Academic literature on the topic 'Bias cognitivi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bias cognitivi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bias cognitivi"
BELVEDERE, VALERIA. "Overdesign e sviluppo del nuovo prodotto: un’indagine sul ruolo dei bias cognitivi nei processi decisionali dei progettist." Sinergie Italian Journal of Management, no. 94 (2018): 53–72. http://dx.doi.org/10.7433/s94.2014.04.
Full textAngelozzi, Andrea. "Problemi della previsione in psichiatria." PSICOTERAPIA E SCIENZE UMANE, no. 4 (December 2021): 623–46. http://dx.doi.org/10.3280/pu2021-004005.
Full textCadamuro, Alessia, Annalisa Versari, and Piergiorgio Battistelli. "Processi di autovalutazione in etŕ evolutiva: aspetti metacognitivi e stili attributivi." RICERCHE DI PSICOLOGIA, no. 3 (February 2013): 387–416. http://dx.doi.org/10.3280/rip2011-003004.
Full textKnobloch-Westerwick, Silvia, Cornelia Mothes, and Nick Polavin. "Confirmation Bias, Ingroup Bias, and Negativity Bias in Selective Exposure to Political Information." Communication Research 47, no. 1 (July 18, 2017): 104–24. http://dx.doi.org/10.1177/0093650217719596.
Full textHertel, Paula T., and Andrew Mathews. "Cognitive Bias Modification." Perspectives on Psychological Science 6, no. 6 (October 14, 2011): 521–36. http://dx.doi.org/10.1177/1745691611421205.
Full textM.O., Zaitseva. "КОГНІТИВНІ ВИКРИВЛЕННЯ ЯК ЗАСІБ СУГЕСТІЇ В АНГЛІЙСЬКОМУ СУДОВОМУ ДИСКУРСІ." South archive (philological sciences), no. 86 (June 29, 2021): 65–69. http://dx.doi.org/10.32999/ksu2663-2691/2021-86-10.
Full textSmith, Joan R. "Cognitive Bias." Journal of Perinatal & Neonatal Nursing 31, no. 4 (2017): 294–96. http://dx.doi.org/10.1097/jpn.0000000000000289.
Full textHowgego, Joshua. "Cognitive bias." New Scientist 228, no. 3051 (December 2015): 31–32. http://dx.doi.org/10.1016/s0262-4079(15)31757-7.
Full textPhilips, H. C. "Imagery and Likelihood Cognitive Bias in Pain." Behavioural and Cognitive Psychotherapy 43, no. 3 (November 27, 2013): 270–84. http://dx.doi.org/10.1017/s1352465813000982.
Full textGOCKO, X., J. SOUSA BARBOSA, B. POZZETTO, and C. PLOTTON. "HESITATION, REFUS VACCINAL, COVID-19 ET BIAIS COGNITIFS. UNE REVUE NARRATIVE." EXERCER 34, no. 190 (February 1, 2023): 70–75. http://dx.doi.org/10.56746/exercer.2023.190.70.
Full textDissertations / Theses on the topic "Bias cognitivi"
Rosteghin, Giulia <1990>. "Strumenti finanziari SRI: Caratteristiche e Bias Cognitivi dell’investitore retail." Master's Degree Thesis, Università Ca' Foscari Venezia, 2021. http://hdl.handle.net/10579/19380.
Full textAscone, Christian. "L'impatto della gamification su framing, certainty e reflection effect." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13287/.
Full textBoffo, Marilisa. "Implicit measurement at the service of mental health: assessment and intervention as the two sides of the same coin." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423753.
Full textLa ricerca scientifica in psicologia è intrinsecamente legata alla misurazione di variabili che per natura sono mutevoli, presentano un’elevata complessità e molto spesso non sono direttamente osservabili. Lo sviluppo di metodi di misurazione è funzionale alla ricerca di un mezzo per mettere in luce le diverse sfaccettature della variabile psicologica di interesse. Gli ultimi quindici anni hanno assistito ad un enorme sviluppo e applicazione di un nuovo insieme di strumenti di misura note come misure implicite, le quali hanno come scopo primario quello di quantificare quelle variabili psicologiche definite come automatiche, incontrollabili, inconsce, impulsive, o implicite. L’obiettivo principale di questo lavoro è stato quello di esplorare la natura propriamente implicita di alcune di queste misure, insieme al loro funzionamento. Il progetto di ricerca ha incluso la sperimentazione di alcuni metodi di misura impliciti in due diversi contesti all’interno del più ampio ambito della salute mentale: da una parte lo studio delle componenti automatiche nei processi di stigmatizzazione nei confronti di persone affette da un qualche disturbo mentale (Parte 1); dall’altra la considerazione dei processi impulsivi e automatici in persone affette da uno specific disturbo mentale, quale la dipendenza dal alcol (Parte 2). La Parte 1 della tesi include lo sviluppo di due Implicit Association Tests destinati alla valutazione di due aspetti inerenti lo stigma verso la malattia mentale: le credenze eziologiche e gli atteggiamenti pregiudiziali. Gli obiettivi principali hanno riguardato la verifica del possibile utilizzo di queste misure come strumenti di valutazione in questo specifico ambito, e nel contempo dell’effettiva esistenza di una controparte implicita nell’espressione dello stigma verso la malattia mentale. Nella Parte 2 la prospettiva ha assunto un’ulteriore duplice veste attraverso la sperimentazione delle tecniche di misurazione implicita come strumenti di cambiamento, attraverso il loro adattamento alla funzione di training di quei processi impliciti inizialmente misurati. Lo studio ha preso la forma di un Trial Clinico Randomizzato (TCR) con pazienti ambulatoriali dipendenti da alcol, nel quale è valutata la somministrazione di una combinazione di due training per il trattamento dei processi cognitivi automatici disfunzionali (i.e., bias attentivo e di approccio) implicati nella dipendenza da alcol. In entrambi gli studi sono state esplorate sia le proprietà misurative degli strumenti sviluppati, sia la loro relazione con l’ipotetica variabile psicologica misurata all’interno di una prospettiva di modellazione a tratti latenti, attraverso l’applicazione del Many-Facet Rasch Measurement model (MFRM). I risultati ottenuti nella Parte 1 mostrano come il modello MFRM sia riuscito a separare i diversi ‘ingredienti’ che contribuiscono all’emergere dell’effetto IAT evidenziando come le credenze eziologiche implicite e l’atteggiamento implicito nei confronti della malattia mentale siano multi-sfaccettati. Le associazioni semantiche e valutative nei confronti della malattia mentale sembrano cambiare in funzione della categoria diagnostica e sono rispettivamente determinate da associazioni con l’area semantica biologica e da un effetto primacy di associazioni positive. Il modello MFRM ha inoltre reso evidente il funzionamento dello IAT a livello microscopico. Nella Parte 2, l’analisi di un gruppo di partecipanti nelle sessioni di pre- e post- assessment ha dato i primi, promettenti risultanti sull’efficacia del TCR: nonostante al momento i partecipanti non abbiamo menifestato un significativo cambiamento nelle misure del bias attentivo e di approccio verso l’alcol, il modello MFRM ha dimostrato comunque che c’è effettivamente in atto un processo di cambiamento. Le condizioni sperimentali hanno prodotto un effetto discriminante nell’ottenere la diminuzione o il rovesciamento dei due bias cognitivi. Il modello ha inoltre contribuito all’esplorazione della dimensionalità e delle ipotesi teoriche alla base delle due misure implicite dei bias, dando suggerimenti rilevanti circa le loro caratteristiche dominio-generali e dominio-specifiche. Un ulteriore risultato riguarda un primo riscontro di un effetto esercitato dagli stimoli utilizzati nelle due misure nell’aumentare i processi di controllo degli impulsi nei confronti dell’alcol. In conclusione, l’intreccio tra misurazione implicita, salute mentale, e modelli di Rasch è nato allo scopo non solo di chiarire i benefici dell’utilizzo delle misure implicite in psicologia, ma anche per svelare che cosa significa effettivamente la misurazione implicita, mostrando sia i limiti che i punti di forza di questa nuova famiglia di strumenti attraverso la combinazione con un approccio metodologico e modellistico rigoroso.
Agogué, Marine. "Modéliser l’effet des biais cognitifs sur les dynamiques industrielles : innovation orpheline et architecte de l’inconnu." Thesis, Paris, ENMP, 2012. http://www.theses.fr/2012ENMP0039/document.
Full textThe purpose of the thesis is the study of industrial dynamics, in particular cognitive biases that lead to the lock-in of these dynamics. If innovation processes beyond the scope of the firm have been the subject of various studies, little has been done on the study of industrial dynamics from the perspective of cognitive lock in design activities. To explore this question, the thesis focuses on the study of a new phenomenology, orphan innovation, which is defined as orphan innovation as an innovation highly expected by society, but one which no actor or consortium of actors can manage to process with their current innovation capabilities, although all of the institutional conditions to foster it are gathered. The aim of the thesis is to answer three questions: How to model industrial dynamics and to identify causal factors of orphan innovation? How to build a tool to diagnose cognitive biases and orphan innovation in empirical situations? What are the organizational levers to overcome orphan innovation situations?The thesis then is based on three main results:1) a model of collective cognitive fixation, underlying the impact of imaginaries and their interactions among a collective action.2) a methodology to identify collective fixation and therefore to diagnose orphan innovation.3) a model of action for a new actor, called the architect of the unknown, in charge of stimulating innovative design capacities of the actors among the industry
Destrez, Alexandra. "Accumulation d'émotions et modifications de la sensibilité émotionnelle et des fonctions cognitives chez les ovins." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00798018.
Full textBlasi, Pau. "Cognitive and Emotional Bias in Real Estate Investment." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED041/document.
Full textThe main objective of this thesis is to analyse how cognitive and emotional biases affect investor decisions when buying or selling office buildings. To meet this aim, this research embarks on a qualitative research. Semi-structured interviews permit to detect and analyse the most important biases that appear in the transactions. Among the different biases discovered, the "base-rate fallacy" was selected. This bias may appear before the acquisition when investors evaluate the expected performance of a building. A quantitative analysis follows to develop a scale that tries to measure the effect of the bias. The results showed that uncertainty leads some investors to assume that the yield they will obtain at the end of their investment will be equal to that of the initial yield. In other words, some investors believe that market conditions will remain the same as today
Rodgers, Naomi Hertsberg. "Cognitive bias and stuttering in adolescence." Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/7021.
Full textCarreras, Ubach Ricard. "The cognitive bias test as a measure of emotional state in pigs." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/392711.
Full textThe assessment of animal emotions is a crucial goal in the study of animal welfare science. The cognitive bias (CB) test has been proposed as a measure to assess the valence (positive vs. negative) and the intensity of animal emotions and is based on the premise that subjects in negative emotional state will judge an ambiguous stimulus more negatively than subjects in positive emotional state. The aims of our first study were to assess the applicability and the consistency of the CB test (CBT) in pigs. Our results showed that pigs were able to learn the spatial discrimination task necessary to subsequently perform the CBT. However, there was lack of consistency between the responses of the CBT performed twice, leaving 5 weeks between them. This result suggests that pigs changed the perception of the ambiguous stimulus due to its ability to remember the outcome of the ambiguous stimulus during the second CBT or due to uncontrolled factors such as their age or hunger state over time. The aims of our second study were 1) to assess the effect of the gender and the halothane genotype on CB (using the CBT) and on the level of fear (using a novel object test, NOT), 2) to assess the relationship between the CB and the level of fear and 3) contrast the results of the CBT and the NOT with the concentrations of several brain neurotransmitters. No differences were found between genders and genotypes regarding the CB and regarding the level of fear but a positive correlation was found between the CBT and the NOT results, suggesting that fear plays an important role in the decision taken by the pig dealing with ambiguous stimuli. Moreover, more fearful pigs had lower concentration of dopamine on the prefrontal cortex, supporting the relationship between this neurotransmitter and the fear response. The aims of the third study were 1) to assess the effect of handling on the CB (assessed by a CBT), on the fear (assessed by NOT) and on the defence cascade response (assessed by the defence cascade test; DCT), 2) to assess the effect of handling on serum, saliva and hair cortisol concentration and 3) to assess the relationship between behavioural tests (CBT, NOT and DCT) and between these tests and cortisol concentrations. No differences between positive and negative handling were found regarding the behavioural tests and cortisol concentrations, suggesting that the handling treatment carried out was not powerful enough to induce such differences or that the measures used were not valid or not sensitive enough to assess such differences. Nevertheless, positive correlations were found between behavioural tests supporting that individual factors such as the fear level, the motivation or the coping style had an effect on pigs’ affective state. The fourth study carried out was aimed to assess the effect of housing conditions on the CBT, on the qualitative behaviour assessment (QBA), on the serum cortisol concentration and on the number of wounds on pigs’ carcass. The results showed that pigs raised in enriched housing conditions had better QBA scores, lower serum cortisol concentration and lower number of carcass lesions than pigs raised in barren housing conditions. However, the results of the CBT did not showed those differences suggesting that the test is not valid or not sufficiently sensitive to detect emotional variation in those pigs. In conclusion, is feasible to apply the CBT in pigs, as they performed correctly the required learning process, however, the test showed no consistency and no validity questioning its utility to assess the emotional state in pigs.
Ard, Carter. "Eliminating Sex Bias through Rater Cognitive Processes Training." TopSCHOLAR®, 1988. https://digitalcommons.wku.edu/theses/2122.
Full textPereira, Ana Ribeiro. "Cognitive bias and welfare in shelter cats." Master's thesis, Universidade de Évora, 2017. http://hdl.handle.net/10174/21306.
Full textBooks on the topic "Bias cognitivi"
James, Ree Malcolm, and Air Force Research Laboratory (Wright-Patterson Air Force Base, Ohio). Warfighter Training Research Division, eds. Near identity of cognitive structure in sex and ethnic groups. Mesa, AZ: Air Force Materiel Command, Air Force Research Laboratory, Human Effectiveness Directorate, Warfighter Training Research Division, 1998.
Find full textOwen, K. Test and item bias: The suitability of the Junior aptitude tests as a common test battery for White, Indian, and Black pupils in standard 7. Pretoria: Human Sciences Research Council, 1989.
Find full text1956-, Gross Paget H., ed. How do journalists think?: A proposal for the study of cognitive bias in newsmaking. Bloomington, IN: ERIC Clearinghouse on Reading and Communication Skills, Smith Research Center, Indiana University, 1989.
Find full textYu yi de bian hua zhuan huan yan jiu: Ci gai nian kuang jia shi jiao. Changsha Shi: Hunan shi fan da xue chu ban she, 2011.
Find full textCi gai nian kuang jia yuan su de yu yan xing shi biao zheng yan jiu: A study on the linguistic formal representation of lexical concept frames' elements. Beijing: Guang ming ri bao chu ban she, 2011.
Find full textJimao, Guo, and Zheng Tian'gang, eds. Si tong shi yi: Han yu jin yi biao da fang shi de ren zhi yu yong fen xi=Sitong shiyi /cGuo Jimao, Zheng Tian'gang zhu bian. Beijing: Zhongguo she hui ke xue chu ban she, 2002.
Find full textAmir, Hussain, Liu Derong, Wang Zhanshan, and SpringerLink (Online service), eds. Advances in Brain Inspired Cognitive Systems: 5th International Conference, BICS 2012, Shenyang, China, July 11-14, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textLiu, Derong. Advances in Brain Inspired Cognitive Systems: 6th International Conference, BICS 2013, Beijing, China, June 9-11, 2013. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textWang, Meiping. Riben dui Zhongguo de ren zhi yan bian: Cong jia wu zhan zheng dao jiu yi ba shi bian = The evolution of Japan's cognition of China. Beijing Shi: She hui ke xue wen xian chu ban she, 2021.
Find full textLanger, Ellen J. Xue xi, jiu shi yi zhong xiang shou: Ni ye ke yi ba xue xi he gong zuo bian cheng "wan le" de dai ming ci. Taibei Xian Xindian Shi: Ren ben zi ran wen hua shi ye you xian gong si, 2006.
Find full textBook chapters on the topic "Bias cognitivi"
Mercier, Hugo. "Confirmation bias – myside bias." In Cognitive Illusions, 78–91. 3rd ed. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003154730-7.
Full textBlanco, Fernando. "Cognitive Bias." In Encyclopedia of Animal Cognition and Behavior, 1–7. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47829-6_1244-1.
Full textBlanco, Fernando. "Cognitive Bias." In Encyclopedia of Animal Cognition and Behavior, 1487–93. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-55065-7_1244.
Full textMatute, Helena, Fernando Blanco, and María Manuela Moreno-Fernández. "Causality bias." In Cognitive Illusions, 108–23. 3rd ed. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003154730-9.
Full textPohl, Rüdiger F., and Edgar Erdfelder. "Hindsight bias." In Cognitive Illusions, 436–54. 3rd ed. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003154730-31.
Full textHoward, Jonathan. "Hindsight Bias and Outcome Bias." In Cognitive Errors and Diagnostic Mistakes, 247–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93224-8_14.
Full textArad, Gal, and Yair Bar-Haim. "Cognitive bias interventions." In Anger at work: Prevention, intervention, and treatment in high-risk occupations., 275–301. Washington: American Psychological Association, 2021. http://dx.doi.org/10.1037/0000244-010.
Full textMeissel, Emily E. E., Jennie M. Kuckertz, and Nader Amir. "Cognitive bias modification." In Handbook of cognitive behavioral therapy: Overview and approaches (Vol. 1)., 673–99. Washington: American Psychological Association, 2021. http://dx.doi.org/10.1037/0000218-023.
Full textHoward, Jonathan. "Information Bias." In Cognitive Errors and Diagnostic Mistakes, 303–6. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93224-8_17.
Full textHoward, Jonathan. "Omission Bias." In Cognitive Errors and Diagnostic Mistakes, 321–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93224-8_19.
Full textConference papers on the topic "Bias cognitivi"
Hallihan, Gregory M., Hyunmin Cheong, and L. H. Shu. "Confirmation and Cognitive Bias in Design Cognition." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71258.
Full textScheuerman, Jaelle, and Dina Acklin. "Modeling Bias Reduction Strategies in a Biased Agent." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/762.
Full textNakanishi, Deborah Ayumi Alves, Diego Armando Barbosa Aragão, and Claudio Eduardo Corrêa Teixeira. "Systematic review with meta-analysis on the use of antihyperglycemic agents as a preventive factor for cognitive losses in diabetic patients." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.711.
Full textStanojevic, Rade, Vijay Erramilli, and Konstantina Papagiannaki. "Cognitive bias in network services." In the 11th ACM Workshop. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2390231.2390240.
Full textRollwage, Max, Tobias Hauser, Alisa Loosen, Rani Moran, Raymond Dolan, and Stephen Fleming. "Confidence Drives a Neural Confirmation Bias." In 2019 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2019. http://dx.doi.org/10.32470/ccn.2019.1064-0.
Full textWang, Hao, Snehasis Mukhopadhyay, Yunyu Xiao, and Shiaofen Fang. "An Interactive Approach to Bias Mitigation in Machine Learning." In 2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC). IEEE, 2021. http://dx.doi.org/10.1109/iccicc53683.2021.9811333.
Full textChivu, Alina cristina, and Catalin Nedelcea. "A GAMIFIED INTERVENTION COMBINING CBM-I AND SOCIAL SKILLS TRAINING FOR CHILDREN WITH AGGRESSIVE BEHAVIOR: PROOF OF CONCEPT." In eLSE 2019. Carol I National Defence University Publishing House, 2019. http://dx.doi.org/10.12753/2066-026x-19-010.
Full textWu, Bo, Murat Cubuktepe, Suda Bharadwaj, and Ufuk Topcu. "Reward-Based Deception with Cognitive Bias." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029476.
Full textLange, Richard, Ankani Chattoraj, Matthew Hochberg, Jeffrey Beck, Jacob Yates, and Ralf Haefner. "A Perceptual Confirmation Bias from Approximate Online Inference." In 2018 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2018. http://dx.doi.org/10.32470/ccn.2018.1167-0.
Full textValero Solis, Susana, Roser Granero Perez, Susana Jimenez Murcia, and Fernando Fernandez Aranda. "Association of the patients’ age with cognitive bias and impulsivity in gambling disorder." In 22° Congreso de la Sociedad Española de Patología Dual (SEPD) 2020. SEPD, 2020. http://dx.doi.org/10.17579/sepd2020o004.
Full textReports on the topic "Bias cognitivi"
Stormer, William P. The Decision Dilemma -- Cognitive Bias. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada235660.
Full textBar-Haim, Yair. Development of Cognitive Bias Modification (CBM) Tools to Promote Adjustment During Reintegration Following Deployment. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada612903.
Full textBar-Haim, Yair. Development of Cognitive Bias Modification (CBM) Tools to Promote Adjustment during Reintegration Following Deployment. Fort Belvoir, VA: Defense Technical Information Center, November 2013. http://dx.doi.org/10.21236/ada600556.
Full textKwon, Wi-Suk, Gopikrishna Deshpande, Jeffrey Katz, and Sang-Eun Byun. What Does the Brain Tell about Scarcity Bias? Cognitive Neuroscience Evidence of Decision Making under Scarcity. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-374.
Full textErblich, Joel, and Dana Bovbjerg. Psychological Distress, Cognitive Bias and Breast Cancer Surveillance Behavior in Women Tested for BRCA 1/2 Mutation. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada398143.
Full textErblich, Joel, and Dana H. Bovbjerg. Psychological Distress, Cognitive Bias and Breast Cancer Surveillance Behavior in Women Tested for BRCA 1/2 Mutation. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada409853.
Full textErblich, Joel, and Dana Bovbjerg. Psychological Distress, Cognitive Bias, and Breast Cancer Surveillance Behavior in Women Tested for BRCA 1/2 Mutation. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada420452.
Full textErblich, Joel, and Dana Bovbjerg. Psychological Distress, Cognitive Bias and Breast Cancer Surveillance Behavior in Women Tested for BRCA 1/2 Mutation. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada391104.
Full textGarsa, Adam, Julie K. Jang, Sangita Baxi, Christine Chen, Olamigoke Akinniranye, Owen Hall, Jody Larkin, Aneesa Motala, Sydne Newberry, and Susanne Hempel. Radiation Therapy for Brain Metasases. Agency for Healthcare Research and Quality (AHRQ), June 2021. http://dx.doi.org/10.23970/ahrqepccer242.
Full textCaulfield, Laura E., Wendy L. Bennett, Susan M. Gross, Kristen M. Hurley, S. Michelle Ogunwole, Maya Venkataramani, Jennifer L. Lerman, Allen Zhang, Ritu Sharma, and Eric B. Bass. Maternal and Child Outcomes Associated With the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). Agency for Healthcare Research and Quality (AHRQ), April 2022. http://dx.doi.org/10.23970/ahrqepccer253.
Full text