Journal articles on the topic 'Bicontinuous phases'

To see the other types of publications on this topic, follow the link: Bicontinuous phases.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bicontinuous phases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pieranski, P. "Topological defects in bicontinuous phases." EPL (Europhysics Letters) 81, no. 6 (February 22, 2008): 66001. http://dx.doi.org/10.1209/0295-5075/81/66001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pieruschka, P., and S. Marčelja. "Statistical mechanics of random bicontinuous phases." Journal de Physique II 2, no. 2 (February 1992): 235–47. http://dx.doi.org/10.1051/jp2:1992127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Deem, Michael W., and David Chandler. "Charge-frustrated model of bicontinuous phases." Physical Review E 49, no. 5 (May 1, 1994): 4268–75. http://dx.doi.org/10.1103/physreve.49.4268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deem, Michael W., and David Chandler. "Formation of interfaces in bicontinuous phases." Physical Review E 49, no. 5 (May 1, 1994): 4276–86. http://dx.doi.org/10.1103/physreve.49.4276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tyler, Arwen I. I., Hanna M. G. Barriga, Edward S. Parsons, Nicola L. C. McCarthy, Oscar Ces, Robert V. Law, John M. Seddon, and Nicholas J. Brooks. "Electrostatic swelling of bicontinuous cubic lipid phases." Soft Matter 11, no. 16 (2015): 3279–86. http://dx.doi.org/10.1039/c5sm00311c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We have constructed swollen bicontinuous cubic lipid phases from monoglyceride, anionic lipid and cholesterol. These self-assembled systems have lattice parameters of almost 50 nm, over 4 times larger than archetypal lipid cubic phases.
6

Anderson, David M., and Haakan Wennerstroem. "Self-diffusion in bicontinuous cubic phases, L3 phases, and microemulsions." Journal of Physical Chemistry 94, no. 24 (November 1990): 8683–94. http://dx.doi.org/10.1021/j100387a012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clerc, M., and E. Dubois-Violette. "X-ray scattering by bicontinuous cubic phases." Journal de Physique II 4, no. 2 (February 1994): 275–86. http://dx.doi.org/10.1051/jp2:1994128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Speziale, Chiara, Reza Ghanbari, and Raffaele Mezzenga. "Rheology of Ultraswollen Bicontinuous Lipidic Cubic Phases." Langmuir 34, no. 17 (April 12, 2018): 5052–59. http://dx.doi.org/10.1021/acs.langmuir.8b00737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhai, Jiali, Sampa Sarkar, Charlotte E. Conn, and Calum J. Drummond. "Molecular engineering of super-swollen inverse bicontinuous cubic and sponge lipid phases for biomedical applications." Molecular Systems Design & Engineering 5, no. 8 (2020): 1354–75. http://dx.doi.org/10.1039/d0me00076k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kluzek, Monika, Arwen I. I. Tyler, Shiqi Wang, Rongjun Chen, Carlos M. Marques, Fabrice Thalmann, John M. Seddon, and Marc Schmutz. "Influence of a pH-sensitive polymer on the structure of monoolein cubosomes." Soft Matter 13, no. 41 (2017): 7571–77. http://dx.doi.org/10.1039/c7sm01620d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Matsumoto, Takuro, Ayaka Ono, Takahiro Ichikawa, Takashi Kato, and Hiroyuki Ohno. "Construction of gyroid-structured matrices through the design of geminized amphiphilic zwitterions and their self-organization." Chemical Communications 52, no. 82 (2016): 12167–70. http://dx.doi.org/10.1039/c6cc06840e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

ANGELOV, BORISLAV. "PROTEIN NANODOMAIN PATTERNS IN LIPIDIC BICONTINUOUS CUBIC PHASES." Modern Physics Letters B 16, no. 07 (March 20, 2002): 225–30. http://dx.doi.org/10.1142/s0217984902003683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ordered nanopatterns that match to the {6, 4} tiling of the diamond type infinite periodic minimal surface are generated. The construction of the unit cell, generally recognized as a Monkey Saddle, is done numerically using the exact Weierstrass–Enneper representation of minimal surfaces. The obtained patterns are a good model for the self-assembly nanodomain organizations of membrane proteins, compatible with 3- or 6-fold symmetries and formed upon reconstitution in bicontinuous cubic lipid phases.
13

Deem, Michael W. "Oil and water self-diffusion in bicontinuous phases." Journal of Physical Chemistry 98, no. 3 (January 1994): 1002–5. http://dx.doi.org/10.1021/j100054a042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Peltomäki, Matti, Gerhard Gompper, and Daniel M. Kroll. "Scattering intensity of bicontinuous microemulsions and sponge phases." Journal of Chemical Physics 136, no. 13 (April 7, 2012): 134708. http://dx.doi.org/10.1063/1.3701265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dressel, Christian, Feng Liu, Marko Prehm, Xiangbing Zeng, Goran Ungar, and Carsten Tschierske. "Dynamic Mirror-Symmetry Breaking in Bicontinuous Cubic Phases." Angewandte Chemie 126, no. 48 (September 26, 2014): 13331–36. http://dx.doi.org/10.1002/ange.201406907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Olsson, Ulf, and Håkan Wennerström. "Globular and bicontinuous phases of nonionic surfactant films." Advances in Colloid and Interface Science 49 (April 1994): 113–46. http://dx.doi.org/10.1016/0001-8686(94)80014-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Dressel, Christian, Feng Liu, Marko Prehm, Xiangbing Zeng, Goran Ungar, and Carsten Tschierske. "Dynamic Mirror-Symmetry Breaking in Bicontinuous Cubic Phases." Angewandte Chemie International Edition 53, no. 48 (September 26, 2014): 13115–20. http://dx.doi.org/10.1002/anie.201406907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Qintang, Jiao Wang, Nana Lei, Minhao Yan, Xiao Chen, and Xiu Yue. "Phase behaviours of a cationic surfactant in deep eutectic solvents: from micelles to lyotropic liquid crystals." Physical Chemistry Chemical Physics 20, no. 17 (2018): 12175–81. http://dx.doi.org/10.1039/c8cp00001h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Leung, Sherry S. W., and Cecilia Leal. "The stabilization of primitive bicontinuous cubic phases with tunable swelling over a wide composition range." Soft Matter 15, no. 6 (2019): 1269–77. http://dx.doi.org/10.1039/c8sm02059k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kutsumizu, Shoichi, Suguru Miisako, Yohei Miwa, Makoto Kitagawa, Yasuhisa Yamamura, and Kazuya Saito. "Mirror symmetry breaking by mixing of equimolar amounts of two gyroid phase-forming achiral molecules." Physical Chemistry Chemical Physics 18, no. 26 (2016): 17341–44. http://dx.doi.org/10.1039/c6cp02954j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ces, Oscar, John Seddon, Robert Law, Nicholas Brooks, and Richard Templer. "Novel Insights into the Mechanistic Routes of Lyotropic Phase Transitions." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1187. http://dx.doi.org/10.1107/s2053273314088123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
When mixed with water, biological amphiphiles such as phospholipids can self-assemble to form a variety of lyotropic liquid crystalline structures including 1-D flat lamellar bilayers, 2-D hexagonal phases and 3-D bicontinuous cubic structures1. The role of the lamellar phase in nature is well understood – flat bilayers maintain the fundamental integrity of all living cells. However, non-lamellar phases also play a vital role in vivo. Extended cubic phases have been directly observed in cells and in addition, the repeating pores which form the continuously accessible structure of these bicontinuous phases are very closely structurally related to membrane pores formed during membrane fusion and fission. The equilibrium phase behaviour of pure phospholipids in water and simple model membrane mixtures has been widely studied but their out of equilibrium behaviour remains poorly understood. We have addressed this knowledge gap through pioneering work looking at the kinetics of phase transitions in phospholipid/water systems and phospholipid/protein/water mixtures using the pressure jump relaxation technique in conjunction with high speed, time resolved small angle X-ray diffraction. This presentation will provide an overview of how our bottom-up approach using model membrane systems has enabled us to establish the mechanistic routes and intermediates in a number of phase transition schemes including bicontinuous cubic to lamellar, hexagonal to lamellar and inter-cubic phase transitions.
22

Takeuchi, Rika, and Takahiro Ichikawa. "Improvement of lipidic bicontinuous cubic phases by the addition of a zwitterion with strong hydration ability and kosmotropicity." New Journal of Chemistry 43, no. 7 (2019): 3084–90. http://dx.doi.org/10.1039/c8nj05459b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kawafuchi, Akane, Shoichi Kutsumizu, Yuki Kawase, Issei Tokiwa, Taro Udagawa, and Yohei Miwa. "Molecular design of anti-spindle-like molecules by use of siloxanyl terminals for a thermotropic bicontinuous cubic phase." Physical Chemistry Chemical Physics 22, no. 18 (2020): 10132–41. http://dx.doi.org/10.1039/c9cp06831g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Takeuchi, Hiroaki, Takahiro Ichikawa, Masafumi Yoshio, Takashi Kato, and Hiroyuki Ohno. "Induction of bicontinuous cubic liquid-crystalline assemblies for polymerizable amphiphiles via tailor-made design of ionic liquids." Chemical Communications 52, no. 96 (2016): 13861–64. http://dx.doi.org/10.1039/c6cc07571a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kim, Hyun-Woo, Jun-Muk Lim, Hyeon-Ji Lee, Seung-Wook Eom, Young Taik Hong, and Sang-Young Lee. "Artificially engineered, bicontinuous anion-conducting/-repelling polymeric phases as a selective ion transport channel for rechargeable zinc–air battery separator membranes." Journal of Materials Chemistry A 4, no. 10 (2016): 3711–20. http://dx.doi.org/10.1039/c5ta09576j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Artificially engineered, bicontinuous anion-conducting/-repelling polymeric phases were demonstrated as a selective ion transport channel to bring separator membrane-driven performance benefits for rechargeable Zn–air batteries.
26

Takahashi, Yutaka, Hiroka Shirahata, Taishi Nishimura, Masaki Murai, Kazuaki Wakita, and Yukishige Kondo. "Boosting Effect of Amphiphilic Random Copolymers for Bicontinuous Phases." Journal of Oleo Science 67, no. 5 (2018): 531–37. http://dx.doi.org/10.5650/jos.ess17161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Olmsted, Peter D., and Scott T. Milner. "Strong Segregation Theory of Bicontinuous Phases in Block Copolymers." Macromolecules 31, no. 12 (June 1998): 4011–22. http://dx.doi.org/10.1021/ma980043o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Safran, S. A. "Bicontinuous to lamellar transitions in L3 phases and microemulsions." Langmuir 7, no. 9 (September 1991): 1864–66. http://dx.doi.org/10.1021/la00057a008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Flook, Kelly J., Neil R. Cameron, and Stephen A. C. Wren. "Polymerised bicontinuous microemulsions as stationary phases for capillary electrochromatography." Journal of Chromatography A 1044, no. 1-2 (July 2004): 245–52. http://dx.doi.org/10.1016/j.chroma.2004.05.102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Templer, R. H., J. M. Seddon, and N. A. Warrender. "Measuring the elastic parameters for inverse bicontinuous cubic phases." Biophysical Chemistry 49, no. 1 (February 1994): 1–12. http://dx.doi.org/10.1016/0301-4622(93)e0076-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hajduk, Damian A., Paul E. Harper, Sol M. Gruner, Christian C. Honeker, Edwin L. Thomas, and Lewis J. Fetters. "A Reevaluation of Bicontinuous Cubic Phases in Starblock Copolymers." Macromolecules 28, no. 7 (March 1995): 2570–73. http://dx.doi.org/10.1021/ma00111a061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Olmsted, Peter D., and Scott T. Milner. "Strong-segregation theory of bicontinuous phases in block copolymers." Physical Review Letters 72, no. 6 (February 7, 1994): 936–39. http://dx.doi.org/10.1103/physrevlett.72.936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Olmsted, Peter D., and Scott T. Milner. "Strong-Segregation Theory of Bicontinuous Phases in Block Copolymers." Physical Review Letters 74, no. 5 (January 30, 1995): 829. http://dx.doi.org/10.1103/physrevlett.74.829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Cameron, N. R., K. J. Flook, and S. A. C. Wren. "Polymerised bicontinuous microemulsions as stationary phases for capillary electrochromatography." Chromatographia 57, no. 3-4 (February 2003): 203–6. http://dx.doi.org/10.1007/bf02491717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Erbes, J., C. Czeslik, W. Hahn, R. Winter, M. Rappolt, and G. Rapp. "On the existence of bicontinuous cubic phases in dioleoylphosphatidylethanolamine." Berichte der Bunsengesellschaft für physikalische Chemie 98, no. 10 (October 1994): 1287–93. http://dx.doi.org/10.1002/bbpc.19940981011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Alaasar, Mohamed, Silvio Poppe, Yu Cao, Changlong Chen, Feng Liu, Chenhui Zhu, and Carsten Tschierske. "Y-shaped tricatenar azobenzenes – functional liquid crystals with synclinic–anticlinic transitions and spontaneous helix formation." Journal of Materials Chemistry C 8, no. 37 (2020): 12902–16. http://dx.doi.org/10.1039/d0tc03321a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The photoisomerizable functional azobenzene unit is organized in synclinic hexatic, anticlinic smectic and bicontinuous cubic liquid crystalline phases as well as in achiral or mirror symmetry broken isotropic network liquids.
37

Zahid, N. Idayu, Osama K. Abou-Zied, N. A. Nabila Saari, and Rauzah Hashim. "Comparative study of the inverse versus normal bicontinuous cubic phases of the β-d-glucopyranoside water-driven self-assemblies using fluorescent probes." RSC Advances 6, no. 1 (2016): 227–35. http://dx.doi.org/10.1039/c5ra19794e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This work investigates the head group region of the inverse and normal bicontinuous cubic phases (Ia3d space group) of the glucopyranoside/water system using 2-(2′-hydroxyphenyl)benzoxazole and its derivatives as fluorescent probes.
38

Milner, Scott T., and Peter D. Olmsted. "Analytical Weak-Segregation Theory of Bicontinuous Phases in Diblock Copolymers." Journal de Physique II 7, no. 2 (February 1997): 249–55. http://dx.doi.org/10.1051/jp2:1997122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Schwarz, U. S., and G. Gompper. "Systematic approach to bicontinuous cubic phases in ternary amphiphilic systems." Physical Review E 59, no. 5 (May 1, 1999): 5528–41. http://dx.doi.org/10.1103/physreve.59.5528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Schwarz, U. S., and G. Gompper. "Stability of Inverse Bicontinuous Cubic Phases in Lipid-Water Mixtures." Physical Review Letters 85, no. 7 (August 14, 2000): 1472–75. http://dx.doi.org/10.1103/physrevlett.85.1472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

di Caprio, D., A. E. Filippov, J. Stafiej, and J. P. Badiali. "Bicontinuous phases in coulombic systems. The role of specific interactions." Journal of Molecular Liquids 87, no. 2-3 (September 2000): 163–75. http://dx.doi.org/10.1016/s0167-7322(00)00119-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zabara, Alexandru, Renata Negrini, Ozana Onaca-Fischer, and Raffaele Mezzenga. "Perforated Bicontinuous Cubic Phases with pH-Responsive Topological Channel Interconnectivity." Small 9, no. 21 (May 16, 2013): 3602–9. http://dx.doi.org/10.1002/smll.201300348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Cui, Congcong, Yuru Deng, and Lu Han. "Bicontinuous cubic phases in biological and artificial self-assembled systems." Science China Materials 63, no. 5 (February 28, 2020): 686–702. http://dx.doi.org/10.1007/s40843-019-1261-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hamley, I. W., J. A. Pople, A. J. Gleeson, B. U. Komanschek, and E. Towns-Andrews. "Simultaneous Rheology and Small-Angle Scattering Experiments on Block Copolymer Gels and Melts in Cubic Phases." Journal of Applied Crystallography 31, no. 6 (December 1, 1998): 881–89. http://dx.doi.org/10.1107/s0021889898007699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A new instrument for simultaneous small-angle X-ray scattering and rheology experiments on soft solids is described. This device is based on a commercial rheometer with a shear sandwich geometry in which the sample is subjected to a planar oscillatory deformation. This instrument has been used for time-resolved small-angle X-ray scattering/rheology experiments at the Synchrotron Radiation Source, Daresbury Laboratory, England. The focus has been in particular on the effect of large-amplitude shearing on the orientation of cubic phases in gels of block copolymers formed in concentrated solutions, and on the bicontinuous cubic phase of a block copolymer melt. Representative results are presented for face-centred cubic (f.c.c.) and body-centred cubic (b.c.c.) phases in gels of poly(oxyethylene)–poly(oxybutylene) diblock copolymers, and for the bicontinuous cubic `gyroid' structure in a poly-(ethylene-alt-propylene)–poly(dimethylsiloxane) di-block copolymer melt. The orientations of the micellar b.c.c. phases in the gels and the gyroid structure (belonging to the b.c.c. space group Ia\bar 3d) following large-amplitude shearing are shown to be the same,i.e.directionally oriented crystals are produced in both cases, in which (111) directions are oriented along the shear direction.
45

Ichikawa, Takahiro, Yui Sasaki, Tsubasa Kobayashi, Hikaru Oshiro, Ayaka Ono, and Hiroyuki Ohno. "Design of Ionic Liquid Crystals Forming Normal-Type Bicontinuous Cubic Phases with a 3D Continuous Ion Conductive Pathway." Crystals 9, no. 6 (June 14, 2019): 309. http://dx.doi.org/10.3390/cryst9060309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We have prepared a series of pyridinium-based gemini amphiphiles. They exhibit thermotropic liquid–crystalline behavior depending on their alkyl chain lengths and anion species. By adjusting the alkyl chain lengths and selecting suitable anions, we have obtained an ionic amphiphile that exhibits a normal-type bicontinuous cubic phase from 38 °C to 12 °C on cooling from an isotropic phase. In the bicontinuous cubic liquid–crystalline assembly, the pyridinium-based ionic parts align along a gyroid minimal surface forming a 3D continuous ionic domain while their ionophobic alkyl chains form 3D branched nanochannel networks. This ionic compound can form homogeneous mixtures with a lithium salt and the resultant mixtures keep the ability to form normal-type bicontinuous cubic phases. Ion conduction measurements have been performed for the mixtures on cooling. It has been revealed that the formation of the 3D branched ionophobic nanochannels does not disturb the ion conduction behavior in the ionic domain while it results in the conversion of the state of the mixtures from fluidic liquids to quasi-solids, namely highly viscous liquid crystals. Although the ionic conductivity of the mixtures is in the order of 10–7 S cm–1 at 40 °C, which is far lower than the values for practical use, the present material design has a potential to pave the way for developing advanced solid electrolytes consisting of two task-specific nanosegregated domains: One is an ionic liquid nano-domain with a 3D continuity for high ionic conductivity and the other is ionophobic nanochannel network domains for high mechanical strength.
46

Assenza, Salvatore, and Raffaele Mezzenga. "Curvature and bottlenecks control molecular transport in inverse bicontinuous cubic phases." Journal of Chemical Physics 148, no. 5 (February 7, 2018): 054902. http://dx.doi.org/10.1063/1.5019224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mihailescu, M., M. Monkenbusch, H. Endo, J. Allgaier, G. Gompper, J. Stellbrink, D. Richter, B. Jakobs, T. Sottmann, and B. Farago. "Dynamics of bicontinuous microemulsion phases with and without amphiphilic block-copolymers." Journal of Chemical Physics 115, no. 20 (November 22, 2001): 9563–77. http://dx.doi.org/10.1063/1.1413509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Eriksson, P. O., and G. Lindblom. "Lipid and water diffusion in bicontinuous cubic phases measured by NMR." Biophysical Journal 64, no. 1 (January 1993): 129–36. http://dx.doi.org/10.1016/s0006-3495(93)81347-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Squires, A., R. H. Templer, O. Ces, A. Gabke, J. Woenckhaus, J. M. Seddon, and R. Winter. "Kinetics of Lyotropic Phase Transitions Involving the Inverse Bicontinuous Cubic Phases." Langmuir 16, no. 8 (April 2000): 3578–82. http://dx.doi.org/10.1021/la991611b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Morkved, Terry L., Bryan R. Chapman, Frank S. Bates, Timothy P. Lodge, Petr Stepanek, and Kristoffer Almdal. "Dynamics of ternary polymer blends: Disordered, ordered and bicontinuous microemulsion phases." Faraday Discussions 112 (1999): 335–50. http://dx.doi.org/10.1039/a809169b.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography