinctive metal objects, it was possible to divide the lifespan of the cemetery into three chronological stages. These were characterised by stylistically different (but interlocking) sets of ornaments and dress items. An attempt to relate these phases to the periodisation systems developed for the areas to the north, west, and south confirmed contacts with the Oder zone as early as during the early phase, which we synchronise with Ha C1b. What has also emerged in the course of the present study is another factor characteristic of this early phase, one that has not been taken into account in previous studies, namely the evidence of contacts with the northern lowland zone. These are legible mainly in the distinctive style of neck and hand ornaments: necklaces of the Wendelringe or unidirectionally twisted type, with loops or fastened with a hook, usually occurring no further south than Greater Poland, and bracelets with distant Pomeranian references. The presence of this style seems to have contributed in subsequent phases to the production of local types of ring ornaments (e.g., pointed necklaces of the Mąkolice type). The presence of northern bronzes of possibly such an early chronology (Ha C1) in the Polish Plain, especially at its southern edge, has so far been only sporadically reported, especially in the range of the Upper Silesian-Lesser Poland group. Nevertheless, contacts with the north at the turn of the Bronze Age and early Iron Age have already been suggested in the context of the northwards ‘diffusion’ of the idea of inhumation. early phase reveal strong influences coming evidently from the south, from the Moravian Gate region. This is indicated by the appearance of bracelets with thickened ends (e.g., Kietrz type) or richly decorated necklaces fastened with a hook (Domasław type) in many graves of this phase. The exact temporal relationship between the two groups of finds is difficult to determine – they appear inseparable on the seriation diagram (Figs. 4.1–2), with the Silesian Hallstatt style continuing much longer, into the middle phase. In addition, the early phase provides evidence that the Świbie community had access to very valuable goods from southern Europe, such as beads made of vitreous materials (glass and glassy faience, still scarce at the time) or flat iron axes with broad heads (Ärmchenbeile of type III3). It is with this phase that the most impressive burial in Świbie, grave 102, is connected. It belonged to a woman furnished with a local button diadem and the largest set of imports in the cemetery, comprising of a glass bead necklace with a unique ‘star’ shaped bead, a bronze harp fibula decorated with chains, a bronze necklace, and perhaps also bracelets (Garbacz-Klempka et al., Chapter 15). Another noteworthy burial from the early phase is grave 125, in which a dyed fabric of dense yarn, undoubtedly imported from eastern Alpine region, was found (Słomska-Bolonek, Antosik, Chapter 12). A phenomenon typical of the early phase is emphasising the status of some women (but from many families) by furnishing their burials not only with prestigious imports but also with sumptuous local ornaments. Among the latter, the most important markers of status and local identity (of traditional dress?) were headbands with sewn-on bronze (less often lead) buttons. In the burial ritual, the primacy of inhumation is evident. This means that an exclusively local population substrate, cultivating traditions derived from previous eras, continued to play significant role, while the role of exogamy was perhaps still limited. Most likely before the end of the early phase, and certainly in the middle phase (Ha C2), we observe a gradual disappearance of northern stylistic inspiration in ornament making. Meanwhile, permanent contacts with the strongly Hallstattized communities from the right-bank Upper Silesia and Central Silesia continued, noticeable mainly in the spectrum of ornaments. Some references to the necropolis at Domasław are evident (decorated necklaces, painted pottery), but there are also clear differences, including the lack of adoption of costume fastened with a brooch or brooches (Fibeltracht) and the absence of aristocratic burials furnished with swords. There are also no direct parallels in Świbie for sumptuous tomb constructions (chambered graves), although this may be due to the well- established local traditions of lining the bottoms of graves with wood, building grave boxes, or using coffins. The increasing occurrence of cremation, sometimes as burials added to earlier inhumation graves (resulting in ‘biritual graves’), may be seen as an expression of the increasing openness of the local population to external influences or as a move away from endogamy. All these phenomena become more pronounced in the late phase, which we synchronise with the developed Ha C2 and Ha D1. From this stage come most of the glass beads found in Świbie. This applies to both complete necklaces and beads placed to graves in smaller numbers, and the number of burials furnished with such beads is higher than in the early phase. Silesian painted vessels, essentially absent in the early phase, now appear in more than a dozen graves, both with and without indicators of high status (Chapter 5). Most of the graves with amber come from this phase. The growing frequency of these middle-class imports is indicative of increasing egalitarianism, which is also reflected by the insignificant proportion of late phase assemblages among the richest grave furnishings in the ranking developed for the cemetery as a whole (Fig. 5.2). This was not due to the disappearance of local ways of prestige signalling – traditional headbands (diadems), for example, are still present, and are even richer (up to 140 buttons). At the same time, from the late phase onwards, all locally manufactured types of ornaments (necklaces, pins, bracelets, ankle-rings) are basically made of iron. Morphologically, these are familiar types, but the raw material from which they are made gradually changes during the middle phase. The change in raw material is often accompanied by a simplification of the original patterns. Given all the evidence for long-distance networks becoming increasingly accessible for a growing proportion of the local community, the rise in popularity of cremation, evident in the late phase and especially towards the end of cemetery’s lifespan, should come as no surprise (Fig. 6.1), as this phenomenon remains, in our view, linked to the growing role of exogamy in marital exchange. The natural and increasingly important partners in this exchange were the Silesian populations, who were also the providers of the above-mentioned goods, and who had for centuries been traditionally following cremation as their burial rite. The most recent burials deposited at Świbie are cremation burials in large pots as urns, such as grave 486 with an iron belt clasp, dated to the turn of the Ha D1/D2 period, deposited on the northern edge of the necropolis.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "BGE 142 III 466"

1

Leone, G., V. De Stefano, R. Ferrelli, C. Barone, C. Garufi, and B. Bizzi. "PROTHROMBIN AND ANTITHROMBIN III IN PATIENTS WITH HEPATOCELLULAR CARCINOMA." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643209.

Full text
Abstract:
Prothrombin (F.II) and antithrombin III (AT III) levels were measured in 11 patients (mean age 61 years) with hepatocellular carcinoma; F.II antigen (Ag) mean levels (Laurell) were 1.39±0.53 U/ml and F.II activity (Ac) (clotting method) 0.9±0.21 U/ml; AT III Ag mean levels (radial immunodiffusion) were 1.18±0.32 U/ml and AT III heparin cofactor (HC) (amidolytic method) 1.15±0.31 U /ml. In 5 patients F.II Ag was higher than 1.2 U/ml; no patient had F.II Ag lower than 0.8 U/ml (normal range 0.7-1.2 U/ml). F.II Ac was in the normal range in all patients. In 4 patients both AT III Ag and HC were higher than 1.2 U/ml; no patient had AT III Ag and HC lower than 0.8 U/ml (normal range 0.75-1.2 U/ml). Seven patients had a long history of liver cirrhosis and 2 of them sho wed AT III Ag and HC of 1.8 U/ml; one of these two patients had F.II Ag and Ac around 1.00 U/ml, whereas the other had F.II Ag 2.4 U/ml and F.II Ac 1.2 U/ml. In these two patients a prelimina ry more extensive study was performed. In both subjects AT III plasma crossed immunoelectrophoresis was normal in the presence and absence of heparin and AT III crossed immunoelectrofocusing (CIEF) showed a normal pattern of 6 peaks (pH 5.2-4.6) and two additional small peaks at pH 4.5 and 5.4. In the patient with in creased F.II Ag the CIEF of plasma prothrombin showed a large peak with asymmetric branches at pH 5.2-4.9, as in the control, and a large additional peak at pH 5.9; after plasma absorption with Al(OH), the F.II CIEF pattern showed only the abnormal peek. We conclude that in patients with hepatocellular carcinoma F.II and AT III are normal, independently of previous history of cirrhosis; moreover, in agreement with previous studies (N.Engl.J. Med. 310,1427,1984), an abnormal prothrombin, which we demonstra ted characterizable by the CIEF, can be synthesized.
APA, Harvard, Vancouver, ISO, and other styles
2

Завойкин, А. А., and В. Д. Кузнецов. "Phanagoria During the Late Archaic and Early Classical Periods (stratigraphy, chronology and periodization. 1)." In Древности Боспора. Crossref, 2025. https://doi.org/10.25681/iaras.2023.9785943754036.126-148.

Full text
Abstract:
The Acropolis is located in the central part of the upper plateau of the Phanagoria site, closer to its Northern edge. During the excavations that took place at more than 3000 m.sq., archaeological layers and structural remains of Phanagorean settlements dating to the first century of the city’s existence were unearthed. This considers the site’s history from ca. 540 BCE to 450/40 BCE, when the majority of the buildings were destroyed. During that period the buildings made out of mudbrick located here according to the initial plan were continuously rebuilt according to various plans, also during the events occurring on the verge of the first and the second halves of the V century BCE, when the whole studied area was destroyed during a fire caused by military actions. The following article is dedicated to a detailed stratigraphic analysis based on the finds from the NorthWestern part of the dig. It is that particular part of the dig, where the rock is lower than in other parts, where we could find a pattern of architectural buildings following each other, concised in the pattern of the same building arrangement. A chronology of erection and the building dynamic was established, leading toa discovery of a pattern that formed the core of the city’s center. We can now establish four different building periods. The first (540525 BCE) and the second (525480 BCE) ones can be distinguished by a range of objects (pits and construction preparations), which can be distinguished stratigraphically. The distinguishing matter considering the second and the third periods are signified by artifacts buried deep in the earth (rectangular pits, underground spaces constructed with mudbrick), appearing closer to the middle of the V century BCE. These temporary constructions were made in 480470 BCE. The building erected during a rather short period (between 480/70 and 450/40 BCE) are related to the two major building periods (III and IV). According to the finds from a basement that waz destroyed during a fire that occurred at the time of the third period temple, there are some events that occurred in the 460/50 BCE. Even though it isn’t possible to find any other traces of said fire in other parts of the site, a significant reconstruction of the site’s temple (835 743 BCE), as well as the house located close by (836677 BCE), allows for an assumption that the destruction of said buildings were not unique
APA, Harvard, Vancouver, ISO, and other styles
3

Diniz, Ana Carolina de Aquino, Romualdo Barroso de Sousa, Artur Katz, et al. "PREVALENCE OF PD-L1 AMONG PATIENTS WITH METASTATIC TRIPLE-NEGATIVE METASTATIC BREAST CANCER (MTNBC) AND ITS ASSOCIATION WITH TUMOR-INFILTRATING LYMPHOCYTES (TIL)." In Brazilian Breast Cancer Symposium 2022. Mastology, 2022. http://dx.doi.org/10.29289/259453942022v32s2009.

Full text
Abstract:
Objective: Immune checkpoint inhibitors (ICIs) combined with chemotherapy have emerged as the first line for patients with mTNBC whose tumors are PD-L1 positive. However, given the paucity of data in Brazilian populations, the objective of this study was to evaluate the prevalence of PD-L1 positive mTNBC in a single Brazilian center and its association with tumor-infiltrating lymphocytes (TIL). Methods: We assembled a retrospective cohort of all patients with metastatic breast cancer who have been tested for PD-L1 biomarker from January 2018 to December 2020. Patient’s clinical information, including use of ICI, and PD-L1 status, was obtained from the electronic medical record’s analysis, and the TIL slide’s material was reviewed by a single pathologist. TIL were assessed according to the international consensus and were classified as low, intermediate, and high TIL, respectively, if they present with 60%. Survival data (overall survival and progression-free survival) for TNBC patients who have been treated with immunotherapy are presented. Results: Among the 46 female patients tested for PD-L1 in our institution, 25 (54.4%) presented with mTNBC. Among this group (median age of 46 years), the majority was diagnosed between 2016 and 2020 (56%), in stages I or II (56%), and had invasive ductal carcinomas (96%). Most patients (23; 92%) underwent the SP-142 Ventana test, and the prevalence of positive (PD-L1 ≥ 1%) patients was 40%. Samples from primary tumor were more likely to be PD-L1 positive (9/17; 53%) compared with samples from metastatic sites (1/8; 12.5%) tumors. A total of 19 patients had TIL assessment. Most cases presented with low TIL (n=14; 73.7%), followed by intermediate TIL (n=5; 26.3%), and no cases of high TIL. Patients with PD-L1 negative tumors were more likely to present tumors with low TIL (9/11; 81.8%) versus those with PD-L1 positive tumors (5/8; 62.5%). A total of 13 patients received ICI plus chemotherapy. For this subset of patients, the median age was 47 years, 69.3% (n=9) had PD-L1 positive tumors, and most of them (n=12) received atezolizumab plus nab-paclitaxel. Only one patient received ICI as the first line. The median PFS was 2.36 months (2.4 months for PD-L1+ and 2.01 months PD-L1−). Two patients received the combination of ICI plus chemotherapy for &gt;6 months. Disease progression was the main reason (64%) for ICI interruption. Only one patient stopped therapy for toxicity (neuropathy). Conclusion: To the best of our knowledge, this is the first “real-world” Brazilian study evaluating the prevalence of PD-L1 positive mTNBC and its association with TIL. The prevalence of PD-L1 in mTNBC is consistent with scientific literature, and physicians should prioritize performing the test in samples from primary tumors
APA, Harvard, Vancouver, ISO, and other styles
4

Malm, J., M. Laurell, I. M. Nilsson, and B. Dahlbäck. "PROTEIN C, PROTEIN S AND THE FIBRINOLYTIC SYSTEM IN PATIENTS WITH A HISTORY OF THROMBOSIS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643643.

Full text
Abstract:
Consecutive patients with a history of thrombo-embolic disease (n = 241, 109 males, 132 females, mean age 46 y), referred to the Coagulation Laboratory during an 18 month period, were analysed for defects in their coagulation and fibrinolytic systems. The diagnosis of thrombosis had been verified with phlebography and that of pulmonary embolus with scintigraphy or angiography. Retinal venous thrombosis was found in 15 of the patients. In 15 cases the thrombotic episodes occurred postoperatively, in 15 during pregnancy, in 12 during the postpartum period and in 20 during use of oral contraceptives. In the remaining cases no clinical riskfactors were identified.The concentration of protein C zymogen was measured with an immunoradiometric assay. Functional protein C was determined with a clotting inhibition assay. Protein C deficiency was found in 8 cases. Two of these had a functional protein C deficiency with normal zymogen levels. The concentration of total, as well as free (not in complex with C4b-binding protein), protein S was determined with a radioimmunoassay. Two cases of protein S deficiency were detected. Three patients with antithrombin III deficiency and two with plasminogen deficiency were found.The fibrinolytic activity after venous occlusion was analysed in 216 patients. Decreased levels were found in 32 %. The concentration of tissue plasminogen activator inhibitor (PAI) was measured in 110 patients and found to be increased in 65 % of the cases. In 99 patients both the fibrinolytic activity and the PAI concentration were measured. A combination of decreased fibrinolytic activity and increased levels of PAI was found in 44 cases. The concentration of tissue plasminogen activator antigen was decreased in 22 % of 105 cases analysed.Thus, in this material of patients with thrombo-embolic disease, abnormalities were found in 47 %. Defects in the fibrinolytic system were the most common findings. Protein C or protein S deficiency was diagnosed in less than 5 % of the cases.
APA, Harvard, Vancouver, ISO, and other styles
5

Nakka, Thejeswar, Prasanth Ganesan, Luxitaa Goenka, et al. "Epithelial Ovarian Cancer: Real-World Outcomes." In Annual Conference of Indian Society of Medical and Paediatric Oncology (ISMPO). Thieme Medical and Scientific Publishers Pvt. Ltd., 2021. http://dx.doi.org/10.1055/s-0041-1735369.

Full text
Abstract:
Abstract Introduction Ovarian cancer is the third most common cancer and the second most common cause of death among gynecological cancers in Indian women. Ovarian cancer is heterogeneous, among them, epithelial ovarian cancer (EOC) is the most common. Primary cytoreductive surgery along with six to eight cycles of a combination of platinum and taxanes chemotherapy is the cornerstone of first-line treatment in EOC. This study was done to find clinicopathological factors affecting survival outcomes with first-line therapy in EOC in a real-world setting. Objectives This study was aimed to find factors affecting progression-free survival (PFS) and overall survival (OS) with first-line treatment in EOC. Materials and Methods We conducted a single-center retrospective study. We screened all the patients diagnosed with ovarian cancer from January 2015 till December 2019. We locked data in August 2019. Eligible patients were histologically confirmed EOC who underwent primary cytoreduction or received more than or equal to two cycles of chemotherapy or both. Patients who had received first-line treatment at another hospital were excluded. Results Patients demographics and clinical characteristics: between January 5, 2015 to August 31, 2019, 435 patients with a diagnosis of ovarian malignancy were registered at our center. Among them, 406 (82%) had EOC, 290 (64%) newly diagnosed, and fulfilling eligibility criteria were included in the final analysis. The median age of the cohort was 53 years (range: 21–89 years) and 157 patients (54%) were &gt;50 years of age (the Eastern Oncology Cooperative Group Performance status was ≥ 2 in 124 patients [43%]; median duration of symptoms was 3 months; and stage III/IV: 240 [83%]). Grading of the tumor was available in 240 patients of which 219 (91%) were of high grade. Subtyping was available in 272 patients (94%) of which the serous subtype was the most common constituting 228 patients (79%).Treatment Most patients received chemotherapy (n = 283 [98%]) as the first modality of treatment (neoadjuvant/adjuvant and palliative). As neoadjuvant (NACT) in 130 patients (45%) and as adjuvant following surgery in 81 patients (29%). The most common chemotherapy regimen was a combination of carboplatin and paclitaxel in 256 patients (88%). Among 290 patients 218 (75%) underwent cytoreductive surgery. Among them, optimal cytoreduction was achieved in 108 patients (52%). Optimal cytoreduction rate (OCR) with upfront surgery and after NACT was 44 and 53%, respectively (Chi-square test: 0.86; p = 0.35).Survival The median follow-up of the study was 17 months (range: 10–28 months) and it was 20 months (range: 12–35 months) for patients who were alive. At last, follow-up, 149 patients (51%) had progressed and 109 (38%) died. The estimated median PFS and OS were 19 months (95% CI: 16.1–21.0) and 39 months (95% CI: 29.0–48.8), respectively. On multivariate analysis, primary surgery (HR: 0.1, 95% CI: 0.06–0.21; p-value: &lt;0.001) and early-stage disease (HR: 0.2, 95% CI: 0.1–0.6; p-value 0.04) were associated with superior PFS and primary surgery (HR: 0.1, 95% CI: 0.09–0.2; p-value: &lt;0.001) was associated with superior OS. Conclusion Primary surgery (upfront or interval) was associated with improved survival. Newer agents like bevacizumab, poly-ADP (adenosine diphosphate)-ribose polymerase inhibitors and HIPEC should be incorporated precisely into first line of therapy to improve outcomes.
APA, Harvard, Vancouver, ISO, and other styles
6

Cavalcante, Jéssica Moreira, Mauro Henrique Muniz Goursand, Douglas de Miranda Pires, Paula Clarke, and Fernanda Silveira de Oliveira. "LYMPHOCYTIC MASTOPHATY PRECEDING BILATERAL PRIMARY BREAST LYMPHOMA – CASE REPORT." In Scientifc papers of XXIII Brazilian Breast Congress - 2021. Mastology, 2021. http://dx.doi.org/10.29289/259453942021v31s1011.

Full text
Abstract:
Introduction: Lymphocytic mastopathy is a rare condition, responsible for 1% of all benign breast lesions, commonly associated to autoimmune disorders and diabetes (especially insulin-requiring diabetes). The differential diagnosis may be difficult, since the clinical and imaging aspects can mimic malignant disease. Some authors suggest that lymphocytic mastitis could be a precursor of primary breast lymphoma. However, other studies disagree with such correlation, presenting the mastopathy as a distinct diagnosis, but one of difficult differentiation from lymphoma. To avoid misdiagnosis, an appropriate study of the specimen is recommended, through image-guided or surgical biopsy and immunohistochemical markers. Due to its unique presentation and scarce reports in global literature, we present a case of a patient with lymphocytic mastopathy that preceded the diagnosis of primary bilateral lymphoma. Case report: A healthy 46-year-old, nulliparous, premenopausal female patient, with a negative family history of breast cancer, presented palpable masses in the inferior medial quadrants (IMQ) of the right and left breasts, measuring 5 cm and 1.2 cm, respectively, both classified as Category 4 in the BIRADS lexicon. She was referred for excisional surgical biopsy, with anatomopathological diagnosis compatible with nonspecific chronic mastitis in both specimens. Immunohistochemistry (IHC) revealed lymphocytic mastitis, without signs of malignancy. The patient maintained regular control with a mastologist and after two years of follow-up, two new category 4 masses were identified: one in the IMQ of the right breast, and another in the retro-areolar (RRA) region of the left one. Core biopsy of the masses revealed lymphoproliferative disease, with IHC showing non-Hodgkins’ diffuse large B-cell lymphoma, (Ki67 60%, CD20+, BCL6+). A magnetic resonance imaging of the breasts identified bilateral breast masses in the RRA region, with extension to the medial quadrants and no cleavage plane with the nipple, the largest measuring 4.5 cm, in the left breast, with heterogeneous internal enhancement and type III kinetic pattern, in addition to an atypical lymph node in level I of the right axilla. Positron emission tomography–computed tomography (PET-CT) ruled out distant disease, and confirmed it was restricted to the breasts. The patient received six cycles of chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone, presenting a complete metabolic response on PET-CT. Subsequently, radiotherapy was performed on both breasts at a dose of 30 Grays in 15 fractions each and, after a clinical follow-up of two months, no new abnormalities have been noted.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "BGE 142 III 466"

1

Citovsky, Vitaly, and Yedidya Gafni. Viral and Host Cell Determinants of Nuclear Import and Export of the Tomato Yellow Leaf Curl Virus in Tomato Plants. United States Department of Agriculture, 2002. http://dx.doi.org/10.32747/2002.7585200.bard.

Full text
Abstract:
Tomato yellow leaf curl geminivirus (TYLCV) is a major pathogen of cultivated tomato, causing up to 100% crop loss in many parts of the world. In Israel, where TYLCV epidemics have been recorded since the 1960' s, this viral disease is well known and has been of economic significance ever since. In recent years, TYLCV outbreaks also occurred in the "New World" - Cuba, The Dominican Republic, and in the USA, in Florida, Georgia and Louisiana. Thus, TYLCV substantially hinders tomato growth throughout the world. Surprisingly, however, little is known about the molecular mechanisms of TYLCV interaction with the host tomato cells. The present proposal, a continuation of the project supported by BARD from 1994, expanded our understanding of the molecular mechanisms by which TYLCV enters the host cell nucleus for replication and transcription and exits it for the subsequent cell-to-cell spread. Our project sought two objectives: I. To study the roles of the viral capsid protein (CP) and host cell factors in TYLCV nuclear import. II. To study the roles of CP and host cell factors in TYLCV nuclear export. Our research toward these goals have produced the following major achievements: . Developed a one-hybrid assay for protein nuclear export and import (#3 in the List of Publications). . Identified a functional nuclear export signal (NES) in the capsid protein (CP) of TYLCV (#3 in the List of Publications). . Discovered homotypic interactions between intact TYLCV CP molecules and analyzed these interactions using deletion mutagenesis of TYLCV CP (#5 in the List of Publications). . Showed developmental and tissue-specific expression of the host factor required for nuclear import of TYLCV CP, tomato karyopherin alpha 1, in transgenic tomato plants (#14 in the List of Publications). . By analogy to nuclear import of TYLCV ,identified an Arabidopsis VIPI protein that participates in nuclear import of Agrobacterium T -complexes via the karyopherin alpha pathway (#4,6, and 8 in the List of Publications). These research findings provided significant insights into (i) the molecular pathway of TYLCV entry into the host cell nucleus, and (ii) the mechanism by which TYLCV is exported from the nucleus for the cell-to-cell spread of infection. Furthermore, the obtained knowledge will help to develop specific strategies to attenuate TYLCV infection, for example, by blocking viral entry into and/or exit out of the host cell nucleus. Also, as much of our findings is relevant to all geminiviruses, new anti- TYLCV approaches developed based on the results of our research will be useful to combat other members of the Geminivirus family. Finally, in addition to the study of TYLCV nuclear import and export, our research contributed to our understanding of general mechanisms for nucleocytoplasmic shuttling of proteins and nucleic acids in plant cells.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography