Academic literature on the topic 'Bianchi type I models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bianchi type I models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bianchi type I models"
Sklavenites, D. "Geodesic Bianchi type cosmological models." General Relativity and Gravitation 24, no. 1 (January 1992): 47–58. http://dx.doi.org/10.1007/bf00756873.
Full textBergamini, Roberto, Paolo Sedici, and Paolo Verrocchio. "Inflation for Bianchi type IX models." Physical Review D 55, no. 4 (February 15, 1997): 1896–900. http://dx.doi.org/10.1103/physrevd.55.1896.
Full textTkach, V. I., J. J. Rosales, and O. Obregón. "Supersymmetric action for Bianchi type models." Classical and Quantum Gravity 13, no. 9 (September 1, 1996): 2349–56. http://dx.doi.org/10.1088/0264-9381/13/9/002.
Full textNayak, B. K., and G. B. Bhuyan. "Bianchi type-V perfect fluid models." General Relativity and Gravitation 18, no. 1 (January 1986): 79–91. http://dx.doi.org/10.1007/bf00843752.
Full textAdhav, K. S., M. V. Dawande, and V. B. Raut. "Bianchi Type-III String Cosmological Models." International Journal of Theoretical Physics 48, no. 3 (September 16, 2008): 700–705. http://dx.doi.org/10.1007/s10773-008-9846-3.
Full textNilsson, Ulf S., and Claes Uggla. "Stationary Bianchi type II perfect fluid models." Journal of Mathematical Physics 38, no. 5 (May 1997): 2611–15. http://dx.doi.org/10.1063/1.531998.
Full textSingh, J. K., and Shri Ram. "String cosmological models of Bianchi type-III." Astrophysics and Space Science 246, no. 1 (1997): 65–72. http://dx.doi.org/10.1007/bf00637400.
Full textPavelkin, V. N. "Cosmological Bianchi type VIII models with rotation." Russian Physics Journal 55, no. 7 (December 2012): 848–51. http://dx.doi.org/10.1007/s11182-012-9889-z.
Full textSandin, Patrik. "Tilted two-fluid Bianchi type I models." General Relativity and Gravitation 41, no. 11 (April 10, 2009): 2707–24. http://dx.doi.org/10.1007/s10714-009-0799-5.
Full textPanov, V. F. "Rotating cosmological models of Bianchi type VIII." Soviet Physics Journal 32, no. 5 (May 1989): 403–7. http://dx.doi.org/10.1007/bf00895327.
Full textDissertations / Theses on the topic "Bianchi type I models"
Friedrichsen, James Edward. "Quantization of Bianchi type cosmological models /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004268.
Full textEriksson, Daniel. "Perturbative Methods in General Relativity." Doctoral thesis, Umeå : Department of Physics, Umeå University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1488.
Full textHolgersson, David. "Lanczos potentialer i kosmologiska rumtider." Thesis, Linköping University, Department of Mathematics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2582.
Full textWe derive the equation linking the Weyl tensor with its Lanczos potential, called the Weyl-Lanczos equation, in 1+3 covariant formalism for perfect fluid Bianchi type I spacetime and find an explicit expression for a Lanczos potential of the Weyl tensor in these spacetimes. To achieve this, we first need to derive the covariant decomposition of the Lanczos potential in this formalism. We also study an example by Novello and Velloso and derive their Lanczos potential in shear-free, irrotational perfect fluid spacetimes from a particular ansatz in 1+3 covariant formalism. The existence of the Lanczos potential is in some ways analogous to the vector potential in electromagnetic theory. Therefore, we also derive the electromagnetic potential equation in 1+3 covariant formalism for a general spacetime. We give a short description of the necessary tools for these calculations and the cosmological formalism we are using.
Cheng, A. D. Y. "Supersymmetric quantum Bianchi models." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597576.
Full textLindblad, Petersen Oliver. "Bianchi type I solutions to Einstein's vacuum equations." Thesis, KTH, Matematik (Inst.), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-129194.
Full textGiani, Leonardo. "Bianchi type II cosmology in Hořava–Lifshitz gravity." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10471/.
Full textHervik, Sigbjørn. "Mathematical cosmology : Bianchi models, asymptotics and extra dimensions." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616093.
Full textSverin, Tomas. "Density Growth in Anisotropic Cosmologies of Bianchi Type I." Thesis, Umeå universitet, Institutionen för fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-58102.
Full textLindblad, Petersen Oliver. "The wave equation and redshift in Bianchi type I spacetimes." Thesis, KTH, Matematik (Avd.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-151317.
Full textUppsatsen består av två oberoende delar. I den första delen visar vi hur lösningen till den skalära vågekvationen i Bianchi typ I rumtider med 3-torus topologi kan skrivas som en Fourierserie med tidsberoende koefficienter, så kallade moder. Vi presenterar resultat som beskriver egenskaper hos dessa moder och applicerar resultaten i specialfallet med Kasner rumtider med 3-torus topologi. I den andra delen betraktar vi först lösningar till den skalära vågekvationen, med speciella initialdata, som en modell för ljus i Bianchi typ I rumtider. Vi visar att rödförskjutningen på ljuset sammanfaller med den kosmologiska rödförskjutningen i Bianchi typ I rumtider. Därefter betraktar vi Cauchyproblemet för Maxwells vakuumekvationer, med speciella initialdata, som en annan modell för ljus i Bianchi typ I rumtider. Vi beräknar rödförskjutningen på ljuset med denna modell och visar att, även i detta fall, sammanfaller den med den kosmologiska rödförskjutningen.
Yearsley, J. M. "Anisotropic cosmologies and the role of matter." Thesis, University of Sussex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259719.
Full textBooks on the topic "Bianchi type I models"
Sanchez, Mauricio A., Oscar Castillo, and Juan R. Castro. Type-2 Fuzzy Granular Models. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41288-7.
Full textPecchenino, Rowena Ann. P* type models: Evaluation and forecasts. Cambridge, MA: National Bureau of Economic Research, 1990.
Find full textZeng, Jia, and Zhi-Qiang Liu. Type-2 Fuzzy Graphical Models for Pattern Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44690-4.
Full textJafelice, Rosana Sueli da Motta, and Ana Maria Amarillo Bertone. Biological Models via Interval Type-2 Fuzzy Sets. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64530-4.
Full textSchmitt-Grohe, Stephanie. Comparing two variants of Calvo-type wage stickiness. Cambridge, Mass: National Bureau of Economic Research, 2006.
Find full textBuchholz, Peter, Jan Kriege, and Iryna Felko. Input Modeling with Phase-Type Distributions and Markov Models. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06674-5.
Full textSoulama, S. Economie des organisations coopératives et de type coopératif. Ouagadougou, Burkina Faso: CDRES, Université de Ouagadougou, 2002.
Find full textGreenspan, Donald. A molecular mechanics type approach to turbulence. Arlington, Tex: Dept. of Mathematics, University of Texas at Arlington, 1997.
Find full textKnight, D. R. Equivalence and transformation of entity-relationship type conceptual data models. Manchester: UMIST, 1995.
Find full textN, Shanbhag D., ed. Choquet-Deny type functional equations with applications to stochastic models. Chichester, England: Wiley, 1994.
Find full textBook chapters on the topic "Bianchi type I models"
Liebscher, Stefan. "Application: Cosmological Models of Bianchi Type, the Tumbling Universe." In Bifurcation without Parameters, 115–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10777-6_13.
Full textChristodoulakis, T., and G. O. Papadopoulos. "Quantum Cosmology for the General Bianchi Type II, VI(Class A) and VII(Class A) Vacuum Geometries." In Modern Theoretical and Observational Cosmology, 85–106. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0622-4_9.
Full textTurner, Raymond. "A Type of Types." In Computable Models, 1–13. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-052-4_11.
Full textSandev, Trifce, and Živorad Tomovski. "Cauchy Type Problems." In Fractional Equations and Models, 61–114. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29614-8_3.
Full textPunzo, Antonio. "Discrete Beta-Type Models." In Studies in Classification, Data Analysis, and Knowledge Organization, 253–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10745-0_27.
Full textGram, Dorte X. "Type 2 Diabetes Models." In Methods in Pharmacology and Toxicology, 319–32. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-095-3_20.
Full textFernández-Martínez, Manuel, Juan Luis García Guirao, Miguel Ángel Sánchez-Granero, and Juan Evangelista Trinidad Segovia. "Box Dimension Type Models." In Fractal Dimension for Fractal Structures, 49–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16645-8_2.
Full textWeihrauch, Klaus. "Type 2 Computability Models." In Computability, 322–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-69965-8_24.
Full textKrasiński, Andrzej. "The Ultimate Extension of the Bianchi Classification for Rotating Dust Models." In On Einstein’s Path, 283–98. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1422-9_20.
Full textBurd, Adrian. "How Can You Tell if the Bianchi IX Models Are Chaotic?" In Deterministic Chaos in General Relativity, 345–54. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9993-4_20.
Full textConference papers on the topic "Bianchi type I models"
BRADLEY, M., and D. ERIKSSON. "ROTATING COSMOLOGICAL MODELS OF BIANCHI TYPE V." In Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0246.
Full textAmirhashchi, Hassan, Hishamuddin Zainuddin, Jumiah Hassan, Halimah Mohamed Kamari, A. K. Yahya, and Shah Alam. "Bianchi Type III String Cosmological Models for Perfect Fluid Distribution in General Relativity." In PROGRESS OF PHYSICS RESEARCH IN MALAYSIA: PERFIK2009. AIP, 2010. http://dx.doi.org/10.1063/1.3469655.
Full textMishra, Soma, Rishi Tiwari, Aroonkumar Beesham, and Vipin Dubey. "Bianchi Type I cosmological model in f(R,T) gravity." In 1st Electronic Conference on Universe. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/ecu2021-09290.
Full textGüdekli, E., and A. Çalışkan. "Perfect fluid LRS Bianchi type -I- universe model in F(R, T)." In SolarPACES 2017: International Conference on Concentrating Solar Power and Chemical Energy Systems. Author(s), 2018. http://dx.doi.org/10.1063/1.5078924.
Full textVisinescu, Mihai, Bijan Saha, Victor Rikhvitsky, Madalin Bunoiu, and Iosif Malaescu. "A String Cosmological Model of Bianchi Type-I in the Presence of a Magnetic Flux." In PROCEEDINGS OF THE PHYSICS CONFERENCE: TIM—08. AIP, 2009. http://dx.doi.org/10.1063/1.3153431.
Full textÇağlar, Halife. "Quadratic equation of state solutions for Bianchi type-V universe model in f(R, T) gravity." In TURKISH PHYSICAL SOCIETY 35TH INTERNATIONAL PHYSICS CONGRESS (TPS35). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5135416.
Full textSocorro, J., Juan M. Ramírez, Luis O. Pimentel, Gustavo López, and Rafael Hernández. "Searching solutions by Lagrange-Charpit method in cosmology: Bianchi type I toy model in self creation cosmology." In RECENT DEVELOPMENTS ON PHYSICS IN STRONG GRAVITATIONAL FIELDS: V Leopoldo García-Colín Mexican Meeting on Mathematical and Experimental Physics. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4861961.
Full textVISINESCU, A., and M. VISINESCU. "BIANCHI TYPE-I COSMOLOGICAL STRING MODEL IN THE PRESENCE OF A MAGNETIC FIELD: CLASSICAL AND QUANTUM LOOP APPROACHES." In Proceedings of the MG12 Meeting on General Relativity. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814374552_0248.
Full textBerköz, G., and Ö Sevinç. "Bianchi Models with Chaplygin Gas." In SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733076.
Full textSocorro, J., and Abraham Espinoza-García. "Bianchi class A models in Sàez-Ballester's theory." In IX WORKSHOP OF THE GRAVITATION AND MATHEMATICAL PHYSICS DIVISION OF THE MEXICAN PHYSICAL SOCIETY. AIP, 2012. http://dx.doi.org/10.1063/1.4748541.
Full textReports on the topic "Bianchi type I models"
Turner, M. S., and L. Widrow. Bianchi models and new inflation. Office of Scientific and Technical Information (OSTI), March 1986. http://dx.doi.org/10.2172/5801979.
Full textPecchenino, R. A., and Robert Rasche. P* Type Models: Evaluation and Forecasts. Cambridge, MA: National Bureau of Economic Research, August 1990. http://dx.doi.org/10.3386/w3406.
Full textMeseguer, Jose. Logics and Models for Concurrency and Type Theory. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada252737.
Full textBurdik, Cestmir, and Ondrej Navratil. On Matrix Solvable Calogero Models of B2 Type. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-6-2006-11-15.
Full textGiven, James A., and George Stell. Approximations of Mean Spherical Type for Lattice Percolation Models. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada231371.
Full textHou, Chen. One-dimensional Turbulence Models of Type I X-ray Bursts. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1326220.
Full textDowning, D., V. Fedorov, T. Dunigan, and S. Batsell. Poisson type models and descriptive statistics of computer network information flows. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/661629.
Full textWhalley, John, and Xian Xin. Home and Regional Biases and Border Effects in Armington Type Models. Cambridge, MA: National Bureau of Economic Research, August 2006. http://dx.doi.org/10.3386/w12439.
Full textD'Elia, Marta, Christian Glusa, and Olena Burkovska. An optimization-based approach to parameter learning for fractional type nonlocal models. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1673822.
Full textHansen, Erik G., Florian Lüdeke-Freund, and Klaus Fichter. Circular Business Models: A Typology Based on Actor Type, Circular Strategy and Service Degree. University of Limerick, 2021. http://dx.doi.org/10.31880/10344/10213.
Full text