Academic literature on the topic 'Bianchi type I models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bianchi type I models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bianchi type I models"

1

Sklavenites, D. "Geodesic Bianchi type cosmological models." General Relativity and Gravitation 24, no. 1 (January 1992): 47–58. http://dx.doi.org/10.1007/bf00756873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bergamini, Roberto, Paolo Sedici, and Paolo Verrocchio. "Inflation for Bianchi type IX models." Physical Review D 55, no. 4 (February 15, 1997): 1896–900. http://dx.doi.org/10.1103/physrevd.55.1896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tkach, V. I., J. J. Rosales, and O. Obregón. "Supersymmetric action for Bianchi type models." Classical and Quantum Gravity 13, no. 9 (September 1, 1996): 2349–56. http://dx.doi.org/10.1088/0264-9381/13/9/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nayak, B. K., and G. B. Bhuyan. "Bianchi type-V perfect fluid models." General Relativity and Gravitation 18, no. 1 (January 1986): 79–91. http://dx.doi.org/10.1007/bf00843752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Adhav, K. S., M. V. Dawande, and V. B. Raut. "Bianchi Type-III String Cosmological Models." International Journal of Theoretical Physics 48, no. 3 (September 16, 2008): 700–705. http://dx.doi.org/10.1007/s10773-008-9846-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nilsson, Ulf S., and Claes Uggla. "Stationary Bianchi type II perfect fluid models." Journal of Mathematical Physics 38, no. 5 (May 1997): 2611–15. http://dx.doi.org/10.1063/1.531998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Singh, J. K., and Shri Ram. "String cosmological models of Bianchi type-III." Astrophysics and Space Science 246, no. 1 (1997): 65–72. http://dx.doi.org/10.1007/bf00637400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pavelkin, V. N. "Cosmological Bianchi type VIII models with rotation." Russian Physics Journal 55, no. 7 (December 2012): 848–51. http://dx.doi.org/10.1007/s11182-012-9889-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sandin, Patrik. "Tilted two-fluid Bianchi type I models." General Relativity and Gravitation 41, no. 11 (April 10, 2009): 2707–24. http://dx.doi.org/10.1007/s10714-009-0799-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Panov, V. F. "Rotating cosmological models of Bianchi type VIII." Soviet Physics Journal 32, no. 5 (May 1989): 403–7. http://dx.doi.org/10.1007/bf00895327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bianchi type I models"

1

Friedrichsen, James Edward. "Quantization of Bianchi type cosmological models /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eriksson, Daniel. "Perturbative Methods in General Relativity." Doctoral thesis, Umeå : Department of Physics, Umeå University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holgersson, David. "Lanczos potentialer i kosmologiska rumtider." Thesis, Linköping University, Department of Mathematics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2582.

Full text
Abstract:

We derive the equation linking the Weyl tensor with its Lanczos potential, called the Weyl-Lanczos equation, in 1+3 covariant formalism for perfect fluid Bianchi type I spacetime and find an explicit expression for a Lanczos potential of the Weyl tensor in these spacetimes. To achieve this, we first need to derive the covariant decomposition of the Lanczos potential in this formalism. We also study an example by Novello and Velloso and derive their Lanczos potential in shear-free, irrotational perfect fluid spacetimes from a particular ansatz in 1+3 covariant formalism. The existence of the Lanczos potential is in some ways analogous to the vector potential in electromagnetic theory. Therefore, we also derive the electromagnetic potential equation in 1+3 covariant formalism for a general spacetime. We give a short description of the necessary tools for these calculations and the cosmological formalism we are using.

APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, A. D. Y. "Supersymmetric quantum Bianchi models." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597576.

Full text
Abstract:
This thesis is about the quantum cosmology of supergravity theories, in particular N = 1 supergravity. In chapter 2, the Bianchi-IX model in N = 1 supergravity with a cosmological constant is investigated. This example is also restricted to the case of the k = +1 Friedmann universe. In chapter 3, the most general solution of the Lorentz constraints is found. Using this solution, N = 1 supergravity in the diagonal Bianchi-IX model is studied. The Hamilton-Jacobi equation is derived and completely solved. The Hartie-Hawking and wormhole actions are both found among the solutions. In chapter 4, the relation between the Chern-Simons functional and the no-boundary proposal is considered. The exponential of the Chern-Simons functional is the first known exact solution of quantum general relativity with a cosmological constant, being defined in the Ashtekar variables. However, it has turned out to be possible to show that the Chern-Simons functional and the no-boundary proposal are not related to each other in general relativity and N = 1 supergravity by considering perturbations around the k = +1 Friedmann universe. In chapter 5, the canonical formulation of N = 1 supergravity coupled to supermatter is presented. The supersymmetry and gauge constraints are derived. This model is then studied in the k = +1 Friedmann universe. It is found there are solutions in the case of a scalar multiplet. However, no non-trivial solution exists for a Yang-Mills multiplet, and it is explained why there is no physical state. Chapter 6 describes a brief investigation of the quantum cosmology of N = 2 and N = 4 supergravity theories. The thesis ends with concluding remarks and an indication of directions of future development.
APA, Harvard, Vancouver, ISO, and other styles
5

Lindblad, Petersen Oliver. "Bianchi type I solutions to Einstein's vacuum equations." Thesis, KTH, Matematik (Inst.), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-129194.

Full text
Abstract:
A natural question in general relativity is whether there exist singularities, like the Big Bang and black holes, in the universe. Albert Einstein did not in the beginning believe that singularities in general relativity are generic ([2], [3]). He claimed that the existence of singularities is due to symmetry assumptions. The symmetry assumptions are usually spatial isotropy and spatial homogeneity. Spatial isotropy means intuitively that, for a xed time, universe looks the same at all points and in all spatial directions. In the present paper, we will show the following: If we solve Einstein's vacuum equations with a certain type of initial data, called the Bianchi type I, the resulting space-time will either be the Minkowski space or an anisotropic space-time equipped with a so called Kasner metric. We show that, in the anisotropic case, the space-time will contain a certain singularity: the Big Bang. We distinguish between two dierent classes of a Kasner metrics; the Flat Kasner metric and the Non-at Kasner metric. In the case of a Flat Kasner metric, we show that it is possible to isometrically embed the entire space-time into Minkowski space. In the case of the Non-at Kasner metric, the space-time is not extendible and the gravity goes to innity approaching the time of the Big Bang. In addition we show, using any Kasner metric, that the universe expands proportional to the time passed since the Big Bang. This happens even though some directions will shrink or not change. The conclusion is: We have found two natural classes of anisotropic space-times, that include a Big Bang and expand. These results supports the idea that singularities are generic, i.e. are not due to the assumptions of symmetry of the universe. 1
APA, Harvard, Vancouver, ISO, and other styles
6

Giani, Leonardo. "Bianchi type II cosmology in Hořava–Lifshitz gravity." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10471/.

Full text
Abstract:
In this work a Bianchi type II space-time within the framework of projectable Horava Lifshitz gravity was investigated; the resulting field equations in the infrared limit λ = 1 were analyzed qualitatively. We have found the analytical solutions for a toy model in which only the higher curvature terms cubic in the spatial Ricci tensor are considered. The resulting behavior is still described by a transition among two Kasner epochs, but we have found a different transformation law of the Kasner exponents with respect to the one of Einstein's general relativity.
APA, Harvard, Vancouver, ISO, and other styles
7

Hervik, Sigbjørn. "Mathematical cosmology : Bianchi models, asymptotics and extra dimensions." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sverin, Tomas. "Density Growth in Anisotropic Cosmologies of Bianchi Type I." Thesis, Umeå universitet, Institutionen för fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-58102.

Full text
Abstract:
This work generalises earlier works on the growth of the density perturbations in Bianchi type I cosmologies filled with dust to include also the effects of pressure anda positive cosmological constant. For the analysis the 1+3 covariant split of space-time formalism is used. As the perturbative variables we use scalar quantities thatare zero on the background, and hence are gauge-invariant. These variables form acoupled closed system of first-order evolution equations, that is analysed numericallyand analytically. For short wavelengths an oscillatory behavior is obtained, whereasfor long wavelengths the energy density perturbations grow unboundedly.
APA, Harvard, Vancouver, ISO, and other styles
9

Lindblad, Petersen Oliver. "The wave equation and redshift in Bianchi type I spacetimes." Thesis, KTH, Matematik (Avd.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-151317.

Full text
Abstract:
The thesis consists of two independent parts. In the first part, we show how the solution to the scalar wave equation on 3-torus-Bianchi type I spacetimes can be written as a Fourier decomposition. We present results on the behaviour of these Fourier modes and apply them to the case of 3-torus-Kasner spacetimes. In the second part, we first consider the solution to the scalar wave equation, with special initial data, as a model for light in Bianchi type I spacetimes. We show that the obtained redshift coincides with the cosmological redshift. We also consider the Cauchy problem for Maxwell's vacuum equations, with special initial data, in order to model light in Bianchi type I spacetimes. We calculate the redshift of the solution and show that, also in this case, the obtained redshift coincides with the cosmological redshift.
Uppsatsen består av två oberoende delar. I den första delen visar vi hur lösningen till den skalära vågekvationen i Bianchi typ I rumtider med 3-torus topologi kan skrivas som en Fourierserie med tidsberoende koefficienter, så kallade moder. Vi presenterar resultat som beskriver egenskaper hos dessa moder och applicerar resultaten i specialfallet med Kasner rumtider med 3-torus topologi. I den andra delen betraktar vi först lösningar till den skalära vågekvationen, med speciella initialdata, som en modell för ljus i Bianchi typ I rumtider. Vi visar att rödförskjutningen på ljuset sammanfaller med den kosmologiska rödförskjutningen i Bianchi typ I rumtider. Därefter betraktar vi Cauchyproblemet för Maxwells vakuumekvationer, med speciella initialdata, som en annan modell för ljus i Bianchi typ I rumtider. Vi beräknar rödförskjutningen på ljuset med denna modell och visar att, även i detta fall, sammanfaller den med den kosmologiska rödförskjutningen.
APA, Harvard, Vancouver, ISO, and other styles
10

Yearsley, J. M. "Anisotropic cosmologies and the role of matter." Thesis, University of Sussex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Bianchi type I models"

1

Sanchez, Mauricio A., Oscar Castillo, and Juan R. Castro. Type-2 Fuzzy Granular Models. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41288-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pecchenino, Rowena Ann. P* type models: Evaluation and forecasts. Cambridge, MA: National Bureau of Economic Research, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zeng, Jia, and Zhi-Qiang Liu. Type-2 Fuzzy Graphical Models for Pattern Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44690-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jafelice, Rosana Sueli da Motta, and Ana Maria Amarillo Bertone. Biological Models via Interval Type-2 Fuzzy Sets. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64530-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schmitt-Grohe, Stephanie. Comparing two variants of Calvo-type wage stickiness. Cambridge, Mass: National Bureau of Economic Research, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Buchholz, Peter, Jan Kriege, and Iryna Felko. Input Modeling with Phase-Type Distributions and Markov Models. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06674-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Soulama, S. Economie des organisations coopératives et de type coopératif. Ouagadougou, Burkina Faso: CDRES, Université de Ouagadougou, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Greenspan, Donald. A molecular mechanics type approach to turbulence. Arlington, Tex: Dept. of Mathematics, University of Texas at Arlington, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Knight, D. R. Equivalence and transformation of entity-relationship type conceptual data models. Manchester: UMIST, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

N, Shanbhag D., ed. Choquet-Deny type functional equations with applications to stochastic models. Chichester, England: Wiley, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Bianchi type I models"

1

Liebscher, Stefan. "Application: Cosmological Models of Bianchi Type, the Tumbling Universe." In Bifurcation without Parameters, 115–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10777-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Christodoulakis, T., and G. O. Papadopoulos. "Quantum Cosmology for the General Bianchi Type II, VI(Class A) and VII(Class A) Vacuum Geometries." In Modern Theoretical and Observational Cosmology, 85–106. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0622-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Turner, Raymond. "A Type of Types." In Computable Models, 1–13. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-052-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sandev, Trifce, and Živorad Tomovski. "Cauchy Type Problems." In Fractional Equations and Models, 61–114. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29614-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Punzo, Antonio. "Discrete Beta-Type Models." In Studies in Classification, Data Analysis, and Knowledge Organization, 253–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10745-0_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gram, Dorte X. "Type 2 Diabetes Models." In Methods in Pharmacology and Toxicology, 319–32. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-095-3_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fernández-Martínez, Manuel, Juan Luis García Guirao, Miguel Ángel Sánchez-Granero, and Juan Evangelista Trinidad Segovia. "Box Dimension Type Models." In Fractal Dimension for Fractal Structures, 49–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16645-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weihrauch, Klaus. "Type 2 Computability Models." In Computability, 322–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-69965-8_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Krasiński, Andrzej. "The Ultimate Extension of the Bianchi Classification for Rotating Dust Models." In On Einstein’s Path, 283–98. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1422-9_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Burd, Adrian. "How Can You Tell if the Bianchi IX Models Are Chaotic?" In Deterministic Chaos in General Relativity, 345–54. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9993-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bianchi type I models"

1

BRADLEY, M., and D. ERIKSSON. "ROTATING COSMOLOGICAL MODELS OF BIANCHI TYPE V." In Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Amirhashchi, Hassan, Hishamuddin Zainuddin, Jumiah Hassan, Halimah Mohamed Kamari, A. K. Yahya, and Shah Alam. "Bianchi Type III String Cosmological Models for Perfect Fluid Distribution in General Relativity." In PROGRESS OF PHYSICS RESEARCH IN MALAYSIA: PERFIK2009. AIP, 2010. http://dx.doi.org/10.1063/1.3469655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mishra, Soma, Rishi Tiwari, Aroonkumar Beesham, and Vipin Dubey. "Bianchi Type I cosmological model in f(R,T) gravity." In 1st Electronic Conference on Universe. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/ecu2021-09290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Güdekli, E., and A. Çalışkan. "Perfect fluid LRS Bianchi type -I- universe model in F(R, T)." In SolarPACES 2017: International Conference on Concentrating Solar Power and Chemical Energy Systems. Author(s), 2018. http://dx.doi.org/10.1063/1.5078924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Visinescu, Mihai, Bijan Saha, Victor Rikhvitsky, Madalin Bunoiu, and Iosif Malaescu. "A String Cosmological Model of Bianchi Type-I in the Presence of a Magnetic Flux." In PROCEEDINGS OF THE PHYSICS CONFERENCE: TIM—08. AIP, 2009. http://dx.doi.org/10.1063/1.3153431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Çağlar, Halife. "Quadratic equation of state solutions for Bianchi type-V universe model in f(R, T) gravity." In TURKISH PHYSICAL SOCIETY 35TH INTERNATIONAL PHYSICS CONGRESS (TPS35). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5135416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Socorro, J., Juan M. Ramírez, Luis O. Pimentel, Gustavo López, and Rafael Hernández. "Searching solutions by Lagrange-Charpit method in cosmology: Bianchi type I toy model in self creation cosmology." In RECENT DEVELOPMENTS ON PHYSICS IN STRONG GRAVITATIONAL FIELDS: V Leopoldo García-Colín Mexican Meeting on Mathematical and Experimental Physics. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4861961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

VISINESCU, A., and M. VISINESCU. "BIANCHI TYPE-I COSMOLOGICAL STRING MODEL IN THE PRESENCE OF A MAGNETIC FIELD: CLASSICAL AND QUANTUM LOOP APPROACHES." In Proceedings of the MG12 Meeting on General Relativity. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814374552_0248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berköz, G., and Ö Sevinç. "Bianchi Models with Chaplygin Gas." In SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Socorro, J., and Abraham Espinoza-García. "Bianchi class A models in Sàez-Ballester's theory." In IX WORKSHOP OF THE GRAVITATION AND MATHEMATICAL PHYSICS DIVISION OF THE MEXICAN PHYSICAL SOCIETY. AIP, 2012. http://dx.doi.org/10.1063/1.4748541.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bianchi type I models"

1

Turner, M. S., and L. Widrow. Bianchi models and new inflation. Office of Scientific and Technical Information (OSTI), March 1986. http://dx.doi.org/10.2172/5801979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pecchenino, R. A., and Robert Rasche. P* Type Models: Evaluation and Forecasts. Cambridge, MA: National Bureau of Economic Research, August 1990. http://dx.doi.org/10.3386/w3406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meseguer, Jose. Logics and Models for Concurrency and Type Theory. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada252737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Burdik, Cestmir, and Ondrej Navratil. On Matrix Solvable Calogero Models of B2 Type. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-6-2006-11-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Given, James A., and George Stell. Approximations of Mean Spherical Type for Lattice Percolation Models. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada231371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hou, Chen. One-dimensional Turbulence Models of Type I X-ray Bursts. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1326220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Downing, D., V. Fedorov, T. Dunigan, and S. Batsell. Poisson type models and descriptive statistics of computer network information flows. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/661629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Whalley, John, and Xian Xin. Home and Regional Biases and Border Effects in Armington Type Models. Cambridge, MA: National Bureau of Economic Research, August 2006. http://dx.doi.org/10.3386/w12439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

D'Elia, Marta, Christian Glusa, and Olena Burkovska. An optimization-based approach to parameter learning for fractional type nonlocal models. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1673822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hansen, Erik G., Florian Lüdeke-Freund, and Klaus Fichter. Circular Business Models: A Typology Based on Actor Type, Circular Strategy and Service Degree. University of Limerick, 2021. http://dx.doi.org/10.31880/10344/10213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography