Academic literature on the topic 'Bi Metallic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bi Metallic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bi Metallic"

1

Mohan, Santhanam, and Manickam Vishnu Devan. "Photocatalytic activity of Ag/Ni bi-metallic nanoparticles on textile dye removal." Green Processing and Synthesis 8, no. 1 (January 28, 2019): 895–900. http://dx.doi.org/10.1515/gps-2019-0060.

Full text
Abstract:
Abstract The photocatalysis of Ag/Ni bi-metallic nano-particles on safranin O dye degradation was evaluated by UV light irradiations. Ag/Ni bi-metallic nanoparticles were synthesized by the green approach using Zingiber officinale root (Zinger) extract. The average particles size of Ag/Ni bi-metallic nanoparticles was found to be 70-88 nm from SEM image and from XRD patterns it was confirmed that the existence of Ag/Ni bi-metallic nano-particles. 8 mg of Ag/Ni bi-metallic nanoparticles present in 40 mL of 10 ppm dye, degraded completely in presence of UV light irradiations within 30 min time durations. The effect of dye degradation within a short period of time (30 min) was due to wide band gap energy and photochemical redox reactions.
APA, Harvard, Vancouver, ISO, and other styles
2

Arčon, Iztok, Stefano Paganelli, Oreste Piccolo, Michele Gallo, Katarina Vogel-Mikuš, and Franco Baldi. "XAS analysis of iron and palladium bonded to a polysaccharide produced anaerobically by a strain ofKlebsiella oxytoca." Journal of Synchrotron Radiation 22, no. 5 (July 16, 2015): 1215–26. http://dx.doi.org/10.1107/s1600577515010371.

Full text
Abstract:
Klebsiella oxytocaBAS-10 ferments citrate to acetic acid and CO2, and secretes a specific exopolysaccharide (EPS), which is able to bind different metallic species. These biomaterials may be used for different biotechnological purposes, including applications as innovative green biogenerated catalysts. In production of biogenerated Pd species, the Fe(III) as ferric citrate is added to anaerobic culture ofK. oxytocaBAS-10, in the presence of palladium species, to increase the EPS secretion and improve Pd-EPS yield. In this process, bi-metallic (FePd-EPS) biomaterials were produced for the first time. The morphology of bi-metallic EPS, and the chemical state of the two metals in the FePd-EPS, are investigated by transmission electron microscopy, Fourier transform infra-red spectroscopy, micro-X-ray fluorescence, and X-ray absorption spectroscopy methods (XANES and EXAFS), and compared with mono-metallic Pd-EPS and Fe-EPS complexes. Iron in FePd-EPS is in the mineralized form of iron oxides/hydroxides, predominantly in the form of Fe3+, with a small amount of Fe2+in the structure, most probably a mixture of different nano-crystalline iron oxides and hydroxides, as in mono-metallic Fe-EPS. Palladium is found as Pd(0) in the form of metallic nanoparticles with face-centred cubic structure in both bi-metallic (FePd-EPS) and mono-metallic (Pd-EPS) species. In bi-metallic species, Pd and Fe nanoparticles agglomerate in larger clusters, but they remain spatially separated. The catalytic ability of bi-metallic species (FePd-EPS) in a hydrodechlorination reaction is improved in comparison with mono-metallic Pd-EPS.
APA, Harvard, Vancouver, ISO, and other styles
3

Mattei, J. G., F. Pelletier, D. Ciuculescu, P. Lecante, C. Amiens, and M. J. Casanove. "Development of Bi-Metallic Fe—Bi Nanocomposites: Synthesis and Characterization." Journal of Nanoscience and Nanotechnology 12, no. 11 (November 1, 2012): 8640–46. http://dx.doi.org/10.1166/jnn.2012.6475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Essa, K., I. Kacmarcik, P. Hartley, M. Plancak, and D. Vilotic. "Upsetting of bi-metallic ring billets." Journal of Materials Processing Technology 212, no. 4 (April 2012): 817–24. http://dx.doi.org/10.1016/j.jmatprotec.2011.11.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

VandeLune, Christian, Tutku Tazegul, Samuel J Ahrenholz, Caleb Iehl, Victoria Vivtcharenko, Eli Schmidt, Kevin N Dibbern, et al. "Implant-related artifacts around metallic and bio-integrative screws: a CT scan 3D Hounsfield unit assessment." Journal of the Foot & Ankle 15, no. 2 (August 31, 2021): 95–99. http://dx.doi.org/10.30795/jfootankle.2021.v15.1562.

Full text
Abstract:
Objective: To assess the degree of implant-related artifacts (IRA) around metallic and bio-integrative (BI) cannulated screws using Hounsfield units (HU) on computed tomography (CT). Our hypothesis was that BI implants would demonstrate significantly decreased IRA around the inserted screws. Methods: In this cadaveric CT imaging study, we used 2 below-knee specimens. Medial displacement calcaneal osteotomy was performed, and the specimens were fixed with either metallic or BI screws. HU values were measured over 4 different lines that crossed the osteotomy position. Results: The mean HU value was decreased in the BI implants compared to the metallic ones in 3 different positions: near the screw, directly over the screw, and inside the screw cannula. At the line placed 1 cm dorsal to the screw, the HU value for the metallic screw was lower than that for the BI screw. Conclusions: We found metallic implants to demonstrate significantly increased HU values in regions close to the implant and significantly decreased values 1 cm away from the implant, when compared to the BI screw. The decreased HU values 1 cm away from the implant could be due to a shielding effect of the surrounding bone, hindering the assessment of union and healing. BI implants represent an alternative to decrease these IRA effects. Level of Evidence III; Case-Control Study.
APA, Harvard, Vancouver, ISO, and other styles
6

Li, You Tang, and Chang Feng Yan. "Fracture Design of Metallic Matrix Crack for Bi-Materials." Key Engineering Materials 306-308 (March 2006): 7–12. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.7.

Full text
Abstract:
The fracture designs of metallic matrix crack for bi-materials were studied. The stress field and displacement field of plane matrix crack was setup at first. Then the finite element method is used to analyses the stress singularity of matrix cracks between different materials. The solutions of stress singularity of a cracked bi-materials beam under uniform tension, and the three-point bending of bi-materials specimen were computed. The result lays a theoretic and applied foundation for the practical engineering application of metallic matrix crack for bi-materials.
APA, Harvard, Vancouver, ISO, and other styles
7

Siddiqui, Muhammad Kamran, Yu-Ming Chu, Muhammad Nasir, and Murat Cancan. "On analysis of thermodynamic properties of cuboctahedral bi-metallic structure." Main Group Metal Chemistry 44, no. 1 (January 1, 2021): 117–28. http://dx.doi.org/10.1515/mgmc-2021-0014.

Full text
Abstract:
Abstract Porous materials, for example, metalnatural structures (MOFs) and their discrete partners metalnatural polyhedra (MOPs), that are built from coordinatively unsaturated inorganic hubs show incredible potential for application in gas adsorption/partition cycles, catalysis, and arising openings in hardware, optics, detecting, and biotechnology. A well-known hetero-bimetallic metalorganic polyhedra of this discrete partners metalnatural polyhedra (MOPs) class is cuboctahedral bi-metallic stricture. In this paper, we discuss the stricture of Hetero-bimetallic metalorganic polyhedra (cuboctahedral bi-metallic). Also, we computed the topological indices based on the degree of atoms in this cuboctahedral bi-metallic structure.
APA, Harvard, Vancouver, ISO, and other styles
8

Reddy, Naveen Krishna, Ljiljana Palangetic, Linda Stappers, Johan Buitenhuis, Jan Fransaer, and Christian Clasen. "Metallic and bi-metallic Janus nanofibers: electrical and self-propulsion properties." Journal of Materials Chemistry C 1, no. 23 (2013): 3646. http://dx.doi.org/10.1039/c3tc30176a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Haifeng, Aimin Wang, Hong Li, Wensheng Sun, Bingzhe Ding, Zhuangqi Hu, Hongnian Cai, Lu Wang, and Wen Li. "Quasi-static compressive property of metallic glass/porous tungsten bi-continuous phase composite." Journal of Materials Research 21, no. 6 (June 1, 2006): 1351–54. http://dx.doi.org/10.1557/jmr.2006.0166.

Full text
Abstract:
A metallic glass/porous tungsten bi-continuous phase composite was prepared by pressure infiltration whose quasi-static compressive stress and strain to macroscopic failure are much higher than those of all the previous tungsten-reinforced metallic glass matrix composites. It deserves to be mentioned that because of its high-yield strength and high elastic strain limit, metallic glass seems to be used as the reinforcement to strengthen the crystalline materials in the bi-continuous phase composite materials.
APA, Harvard, Vancouver, ISO, and other styles
10

Politis, Denis J., Nicholas J. Politis, Jianguo Lin, Trevor A. Dean, and Daniel S. Balint. "An analysis of the tooth stress distribution of forged bi-metallic gears." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, no. 1 (October 25, 2016): 124–39. http://dx.doi.org/10.1177/0954406216675638.

Full text
Abstract:
The work described in this paper is an evaluation of the contact characteristics of bi-metallic gears forged through a novel bi-metallic gear forging process. Finite element analysis of the contact characteristics of single material gears was first performed to validate the tooth contact and tooth root stresses with empirical American Gear Manufacturers Association and British Standard standards. Having verified the validity of the model, simulations were performed for gears comprising lightweight cores with teeth bounded by steel bands of uniform thicknesses, 1 mm, 2 mm, 4 mm, and 6 mm to evaluate the differences in stress distribution and compare to single material gear teeth. The forged profiles obtained experimentally by utilising 2 mm, 4 mm, and 6 mm thickness bands via the bi-metallic gear forging process are also discussed. The uniform thickness model is subsequently adapted to incorporate the experimental forged profiles in order to estimate the contact stress, root stress, and stress distribution within the teeth to identify performance differences between bi-metallic forged gears and traditional single material gears.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bi Metallic"

1

Brown, Matthew George. "Ion scattering studies of metallic and complex bi-metallic systems." Thesis, University of Warwick, 2010. http://wrap.warwick.ac.uk/3625/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cottrell, Craig Ashley. "The interaction of H←2, D←2 with metallic and bi-metallic surfaces." Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Erunal, Ebru. "Sturcuture And Activity Predictions On Mono- And Bi-metallic Catalysts." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607178/index.pdf.

Full text
Abstract:
The purpose of this study is to simulate Pt&ndash
IB (IB=Ag, Au, Cu) and PtPd bimetallic catalysts with Monte Carlo method for 201, 586, 1289, and 2406 atom containing clusters in the temperature range between 298&ndash
1000K. The simulations were based on a coordination-dependent potential model in which binary interaction parameters were used. The binary interaction parameters were determined from the available thermodynamic data and classical thermodynamics mixing rules. The equilibrium structure of the clusters was dictated as a perfect cubo-octohedral shape. In the first part of this study, Pt&ndash
Ib bimetallics were modelled in order to test the Monte Carlo program against the previously published work. In the second part of the study, the surface composition of PtPd bimetallic catalysts as a function of temperature and cluster size were estimated in order to offer further insight to the catalytic activity for CO oxidation reaction. It was found that at low temperatures Pd segregation took place on the catalyst. The Monte Carlo predictions were in good agreement with the published experimental data on the surface compositions.
APA, Harvard, Vancouver, ISO, and other styles
4

Cardanini, Alisha Ann. "Finite Element Analysis of Bi-Metallic Structures with Adhesive Delamination." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu150185598849201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lo, Wing Kit. "Synthesis, characterization and luminescent properties of mono- and bi-metallic Schiff base complexes." HKBU Institutional Repository, 2004. http://repository.hkbu.edu.hk/etd_ra/585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ibrahim, Mahmoud. "Rhodium based mono-and bi-metallic nanoparticles : synthesis, characterization and application in catalysis." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30063/document.

Full text
Abstract:
Dans cette thèse, la synthèse, la caractérisation et les applications en catalyse de nanoparticules mono- et bimétalliques à base de rhodium sont décrites. Le rhodium a été choisi comme métal central de cette étude en raison de son intérêt reconnu en catalyse, principalement pour les réactions d'hydrogénation et d'hydroformylation. La synthèse de nanoparticules de rhodium monométalliques constitue le coeur de ce travail. Elle a été réalisée par décomposition du complexe organométallique [Rh(C3H5)3] en solution, sous pression de dihydrogène et en présence de différents stabilisants tels que des ligands et des polymères pour contrôler la croissance des particules. Certaines nanoparticules ont été déposées sur la surface d'une silice magnétique fonctionnalisée par des groupements amines utilisée comme support, dans un objectif de récupération plus aisée pour le recyclage des catalyseurs. Diverses nanoparticules bimétalliques ont également été préparées par co-décomposition du complexe [Rh(C3H5)3] avec d'autres précurseurs organométalliques, incluant [Ni(cod)2], [Ru(cod)(cot)], [Pt(nor)3] et [Pd(dba)2]2. En modulant les ratios de métaux entre [Rh] et le second métal [M], ainsi que la nature et la quantité de stabilisant utilisé pour la synthèse, des nanoparticules de tailles et de compositions chimiques différentes ont pu être obtenues. La caractérisation des nanoparticules ainsi préparées a été menée en utilisant une combinaison de techniques de l'état de l'art (TEM, HRTEM, STEM-EDX, ICP, WAXS, EXAFS, XANES, XPS, RMN ...). Pour certaines nanoparticules de rhodium, des études de surface ont été réalisées, par adsorption du CO sur la surface des particules et un suivi par des techniques spectroscopiques (FT-IR, RMN) pour sonder leur état de surface. Un autre aspect de ce travail a concerné l'évaluation des nanoparticules synthétisées dans des réactions catalytiques, en particulier réactions d'hydrogénation avec des particules monométalliques de Rh et réaction d'hydrogénolyse avec des nanoparticules bimétalliques RhNiOx. Dans le cas de la catalyse d'hydrogénation, des études en conditions colloïdales et supportées ont été réalisées. L'originalité de ce travail réside dans le développement d'outils de synthèse simples inspirés de la chimie organométallique pour obtenir des nanoparticules à base de rhodium bien contrôlées en termes de taille, distribution en taille, composition et état de surface, tous ces paramètres étant importants quelle que soit l'application visée. L'intérêt des nanoparticules obtenues en catalyse a également été mis en évidence dans différentes réactions. Ce travail de thèse offre de nouvelles opportunités de recherche, tant en nanochimie qu'en catalyse
In this thesis, synthesis, characterization and catalytic applications of mono- and bi-metallic rhodium-based nanoparticles are reported. Rhodium has been chosen as a primary metal given its high interest in catalysis, mainly in hydrogenation and hydroformylation reactions. The synthesis of mono-metallic rhodium nanoparticles (NPs) is the core of this work. It was performed by decomposition of the organometallic complex [Rh(C3H5)3] in solution under dihydrogen pressure and in the presence of different stabilizers including ligands and polymers to control the growth of the particles. Selected nanoparticles were deposited on the surface of amino-functionalized magnetic silica as a support for recovery and recycling concerns in catalysis. Diverse bi-metallic nanoparticles have been also prepared in one-pot conditions by co-decomposition of the [Rh(C3H5)3] with other organometallic precursors including [Ni(cod)2], [Ru(cod)(cot)], [Pt(nor)3] and [Pd(dba)2]2. Tuning of the metal ratios between [Rh] and the second metal [M], or of the nature and the amount of the stabilizer used for the synthesis allowed to obtain nanoparticles of different sizes and chemical compositions. The characterization of the obtained nanoparticles was performed by using a combination of state-of-art techniques (TEM, HRTEM, STEM-EDX, ICP, WAXS, EXAFS, Xanes, XPS, NMR...). Surface studies were carried out in some cases, by adsorbing CO on the surface of the particles which was followed by spectroscopic techniques (FT-IR, NMR) to probe their surface state. Some of these nanoparticles were investigated in catalytic reactions, mainly hydrogenation with Rh NPs and hydrogenolysis for RhNiOx NPs. Both colloidal and supported catalytic studies were carried out in the case of hydrogenation catalysis. The originality of this work lies in the development of simple synthesis tools inspired from organometallic chemistry to get well-controlled rhodium-based nanoparticles in terms of size, size distribution, composition and surface state, all these parameters being important whatever the target application. The interest of the obtained nanoparticles in catalysis has been also evidenced in different reactions. This PhD work may open new opportunities of research both in nanochemistry and catalysis
APA, Harvard, Vancouver, ISO, and other styles
7

Ayvali, Tugçe. "Rhenium based mono- and bi-metallic nanoparticles : synthesis, characterization and application in catalysis." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30269/document.

Full text
Abstract:
Dans cette thèse, la synthèse, la caractérisation et les applications catalytiques préliminaires des nanoparticules mono- et bi-métalliques à base de rhénium sont présentées. Le Rhénium a été choisi compte tenu de la connaissance de sa contribution positive en termes d'activité catalytique et la sélectivité lors de l'hydrogénation des groupes fonctionnels difficiles. Les nanoparticules mono-métalliques de rhénium ont été préparées par décomposition du précurseur [Re2(C3H5)4]. Les nanoparticules bimétalliques ont été synthétisés par les co-décompositions ou deux étapes décomposition de deux complexes différents de rhénium, à savoir [Re2(CO)10] et [Re2(C3H5)4] avec d'autres complexes organométalliques tels que [Ru(COD)(COT)], [Ru(Me-allyl)2(COD)], [Pt(CH3)2(COD)] et [Pt(C7H10)3]. En choisissant la nature des complexes organométalliques et les conditions de réaction, des nanoparticules bi-métalliques à base de rhénium présentant des morphologies différentes peuvent être préparées quantitativement. La synthèse a été effectuée en solution sous pression de dihydrogène (3 bars) et en présence soit d'une polymère (polyvinylpyrrolidone), ou un ligand faiblement coordinant (hexadécylamine) comme des agents stabilisant. La caractérisation précise des nanoparticules ainsi obtenues a été réalisée en utilisant une combinaison de l'état de l'art des techniques de (WAXS, EXAFS, MET, HR-MET, METS-EDX, METS-HAADF, AE). Les études de réactivité de surface (réactions hydrogénation de norbornène, oxydation et adsorption CO) ont également été réalisées et suivies par des techniques spectroscopiques (RMN, FT-IR) pour déterminer leur état de surface et appréhender leur intérêt pour la catalyse. Par ce moyen, des informations utiles ont été obtenues sur leur chimie de surface, comme suit: 1) hydrures sont présents sur la surface métallique et sont très fortement coordonnés à la surface de rhénium en accord avec la chimie moléculaire de rhénium; 2) CO peut remplacer les hydrures et est également fortement coordonné à la surface, mais peut être substitué, oxydée ou dissocié. Ces réactions sont plus faciles sur des nanoparticules bi-métalliques à base de Re de type alliage. 3) Les NPs de rhénium pur et les alliages bimétalliques nanoparticules de ruthénium et rhénium affiche un état de base zéro et une coquille d'oxyde alors que les nanoparticules bimétalliques de type cœur-coquille ont une structure amorphe. L'originalité de ce travail réside sur le développement d'une approche systématique pour la préparation de nanoparticules à base de rhénium pour la première fois dans l'équipe et dans la littérature, en appliquant l'approche organométallique largement connu dans le groupe pour d'autres systèmes métalliques. Cette méthode est bien connu comme un moyen efficace d'obtenir des nanostructures bien contrôlées avec des surfaces propres ce qui est important principalement en catalyse
In this PhD thesis, the synthesis, characterization and preliminary catalytic application of rhenium based mono- and bi-metallic nanoparticles are reported. Rhenium has been chosen as a primary metal given the knowledge of its positive contribution in terms of catalytic activity and selectivity in the hydrogenation of difficult functional groups. Mono-metallic rhenium nanoparticles were prepared by decomposition of [Re2(C3H5)4]. Rhenium-based bimetallic nanoparticles were synthesized by co-decompositions or two-step decomposition of two different rhenium complexes, namely [Re2(CO)10] and [Re2(C3H5)4], with other organometallic complexes such as [Ru(COD)(COT)], [Ru(Me-Allyl)2(COD)], [Pt(CH3)2(COD)] and [Pt(C7H10)3]. By tuning the nature of organometallic complexes and the reaction conditions, rhenium-based bimetallic nanoparticles displaying different morphologies could be quantitatively prepared. The synthesis was carried out in solution under mild pressure of dihydrogen (3 bar) and in the presence of either a polymer (polyvinylpyrolidone) or a weakly coordinating ligand (hexadecylamine) as stabilizing agents. The precise characterization of the so-obtained nanoparticles was performed by using a combination of state-of-the art techniques (WAXS, EXAFS, TEM, HRTEM, STEM-EDX, STEM-HAADF, EA). Surface reactivity studies (norbornene hydrogenation, oxidation and CO adsorption reactions) were also carried out and followed by spectroscopic techniques (NMR, FT-IR) to determine their surface state and apprehend better their interest in catalysis. By this way, useful information could be obtained on their surface chemistry, as following: 1) Hydrides are present on the metallic surface and are very strongly coordinated to rhenium in agreement with rhenium molecular chemistry; 2) CO can substitute hydrides and is also strongly coordinated to the surface of Re but can react further to be substituted, oxidized or dissociated, where the latter is easier on alloy type Re-based bimetallic nanoparticles. 3) Oxidation of pure rhenium and alloy bimetallic ruthenium-rhenium nanoparticles display a zero state core and an oxide shell while core-shell type bimetallic nanoparticles result in amorphous structure. The originality of this work lies on the development of a systematic approach for the preparation of rhenium-based nanoparticles for the first time in the team and in the literature, by applying the organometallic approach largely experienced in the group for other metal systems. This method is well-known as an efficient way to obtain well-controlled nanostructures with clean surfaces, important mainly in catalysis
APA, Harvard, Vancouver, ISO, and other styles
8

Bashal, Ali Habib. "Aqueous phase hydrogenation of succinic acid using mono-and bi-metallic ruthenium-based catalysts." Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3021601/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Murch, Graeme E., Alexander V. Evteev, Elena V. Levchenko, and Irina V. Belova. "Recent progress in the simulation of diffusion associated with hollow and Bi-metallic nanoparticles." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-189826.

Full text
Abstract:
In this paper, we review the recent understanding gained by kinetic Monte Carlo and molecular dynamics simulation and related theory of the diffusion processes involved in 1) the formation and later shrinkage of hollow nanoparticles and 2) the formation of segregated bi-metallic nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
10

Murch, Graeme E., Alexander V. Evteev, Elena V. Levchenko, and Irina V. Belova. "Recent progress in the simulation of diffusion associated with hollow and Bi-metallic nanoparticles." Diffusion fundamentals 11 (2009) 42, S. 1-22, 2009. https://ul.qucosa.de/id/qucosa%3A13998.

Full text
Abstract:
In this paper, we review the recent understanding gained by kinetic Monte Carlo and molecular dynamics simulation and related theory of the diffusion processes involved in 1) the formation and later shrinkage of hollow nanoparticles and 2) the formation of segregated bi-metallic nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Bi Metallic"

1

Scott, M. W. CO hydrogenation over Ru-Mn supported BI-metallic catalyst. Manchester: UMIST, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1959-, Alkallay Rachel, ed. The Bi-Metallic Question: A celebration of the Montreal Sherlock Holmes Society 1989. Montreal: Bimetallic Question, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dillaye, Stephen Devalson. Empire of Money: A Review of Hon. Hugh Mcculloch's Seven Lectures Before Harvard University, on Representative Money, Bi-Metallic Currency, National Banks, Taxation, and Labor and Credit. Creative Media Partners, LLC, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dillaye, Stephen Devalson. Empire of Money: A Review of Hon. Hugh Mcculloch's Seven Lectures Before Harvard University, on Representative Money, Bi-Metallic Currency, National Banks, Taxation, and Labor and Credit. Creative Media Partners, LLC, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bi Metallic"

1

Ross, Robert B. "Bismuth Bi." In Metallic Materials Specification Handbook, 74–75. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3482-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, You Tang, and Chang Feng Yan. "Fracture Design of Metallic Matrix Crack for Bi-Materials." In Fracture and Strength of Solids VI, 7–12. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-989-x.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Burzo, E. "Extraframework cation distribution in Bi-Y faujasites." In Magnetic Properties of Non-Metallic Inorganic Compounds Based on Transition Elements, 1047. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49337-3_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Özkaya, D., JM Thomas, DS Shephard, T. Maschmeyer, BFG Johnson, C. Sankar, and R. Oldroyd. "STEM Analysis of Bi-Metallic Catalysts in Mesoporous MCM-41." In Electron Microscopy and Analysis 1997, 403–6. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003063056-104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Epler, Mario E., and Wojciech Z. Misiolek. "Novel Billet Design for Co-extrusion of Bi-metallic Shapes and Tubes." In 60 Excellent Inventions in Metal Forming, 281–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46312-3_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamamoto, Namiko, Eleftherios Gdoutos, and Chiara Daraio. "Fabrication and Characterization of Bi-metallic, Structured Films with Ultra-low Thermal Expansion." In Experimental Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 6, 85–88. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00873-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Srinivasa Rao, K., Sk Shoukath Vali, K. Girija Sravani, P. Ashok Kumar, and Koushik Guha. "Design and Simulation of Bi-metallic RF MEMS Switch for Fast Switching Time." In Lecture Notes in Electrical Engineering, 213–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1570-2_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Raghava, G., S. Vishnuvardhan, M. Saravanan, P. Gandhi, Suranjit Kumar, P. K. Singh, I. A. Khan, and V. Bhasin. "Monotonic Fracture Studies on Bi-metallic Pipe Weld Joints Having Circumferential Through-Wall Crack." In Advances in Structural Integrity, 419–34. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7197-3_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thieme, C. L. H., D. Daly, L. J. Masur, and J. Schwartz. "High Strain Warm Extrusion and Warm Rolling of Multifilamentary Bi-2223 Metallic Precursor Wire." In Advances in Cryogenic Engineering Materials, 533–40. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9056-6_70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sun, Chang, Zili Wang, Shuyou Zhang, Le Wang, and Jianrong Tan. "Physical Logic Enhanced Network for Small-Sample Bi-layer Metallic Tubes Bending Springback Prediction." In Artificial Intelligence, 124–35. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-20500-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bi Metallic"

1

Vukobratovich, Daniel, Allen Gerzoff, and Myung K. Cho. "Therm-optic analysis of bi-metallic mirrors." In Optical Science, Engineering and Instrumentation '97, edited by Alson E. Hatheway. SPIE, 1997. http://dx.doi.org/10.1117/12.284079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Szakmany, Gergo P., Alexei O. Orlov, Gary H. Bernstein, and Wolfgang Porod. "Bi-metallic and mono-metallic antenna-coupled nanoscale thermocouples for infrared detection." In 2014 72nd Annual Device Research Conference (DRC). IEEE, 2014. http://dx.doi.org/10.1109/drc.2014.6872300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walz, D. "On-line characterisation of metallic micro contamination for ULSI microelectronics." In IEE Colloquium on Advanced MOS and Bi-Polar Devices. IEE, 1995. http://dx.doi.org/10.1049/ic:19950185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hargather, Michael J., Jamie Kimberley, and Steven G. Thoma. "Failure and fragmentation of pressed bi-metallic composites." In SHOCK COMPRESSION OF CONDENSED MATTER - 2017: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Author(s), 2018. http://dx.doi.org/10.1063/1.5044974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kashyap, Anuradha, Partha Bir Barman, and Surajit Kumar Hazra. "Hydrothermal synthesis of mono/bi-metallic nano-particles." In ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2020): 5th National e-Conference on Advanced Materials and Radiation Physics. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0052917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nguyen, Hoang-Vu, Stephane Leonard Kuziora, and Knut E. Aasmundtveit. "Au-(In-Bi) and Ag-(In-Bi) Metallic Bonding for Temperature Sensitive Materials." In 2022 IEEE 9th Electronics System-Integration Technology Conference (ESTC). IEEE, 2022. http://dx.doi.org/10.1109/estc55720.2022.9939439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Steinbrück, Andrea, Andrea Csáki, Grit Festag, Thomas Schüler, and Wolfgang Fritzsche. "Preparation and optical characterization of core-shell bi-metallic nanoparticles." In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/ecbo.2007.6633_90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bonora, Nicola, Antonio Carlucci, Andrew Ruggiero, and Gianluca Iannitti. "Fracture Integrity Assessment of Flawed Bi-Metallic Girth Weld Joint." In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97276.

Full text
Abstract:
The objective of the work is to establish, for a bi-metallic girth weld joint, up to which level of remote stress/strain is still conservative the use of the standard approach to perform an Engineering Criticality Assessment (ECA) considering the joint made of a single equivalent material. Several flaw types located at the interfaces between the joint materials were considered. Extensive finite element analysis was performed to derive the crack driving force using domain integral method. The possibility to use, with appropriate meshing, the CTOD as parameters to directly derive the J-integral in the numerical simulation is also demonstrated. Computational results indicate that the use of a material curve, obtained as the lower bound of all joint materials curves, lead to conservative results.
APA, Harvard, Vancouver, ISO, and other styles
9

Foo, Esther W., Robert Mt Pettys-Baker, Shawn Sullivan, and Lucy E. Dunne. "Bi-metallic stitched e-textile sensors for sensing salinized liquids." In UbiComp '17: The 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3123021.3123057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Steinbrück, Andrea, Andrea Csáki, Grit Festag, Thomas Schüler, and Wolfgang Fritzsche. "Preparation and optical characterization of core-shell bi-metallic nanoparticles." In European Conference on Biomedical Optics, edited by Jürgen Popp and Gert von Bally. SPIE, 2007. http://dx.doi.org/10.1117/12.728625.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bi Metallic"

1

Der Garabedian, Nicholas, Kiyo Fujimoto, and Kennalee Orme. Bi-metallic Nanoparticle Synthesis for Advanced Manufactured Melt Wires. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1880069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ingraham, Daniel J. Validation of Two Hydrocodes with a Bi-Metallic Shaped Charge Experiment. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1049323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ingraham, Daniel J. Validation of Two Hydrocodes with a Bi-Metallic Shaped Charge Experiment. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1049330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lawal, Adeniyi, James Manganaro, Brian Goodall, and Robert Farrauto. Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1344891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Porter, L. C., E. Appleman, M. A. Beno, C. S. Cariss, K. D. Carlson, H. Cohen, U. Geiser, R. J. Thorn, and J. M. Williams. Synthesis conductivity, and X-ray photoelectron spectrum of Bi sub 2 Sr sub 2 Cu sub 7+X. A new ternary bismuth-oxide system exhibiting metallic conductivity. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5330355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography