To see the other types of publications on this topic, follow the link: Bifidobacterium bifidum.

Journal articles on the topic 'Bifidobacterium bifidum'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bifidobacterium bifidum.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Anindita, Nosa Septiana, and Muslih Anwar. "Viabilitas Dan Aktivitas Antibakteri Bifidobacterium bifidum Dalam Susu Bifidus Dengan Suplementasi Ekstrak Cengkeh (Syzygium aromaticum)." agriTECH 41, no. 3 (August 20, 2021): 267. http://dx.doi.org/10.22146/agritech.40882.

Full text
Abstract:
Pengembangan produk olahan susu kambing terfermentasi dan diperkaya dengan probiotik Bifidobacterium bifidum merupakan salah satu produk pangan fungsional (Functional Food) yang selanjutnya disebut sebagai Susu Bifidus. Susu bifidus sebagai salah satu produk fermentasi susu dapat dikonsumsi oleh masyarakat yang mengalami kesulitan mencerna laktosa (lactose intolerance). Daya terima konsumen terhadap susu kambing masih tergolong rendah dibandingkan dengan susu sapi, sehingga hal tersebut juga perlu diantisipasi. Penambahan ekstrak cengkeh (Syzygium aromaticum) pada susu Bifidus dapat digunakan sebagai alternatif senyawa aromatik alami, untuk menghilangkan aroma goaty pada susu kambing yang kurang begitu disukai oleh konsumen. Penelitian ini bertujuan untuk mengetahui pengaruh suplementasi ekstrak cengkeh terhadap viabilitas (daya hidup) dan aktivitas antibakteri Bifidobacterium bifidum serta kualitas kimia susu Bifidus. Parameter yang diamati pada penelitian adalah total Bifidobacterium bifidum, total bakteri dan luas zona bening susu Bifidus. Suplementasi ekstrak cengkeh sebesar 2% sebagai bahan suplementasi pada Bifidus milk dapat meningkatkan viabilitas probiotik Bifidobacterium bifidum. Ekstrak cengkeh dalam produk Bifidus milk berperan sebagai agen preservatif, didukung dengan adanya aktivitas antibakteri terhadap Staphylococcus aureus dan Salmonella typhimurium dan penurunan total bakteri pada Bifidus milk.
APA, Harvard, Vancouver, ISO, and other styles
2

Peirotén, A., J. L. Arqués, M. Medina, and E. Rodríguez-Mínguez. "Bifidobacterial strains shared by mother and child as source of probiotics." Beneficial Microbes 9, no. 2 (February 27, 2018): 231–38. http://dx.doi.org/10.3920/bm2017.0133.

Full text
Abstract:
Importance of bifidobacteria as part of the infant intestinal microbiota has been highlighted. Their acquisition is influenced by the mode of birth and the feed regime afterwards, with a special role of the maternal microbiota. The presence of the same shared bifidobacterial strains between breast milk and infant faeces in 14 mother-infant pairs was assessed by means of pulsed-field gel electrophoresis (PFGE) genotyping. Four shared strains of Bifidobacterium breve (2), Bifidobacterium longum subsp. infantis and B. longum subsp. longum were found in breast milk-infant faeces pairs. Two years later, a second survey yielded four shared strains of the species Bifidobacterium adolescentis, Bifidobacterium bifidum, B. longum subsp. longum and Bifidobacterium pseudocatenulatum. Moreover, a B. bifidum strain was found to be shared by the infant faeces of the first study and the mother faeces tested two years later, pointing out a long term persistence. Some of the selected bifidobacterial strains showed probiotic potential due to their survival to gastrointestinal conditions and their ability to form biofilms.
APA, Harvard, Vancouver, ISO, and other styles
3

Moubareck, C., M. Lecso, E. Pinloche, M. J. Butel, and F. Doucet-Populaire. "Inhibitory Impact of Bifidobacteria on the Transfer of β-Lactam Resistance among Enterobacteriaceae in the Gnotobiotic Mouse Digestive Tract." Applied and Environmental Microbiology 73, no. 3 (November 22, 2006): 855–60. http://dx.doi.org/10.1128/aem.02001-06.

Full text
Abstract:
ABSTRACT While looking for new means to limit the dissemination of antibiotic resistance, we evaluated the role of potentially probiotic bifidobacteria on the transfer of resistance genes between enterobacteria. Transfers of bla genes encoding extended-spectrum β-lactamases (SHV-5 and CTX-M-15) were studied in the absence or presence of bifidobacteria. In vitro, transfer frequencies of these bla genes decreased significantly in the presence of three of five tested strains, i.e., Bifidobacterium longum CUETM-89-215, Bifidobacterium bifidum CIP-56.7T, and Bifidobacterium pseudocatenulatum CIP-104168T. Four transfer experiments were conducted in the digestive tract of gnotobiotic mice, the first three observing the effect of B. longum CUETM-89-215, B. bifidum CIP-56.7T, and B. pseudocatenulatum CIP-104168T on bla SHV-5 transfer and the fourth experiment studying the effect of B. bifidum CIP-56.7T on bla CTX-M-15 transfer. These experiments revealed significant decreases in the transconjugant levels (up to 3 logs) in mice having received B. bifidum CIP-56.7T or B. pseudocatenulatum CIP-104168T compared to control mice. Bifidobacteria appear to have an inhibitory impact on the transfer of antibiotic resistance genes. The inhibitory effect is associated to specific bifidobacterial strains and may be related to the production of thermostable metabolites by these strains.
APA, Harvard, Vancouver, ISO, and other styles
4

Turroni, Francesca, Elena Foroni, Paola Pizzetti, Vanessa Giubellini, Angela Ribbera, Paolo Merusi, Patrizio Cagnasso, et al. "Exploring the Diversity of the Bifidobacterial Population in the Human Intestinal Tract." Applied and Environmental Microbiology 75, no. 6 (January 23, 2009): 1534–45. http://dx.doi.org/10.1128/aem.02216-08.

Full text
Abstract:
ABSTRACT Although the health-promoting roles of bifidobacteria are widely accepted, the diversity of bifidobacteria among the human intestinal microbiota is still poorly understood. We performed a census of bifidobacterial populations from human intestinal mucosal and fecal samples by plating them on selective medium, coupled with molecular analysis of selected rRNA gene sequences (16S rRNA gene and internally transcribed spacer [ITS] 16S-23S spacer sequences) of isolated colonies. A total of 900 isolates were collected, of which 704 were shown to belong to bifidobacteria. Analyses showed that the culturable bifidobacterial population from intestinal and fecal samples include six main phylogenetic taxa, i.e., Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bifidobacterium adolescentis, Bifidobacterium pseudolongum, Bifidobacterium breve, and Bifidobacterium bifidum, and two species mostly detected in fecal samples, i.e., Bifidobacterium dentium and Bifidobacterium animalis subp. lactis. Analysis of bifidobacterial distribution based on age of the subject revealed that certain identified bifidobacterial species were exclusively present in the adult human gut microbiota whereas others were found to be widely distributed. We encountered significant intersubject variability and composition differences between fecal and mucosa-adherent bifidobacterial communities. In contrast, a modest diversification of bifidobacterial populations was noticed between different intestinal regions within the same individual (intrasubject variability). Notably, a small number of bifidobacterial isolates were shown to display a wide ecological distribution, thus suggesting that they possess a broad colonization capacity.
APA, Harvard, Vancouver, ISO, and other styles
5

Turroni, Francesca, Sabrina Duranti, Christian Milani, Gabriele Andrea Lugli, Douwe van Sinderen, and Marco Ventura. "Bifidobacterium bifidum: A Key Member of the Early Human Gut Microbiota." Microorganisms 7, no. 11 (November 9, 2019): 544. http://dx.doi.org/10.3390/microorganisms7110544.

Full text
Abstract:
Bifidobacteria typically represent the most abundant bacteria of the human gut microbiota in healthy breast-fed infants. Members of the Bifidobacterium bifidum species constitute one of the dominant taxa amongst these bifidobacterial communities and have been shown to display notable physiological and genetic features encompassing adhesion to epithelia as well as metabolism of host-derived glycans. In the current review, we discuss current knowledge concerning particular biological characteristics of the B. bifidum species that support its specific adaptation to the human gut and their implications in terms of supporting host health.
APA, Harvard, Vancouver, ISO, and other styles
6

Sakurai, Takuma, Toshitaka Odamaki, and Jin-zhong Xiao. "Production of Indole-3-Lactic Acid by Bifidobacterium Strains Isolated fromHuman Infants." Microorganisms 7, no. 9 (September 11, 2019): 340. http://dx.doi.org/10.3390/microorganisms7090340.

Full text
Abstract:
Recent studies have shown that metabolites produced by microbes can be considered as mediators of host-microbial interactions. In this study, we examined the production of tryptophan metabolites by Bifidobacterium strains found in the gastrointestinal tracts of humans and other animals. Indole-3-lactic acid (ILA) was the only tryptophan metabolite produced in bifidobacteria culture supernatants. No others, including indole-3-propionic acid, indole-3-acetic acid, and indole-3-aldehyde, were produced. Strains of bifidobacterial species commonly isolated from the intestines of human infants, such as Bifidobacterium longum subsp. longum, Bifidobacterium longum subsp. infantis, Bifidobacterium breve, and Bifidobacterium bifidum, produced higher levels of ILA than did strains of other species. These results imply that infant-type bifidobacteria might play a specific role in host–microbial cross-talk by producing ILA in human infants.
APA, Harvard, Vancouver, ISO, and other styles
7

Sakurai, T., A. Yamada, N. Hashikura, T. Odamaki, and J. Z. Xiao. "Degradation of food-derived opioid peptides by bifidobacteria." Beneficial Microbes 9, no. 4 (June 15, 2018): 675–82. http://dx.doi.org/10.3920/bm2017.0165.

Full text
Abstract:
Some food-derived opioid peptides have been reported to cause diseases, such as gastrointestinal inflammation, celiac disease, and mental disorders. Bifidobacterium is a major member of the dominant human gut microbiota, particularly in the gut of infants. In this study, we evaluated the potential of Bifidobacterium in the degradation of food-derived opioid peptides. All strains tested showed some level of dipeptidyl peptidase activity, which is thought to be involved in the degradation of food-derived opioid peptides. However, this activity was higher in bifidobacterial strains that are commonly found in the intestines of human infants, such as Bifidobacterium longum subsp. longum, B. longum subsp. infantis, Bifidobacterium breve and Bifidobacterium bifidum, than in those of other species, such as Bifidobacterium animalis and Bifidobacterium pseudolongum. In addition, some B. longum subsp. infantis and B. bifidum strains showed degradative activity in food-derived opioid peptides such as human and bovine milk-derived casomorphin-7 and wheat gluten-derived gliadorphin-7. A further screening of B. bifidum strains revealed some bifidobacterial strains that could degrade all three peptides. Our results revealed the potential of Bifidobacterium species in the degradation of food-derived opioid peptides, particularly for species commonly found in the intestine of infants. Selected strains of B. longum subsp. infantis and B. bifidum with high degradative capabilities can be used as probiotic microorganisms to eliminate food-derived opioid peptides and contribute to host health.
APA, Harvard, Vancouver, ISO, and other styles
8

Young, Sarah L., Mary A. Simon, Margaret A. Baird, Gerald W. Tannock, Rodrigo Bibiloni, Kate Spencely, Juliette M. Lane, et al. "Bifidobacterial Species Differentially Affect Expression of Cell Surface Markers and Cytokines of Dendritic Cells Harvested from Cord Blood." Clinical Diagnostic Laboratory Immunology 11, no. 4 (July 2004): 686–90. http://dx.doi.org/10.1128/cdli.11.4.686-690.2004.

Full text
Abstract:
ABSTRACT The gut microbiota may be important in the postnatal development of the immune system and hence may influence the prevalence of atopic diseases. Bifidobacteria are the most numerous bacteria in the guts of infants, and the presence or absence of certain species could be important in determining the geographic incidence of atopic diseases. We compared the fecal populations of bifidobacteria from children aged 25 to 35 days in Ghana (which has a low prevalence of atopy), New Zealand, and the United Kingdom (high-prevalence countries). Natal origin influenced the detection of bifidobacterial species in that fecal samples from Ghana almost all contained Bifidobacterium infantis whereas those of the other children did not. Choosing species on the basis of our bacteriological results, we tested bifidobacterial preparations for their effects on cell surface markers and cytokine production by dendritic cells harvested from cord blood. Species-specific effects on the expression of the dendritic-cell activation marker CD83 and the production of interleukin-10 (IL-10) were observed. Whereas CD83 expression was increased and IL-10 production was induced by Bifidobacterium bifidum, Bifidobacterium longum, and Bifidobacterium pseudocatenulatum, B. infantis failed to produce these effects. We concluded that B. infantis does not trigger the activation of dendritic cells to the degree necessary to initiate an immune response but that B. bifidum, B. longum, and B. pseudocatenulatum induce a Th2-driven immune response. A hypothesis is presented to link our observations to the prevalence of atopic diseases in different countries.
APA, Harvard, Vancouver, ISO, and other styles
9

Mart�n, Roc�o, Esther Jim�nez, Hans Heilig, Leonides Fern�ndez, Mar�a L. Mar�n, Erwin G. Zoetendal, and Juan M. Rodr�guez. "Isolation of Bifidobacteria from Breast Milk and Assessment of the Bifidobacterial Population by PCR-Denaturing Gradient Gel Electrophoresis and Quantitative Real-Time PCR." Applied and Environmental Microbiology 75, no. 4 (December 16, 2008): 965–69. http://dx.doi.org/10.1128/aem.02063-08.

Full text
Abstract:
ABSTRACT The objective of this work was to elucidate if breast milk contains bifidobacteria and whether they can be transmitted to the infant gut through breastfeeding. Twenty-three women and their respective infants provided samples of breast milk and feces, respectively, at days 4 to 7 after birth. Gram-positive and catalase-negative isolates from specific media with typical bifidobacterial shapes were identified to the genus level by F6PPK (fructose-6-phosphate phosphoketolase) assays and to the species level by 16S rRNA gene sequencing. Bifidobacterial communities in breast milk were assessed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE), and their levels were estimated by quantitative real-time PCR (qRTi-PCR). Bifidobacteria were present in 8 milk samples and 21 fecal samples. Bifidobacterium breve, B. adolescentis, and B. bifidum were isolated from milk samples, while infant feces also contained B. longum and B. pseudocatenulatum. PCR-DGGE revealed the presence of one to four dominant bifidobacterial bands in 22 milk samples. Sequences with similarities above 98% were identified as Bifidobacterium breve, B. adolescentis, B. longum, B. bifidum, and B. dentium. Bifidobacterial DNA was detected by qRTi-PCR in the same 22 milk samples at a range between 40 and 10,000 16S rRNA gene copies per ml. In conclusion, human milk seems to be a source of living bifidobacteria for the infant gut.
APA, Harvard, Vancouver, ISO, and other styles
10

Ročková, Š., V. Rada, J. Havlík, R. Švejstil, E. Vlková, V. Bunešová, K. Janda, and I. Profousová. "Growth of bifidobacteria in mammalian milk." Czech Journal of Animal Science 58, No. 3 (March 4, 2013): 99–105. http://dx.doi.org/10.17221/6666-cjas.

Full text
Abstract:
Microbial colonization of the mammalian intestine begins at birth, when from a sterile state a newborn infant is exposed to an external environment rich in various bacterial species. An important group of intestinal bacteria comprises bifidobacteria. Bifidobacteria represent major intestinal microbiota during the breast-feeding period. Animal milk contains all crucial nutrients for babies’ intestinal microflora. The aim of our work was to test the influence of different mammalian milk on the growth of bifidobacteria. The growth of seven strains of bifidobacteria in human milk, the colostrum of swine, cow’s milk, sheep’s milk, and rabbit’s milk was tested. Good growth accompanied by the production of lactic acid was observed not only in human milk, but also in the other kinds of milk in all three strains of Bifidobacterium bifidum of different origin. Human milk selectively supported the production of lactic acid of human bifidobacterial isolates, especially the Bifidobacterium bifidum species. The promotion of bifidobacteria by milk is species-specific. Human milk contains a key factor for the growth of specific species or strains of human-origin bifidobacteria compared to other kinds of milk. In contrast, some components (maybe lysozyme) of human milk inhibited the growth of Bifidobacterium animalis. Animal-origin strains of bifidobacteria were not able to significantly grow even in milk of animal origin, with the exception of B. animalis subsp. lactis 1,2, which slightly grew in sheep’s milk.
APA, Harvard, Vancouver, ISO, and other styles
11

Shu, Guo Wei, Man Hu, Tao Qin, He Chen, and Qi Ma. "Effect of Fructo-Oligosaccharide, Isomalto-Oligosaccharide, Inulin and Xylo-Oligosaccharide on Survival of B. Bifidum during Freeze-Drying." Advanced Materials Research 382 (November 2011): 454–57. http://dx.doi.org/10.4028/www.scientific.net/amr.382.454.

Full text
Abstract:
Four different prebiotics including fructo-oligosaccharide isomalto-oligosaccharide, inulin and xylo-oligosaccharide were screened for their effects on survival of Bifidobacterium bifidum during freeze-drying. The additions of prebiotics (v/v) were all 4%, 8%, 12%, 16% and 20%. The results showed that prebiotics could act on Bifidobacterium Bifidum. The optimum concentration of fructo-oligosaccharides (FOS) in samples for surival of Bifidobacterium bifidum was 12% and for viable count was 20%. Addition of xylo-oligosaccharides (XOS) played a significant role in promoting cell viablity when it was in low level. The optimum concentration of isomalto-oligosaccharides (IMO) for surival of Bifidobacterium bifidum was 16% and for viable count was 12%, while inulin in samples for surival and viable cell of Bifidobacterium bifidum both was 4%.
APA, Harvard, Vancouver, ISO, and other styles
12

Kim, Woan-Sub, Tetsuya Tanaka, Haruto Kumura, and Kei-ichi Shimazaki. "Lactoferrin-binding proteins in Bifidobacterium bifidum." Biochemistry and Cell Biology 80, no. 1 (February 1, 2002): 91–94. http://dx.doi.org/10.1139/o01-226.

Full text
Abstract:
Lactoferrin is an iron-binding glycoprotein and its bacteriostatic and bactericidal effects on gram-positive and gram-negative bacteria are well known. On the other hand, it is known that certain kinds of lactic acid bacteria are resistant to its antibacterial effects. Moreover, it is reported that lactoferrin promotes the growth of bifidobacteria in in vitro and in vivo experiments. In our experiments, lactoferrin-binding protein was found both in the membrane and cytosolic fractions of Bifidobacterium bifidum Bb-11. The bifidobacteria were grown in anaerobic conditions with lactobacilli MRS broth containing cysteine, harvested by centrifugation, and processed by sonication. The lactoferrin-binding proteins on the PVDF-membrane transferred after SDS-PAGE were detected by far-Western (western-Western) method using biotinylated lactoferrin and streptavidin-labelled horse radish peroxidase. The molecular weights of the lactoferrin binding protein detected in the membrane fraction were estimated to be 69 kDa and those in cytosolic fractions were 20, 35, 50, and 66 kDa.Key words: lactoferrin, Bifidobacterium, lactic acid bacteria, binding protein.
APA, Harvard, Vancouver, ISO, and other styles
13

Dinoto, Achmad, Tatiana M. Marques, Kanta Sakamoto, Satoru Fukiya, Jun Watanabe, Susumu Ito, and Atsushi Yokota. "Population Dynamics of Bifidobacterium Species in Human Feces during Raffinose Administration Monitored by Fluorescence In Situ Hybridization-Flow Cytometry." Applied and Environmental Microbiology 72, no. 12 (October 20, 2006): 7739–47. http://dx.doi.org/10.1128/aem.01777-06.

Full text
Abstract:
ABSTRACT The population dynamics of bifidobacteria in human feces during raffinose administration were investigated at the species level by using fluorescence in situ hybridization (FISH) coupled with flow cytometry (FCM) analysis. Although double-staining FISH-FCM using both fluorescein isothiocyanate (FITC) and indodicarbocyanine (Cy5) as labeling dyes for fecal samples has been reported, the analysis was interfered with by strong autofluorescence at the FITC fluorescence region because of the presence of autofluorescence particles/debris in the fecal samples. We circumvented this problem by using only Cy5 fluorescent dye in the FISH-FCM analysis. Thirteen subjects received 2 g of raffinose twice a day for 4 weeks. Fecal samples were collected, and the bifidobacterial populations were monitored using the established FISH-FCM method. The results showed an increase in bifidobacteria from about 12.5% of total bacteria in the prefeeding period to about 28.7 and 37.2% after the 2-week and 4-week feeding periods, respectively. Bifidobacterium adolescentis, the Bifidobacterium catenulatum group, and Bifidobacterium longum were the major species, in that order, at the prefeeding period, and these bacteria were found to increase nearly in parallel during the raffinose administration. During the feeding periods, indigenous bifidobacterial populations became more diverse, such that minor species in human adults, such as Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium dentium, and Bifidobacterium angulatum, proliferated. Four weeks after raffinose administration was stopped, the proportion of each major bifidobacterial species, as well as that of total bifidobacteria, returned to approximately the original values for the prefeeding period, whereas that of each minor species appeared to differ considerably from its original value. To the best of our knowledge, these results provide the first clear demonstration of the population dynamics of indigenous bifidobacteria at the species level in response to raffinose administration.
APA, Harvard, Vancouver, ISO, and other styles
14

Katoh, Toshihiko, Miriam N. Ojima, Mikiyasu Sakanaka, Hisashi Ashida, Aina Gotoh, and Takane Katayama. "Enzymatic Adaptation of Bifidobacterium bifidum to Host Glycans, Viewed from Glycoside Hydrolyases and Carbohydrate-Binding Modules." Microorganisms 8, no. 4 (March 28, 2020): 481. http://dx.doi.org/10.3390/microorganisms8040481.

Full text
Abstract:
Certain species of the genus Bifidobacterium represent human symbionts. Many studies have shown that the establishment of symbiosis with such bifidobacterial species confers various beneficial effects on human health. Among the more than ten (sub)species of human gut-associated Bifidobacterium that have significantly varied genetic characteristics at the species level, Bifidobacterium bifidum is unique in that it is found in the intestines of a wide age group, ranging from infants to adults. This species is likely to have adapted to efficiently degrade host-derived carbohydrate chains, such as human milk oligosaccharides (HMOs) and mucin O-glycans, which enabled the longitudinal colonization of intestines. The ability of this species to assimilate various host glycans can be attributed to the possession of an adequate set of extracellular glycoside hydrolases (GHs). Importantly, the polypeptides of those glycosidases frequently contain carbohydrate-binding modules (CBMs) with deduced affinities to the target glycans, which is also a distinct characteristic of this species among members of human gut-associated bifidobacteria. This review firstly describes the prevalence and distribution of B. bifidum in the human gut and then explains the enzymatic machinery that B. bifidum has developed for host glycan degradation by referring to the functions of GHs and CBMs. Finally, we show the data of co-culture experiments using host-derived glycans as carbon sources, which underpin the interesting altruistic behavior of this species as a cross-feeder.
APA, Harvard, Vancouver, ISO, and other styles
15

Fushinobu, Shinya, and Maher Abou Hachem. "Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes." Biochemical Society Transactions 49, no. 2 (March 5, 2021): 563–78. http://dx.doi.org/10.1042/bst20200163.

Full text
Abstract:
Bifidobacteria have attracted significant attention because they provide health-promoting effects in the human gut. In this review, we present a current overview of the three-dimensional structures of bifidobacterial proteins involved in carbohydrate uptake, degradation, and metabolism. As predominant early colonizers of the infant's gut, distinct bifidobacterial species are equipped with a panel of transporters and enzymes specific for human milk oligosaccharides (HMOs). Interestingly, Bifidobacterium bifidum and Bifidobacterium longum possess lacto-N-biosidases with unrelated structural folds to release the disaccharide lacto-N-biose from HMOs, suggesting the convergent evolution of this activity from different ancestral proteins. The crystal structures of enzymes that confer the degradation of glycans from the mucin glycoprotein layer provide a structural basis for the utilization of this sustainable nutrient in the gastrointestinal tract. The utilization of several plant dietary oligosaccharides has been studied in detail, and the prime importance of oligosaccharide-specific ATP-binding cassette (ABC) transporters in glycan utilisations by bifidobacteria has been revealed. The structural elements underpinning the high selectivity and roles of ABC transporter binding proteins in establishing competitive growth on preferred oligosaccharides are discussed. Distinct ABC transporters are conserved across several bifidobacterial species, e.g. those targeting arabinoxylooligosaccharide and α-1,6-galactosides/glucosides. Less prevalent transporters, e.g. targeting β-mannooligosaccharides, may contribute to the metabolic specialisation within Bifidobacterium. Some bifidobacterial species have established symbiotic relationships with humans. Structural studies of carbohydrate-utilizing systems in Bifidobacterium have revealed the interesting history of molecular coevolution with the host, as highlighted by the early selection of bifidobacteria by mucin and breast milk glycans.
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, He, Man Hu, Guo Wei Shu, Tao Qin, and Jiang Ping Wang. "Effect of Steroidal Saponins from Fructus tribuli on Growth of Bifidobacterium bifidum and Lactobacillus acidophilus." Key Engineering Materials 480-481 (June 2011): 70–74. http://dx.doi.org/10.4028/www.scientific.net/kem.480-481.70.

Full text
Abstract:
Effect of steroidal saponins fromFructus tribuli on growth of Bifidobacterium bifidum BB01, BB03 and Lactobacillus acidophilus LA09 was studied by measuring optical density at 600nm (OD600) and pH using MRS media as the control. The concentration of steroidal saponins (w/v) added in was 0.05%, 0.10%, 0.15%, 0.20% and 0.25%. Results were as follows: addition of steroidal saponins could improve the buffer ability of MRS and promote the growth of Bifidobacterium bifidum BB01 and BB03. The optimum concentration of nutrient supplement in MRS media was 0.20% at incubation 24h for Bifidobacterium bifidum BB01 and 0.25% at incubation 24h for Bifidobacterium bifidum BB03. Addition of steroidal saponins on Lactobacillus acidophilus LA09 didn’t play an obvious role in promoting growth when it was in high level.
APA, Harvard, Vancouver, ISO, and other styles
17

Chen, He, Donglin Ma, Yichao Li, Yu Liu, and Ye Wang. "Effect of Microencapsulation on Survival and Stability of Bifidobacterium bifidum BB01 Exposed to Simulated Gastrointestinal Conditions and in Different Food Matrices." Acta Universitatis Cibiniensis. Series E: Food Technology 21, no. 1 (June 1, 2017): 23–34. http://dx.doi.org/10.1515/aucft-2017-0003.

Full text
Abstract:
Abstract Bifidobacterium bifidum BB01 was microencapsulated by extrusion method with sodium alginate. This paper aimed to study the survival rate of microencapsulating Bifidobacterium bifidum BB01 in simulated gastrointestinal conditions, resistance to artificial bile salt and stability during storage. Results showed non-microencapsulated Bifidobacterium bifidum BB01 were more susceptible than microencapsulated under simulated gastrointestinal conditions, and microencapsulated Bifidobacterium bifidum BB01 exhibited a lower population reduction than free cells during exposure to simulated gastrointestinal, The enteric test showed that the microorganism cells were released from the monolayer microcapsules, double microcapsules and trilayer completely in 40min. The viable counts of monolayer microcapsules, double layer microcapsules and triple layer microcapsules decreased by nine magnitudes, four magnitude and one magnitude after 2h, respectively. Moreover, in fruit orange, pure milk and nutrition Express, the optimum storage times of free Bifidobacterium bifidum BB01, monolayer microcapsules, double layer microcapsules and triple layer microcapsules were 21 days, 21 days, 28 days and more than 35 days at 4°C, but at room temperature the optimum storage time were 7 days, 14 days, 21 days and more than 28 days, and the viable counts were maintained at 1×106 CFU g−1 or more.
APA, Harvard, Vancouver, ISO, and other styles
18

Souza, T. C., A. M. Silva, J. R. P. Drews, D. A. Gomes, C. G. Vinderola, and J. R. Nicoli. "In vitro evaluation of Bifidobacterium strains of human origin for potential use in probiotic functional foods." Beneficial Microbes 4, no. 2 (June 1, 2013): 179–86. http://dx.doi.org/10.3920/bm2012.0052.

Full text
Abstract:
The present study investigated some in vitro properties for probiotic use of four strains of bifidobacteria isolated from faeces of healthy children (Bifidobacterium longum 51A, Bifidobacterium breve 1101A, Bifidobacterium pseudolongum 1191A and Bifidobacterium bifidum 1622A). In vitro tests were carried out to compare growth rate, aerotolerance, antagonistic activity against pathogens, antimicrobial susceptibility profile and cell wall hydrophobicity. Mean doubling time of B. longum 51A was shorter compared to the other strains. All strains were aerotolerant up to 72 h of exposure to oxygen. In vitro antagonism showed that B. longum 51A and B. pseudolongum 1191A were able to produce inhibitory diffusible compounds against all pathogenic bacteria tested, but not against Candida albicans. B. longum 51A was sensitive to all the antimicrobials tested, except neomycin. The hydrophobic property of the cell wall was highest for B. bifidum 1622A. Based on these parameters, B. longum 51A showed the best potential for probiotic use among the tested strains, presenting the greatest sensitivity to antimicrobials, the best growth rate and the highest capacity to produce antagonistic substances against various pathogenic microorganisms.
APA, Harvard, Vancouver, ISO, and other styles
19

Kitaoka, Motomitsu, Jiesheng Tian, and Mamoru Nishimoto. "Novel Putative Galactose Operon Involving Lacto-N-Biose Phosphorylase in Bifidobacterium longum." Applied and Environmental Microbiology 71, no. 6 (June 2005): 3158–62. http://dx.doi.org/10.1128/aem.71.6.3158-3162.2005.

Full text
Abstract:
ABSTRACT A lacto-N-biose phosphorylase (LNBP) was purified from the cell extract of Bifidobacterium bifidum. Its N-terminal and internal amino acid sequences were homologous with those of the hypothetical protein of Bifidobacterium longum NCC2705 encoded by the BL1641 gene. The homologous gene of the type strain B. longum JCM1217, lnpA, was expressed in Escherichia coli to confirm that it encoded LNBP. No significant identity was found with any proteins with known function, indicating that LNBP should be classified in a new family. The lnpA gene is located in a novel putative operon for galactose metabolism that does not contain a galactokinase gene. The operon seems to be involved in intestinal colonization by bifidobacteria mediated by metabolism of mucin sugars. In addition, it may also resolve the question of the nature of the bifidus factor in human milk as the lacto-N-biose structure found in milk oligosaccharides.
APA, Harvard, Vancouver, ISO, and other styles
20

Corre, Christian, Marie-Noëlle Madec, and Patrick Boyaval. "Production of concentrated Bifidobacterium bifidum." Journal of Chemical Technology & Biotechnology 53, no. 2 (April 24, 2007): 189–94. http://dx.doi.org/10.1002/jctb.280530214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Passerat, Brigitte, Anne-Marie Desmaison, Dr es Sciences Pharmaceutiques, and Maître de Conférences. "Lactase activity of Bifidobacterium bifidum." Nutrition Research 15, no. 9 (September 1995): 1287–95. http://dx.doi.org/10.1016/0271-5317(95)02004-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chaplin, A. V., A. G. Brzhozovskii, T. V. Parfenova, L. I. Kafarskaia, N. N. Volodin, A. N. Shkoporov, E. N. Ilina, and B. A. Efimov. "Species Diversity of Bifidobacteria in the Intestinal Microbiota Studied Using MALDI-TOF Mass-Spectrometry." Annals of the Russian academy of medical sciences 70, no. 4 (September 28, 2015): 435–40. http://dx.doi.org/10.15690/vramn.v70.i4.1409.

Full text
Abstract:
Background: The members of genus Bifidobacterium represent a significant part of intestinal microbiota in adults and predominate in infants. Species repertoire of the intestinal bifidobacteria is known to be subjected to major changes with age; however, many details of this process are still to be elucidated.Objective: Our aim was to study the diversity of intestinal bifidobacteria and changes of their qualitative and quantitative composition characteristics during the process of growing up using MALDI-TOF mass-spectrometric analysis of pure bacterial cultures.Methods: A cross-sectional study of bifidobacteria in the intestinal microbiota was performed in 93 healthy people of the ages from 1 month to 57 years. Strains were identified using Microflex LT MALDI-TOF MS, the confirmation was performed by 16S rRNA gene fragment sequencing.Results: 93% of isolated bifidobacterial strains were successfully identified using MALDI-TOF mass-spectrometry. At least two of the strains from each species were additionally identified by 16S rRNA gene fragment sequencing, in all of the cases the results were the same. It was shown that the total concentration of bifidobacteria decreases with age (p 0.001) as well as the frequency of isolation of Bifidobacterium bifidum (p =0.020) and Bifidobacterium breve (p 0.001), and the frequency of isolation of Bifidobacterium adolescentis, increases (p 0.001), representing the continuous process of transformation of microbiota.Conclusion: The method of MALDI-TOF mass spectrometry demonstrated the ability to perform rapid and reliable identification of bifidobacteria that allowed the study of changes in the quantitative and qualitative characteristics of human microbiota in the process of growing up.
APA, Harvard, Vancouver, ISO, and other styles
23

Jin, Weihong, Cheolho Yoon, Tony Johnston, Seockmo Ku, and Geun Ji. "Production of Selenomethionine-Enriched Bifidobacterium bifidum BGN4 via Sodium Selenite Biocatalysis." Molecules 23, no. 11 (November 2, 2018): 2860. http://dx.doi.org/10.3390/molecules23112860.

Full text
Abstract:
Selenium is a trace element essential for human health that has received considerable attention due to its nutritional value. Selenium’s bioactivity and toxicity are closely related to its chemical form, and several studies have suggested that the organic form of selenium (i.e., selenomethionine) is more bioavailable and less toxic than its inorganic form (i.e., sodium selenite). Probiotics, especially Bifidobacteriium and Lactobacillus spp., have received increasing attention in recent years, due to their intestinal microbial balancing effects and nutraceutical benefits. Recently, the bioconversion (a.k.a biotransformation) of various bioactive molecules (e.g., minerals, primary and secondary metabolites) using probiotics has been investigated to improve substrate biofunctional properties. However, there have been few reports of inorganic selenium conversion into its organic form using Bifidobacterium and Lactobacillus spp. Here we report that the biosynthesis of organic selenium was accomplished using the whole cell bioconversion of sodium selenite under controlled Bifidobacterium bifidum BGN4 culture conditions. The total amount of organic and inorganic selenium was quantified using an inductively coupled plasma-atomic emission spectrometer (ICP-AES). The selenium species were separated via anion-exchange chromatography and analyzed with inductively coupled plasma-mass spectrometry (ICP-MS). Our findings indicated that the maximum level of organic selenium was 207.5 µg/g in selenium-enriched B. bifidum BGN4. Selenomethionine was the main organic selenium in selenium-enriched B. bifidum BGN4 (169.6 µg/g). Considering that B. bifidum BGN4 is a commercial probiotic strain used in the functional food industry with clinically proven beneficial effects, selenium-enriched B. bifidum BGN4 has the potential to provide dual healthy functions as a daily supplement of selenium and regulator of intestinal bacteria. This is the first report on the production of organic selenium using B. bifidum spp.
APA, Harvard, Vancouver, ISO, and other styles
24

Pham Nhu, Trong, Long Le Thanh, Trung Nguyen Thanh, Yen Ta Thi, Loan Pham Thi, and Xuan Huong Nguyen Thi. "Development of qualitative methods of bifidobacterium bifidum in probiotic with Real-time PCR method." Heavy metals and arsenic concentrations in water, agricultural soil, and rice in Ngan Son district, Bac Kan province, Vietnam 1, no. 1 (March 30, 2018): 13–17. http://dx.doi.org/10.47866/2615-9252/vjfc.46.

Full text
Abstract:
Bifidobacterium strains with probiotic effects have been widely used in dairy products, food additives and pharmaceuticals. Especially, Bifidobacterium bifidum (B. bifidum) is usually presented into food products such as functional food. However, it is difficult to detect, and quantify B. bifidum in a sample with a combination of different probiotics. In Vietnam, there is no official standard method to identify and quantify B. bifidum in the sample with the mix of probiotic species. To fulfil the requirements of a robust quality management, we have developed a quantitative real-time PCR assay based on groEL gene for accurate identification and quantification of Bifidobacterium bifidum. The developed assay allows an unambiguous speciesspecific detection. We built the real-time PCR method to detect and identify B. bifidum in functional and supplemented food with specific up to 100% and reproducibility (SR<0.25) suitable with Annex F AOAC: 2016. This real-time PCR method is rapidly and effectively than conventional method. It takes only 24 hours to detect and identify B. bifidum in compare with at least a period of 3-5 days for conventional methods. The low quantitative limit is 105 CFU/g/mL, which is consistent with probiotic and powdered milk products with a declared quality of more than 106 CFU/g/mL.
APA, Harvard, Vancouver, ISO, and other styles
25

Candela, Marco, Simone Bergmann, Manuela Vici, Beatrice Vitali, Silvia Turroni, Bernhard J. Eikmanns, Sven Hammerschmidt, and Patrizia Brigidi. "Binding of Human Plasminogen to Bifidobacterium." Journal of Bacteriology 189, no. 16 (June 8, 2007): 5929–36. http://dx.doi.org/10.1128/jb.00159-07.

Full text
Abstract:
ABSTRACT Bifidobacteria constitute up to 3% of the total microbiota and represent one of the most important health-promoting bacterial groups of the human intestinal microflora. The presence of Bifidobacterium in the human gastrointestinal tract has been directly related to several health-promoting activities; however, to date, no information about the specific mechanisms of interaction with the host is available. In order to provide some insight into the molecular mechanisms involved in the interaction with the host, we investigated whether Bifidobacterium was able to capture human plasminogen on the cell surface. By using flow cytometry, we demonstrated a dose-dependent human plasminogen-binding activity for four strains belonging to three bifidobacterial species: Bifidobacterium lactis, B. bifidum, and B. longum. The binding of human plasminogen to Bifidobacterium was dependent on lysine residues of surface protein receptors. By using a proteomic approach, we identified five putative plasminogen-binding proteins in the cell wall fraction of the model strain B. lactis BI07. The data suggest that plasminogen binding to B. lactis is due to the concerted action of a number of proteins located on the bacterial cell surface, some of which are highly conserved cytoplasmic proteins which have other essential cellular functions. Our findings represent a step forward in understanding the mechanisms involved in the Bifidobacterium-host interaction.
APA, Harvard, Vancouver, ISO, and other styles
26

Burmasova, Marina A., Aidana A. Utebaeva, Elena V. Sysoeva, and Maria A. Sysoeva. "Melanins of Inonotus Obliquus: Bifidogenic and Antioxidant Properties." Biomolecules 9, no. 6 (June 24, 2019): 248. http://dx.doi.org/10.3390/biom9060248.

Full text
Abstract:
Extracts and melanins from Inonotus obliquus are widely used in medicine due to their high antioxidant properties. This study is dedicated to define the influence of the physicochemical and antioxidant properties of Inonotus obliquus melanins and their bifidogenic effects on Bifidobacterium bifidum 1 and Bifidobacterium animalis subsp. lactis. For this purpose, melanins precipitated from Inonotus obliquus aqueous extracts, obtained by a few methods, and separated melanin fractions by organic solvents were used. For the melanin physicochemical properties analysis spectrophotometry, electron paramagnetic resonance (EPR) spectroscopy and dynamic light scattering methods were applied. Melanins and their fractions difference in particle size and charge, antioxidant properties, and redox potential were revealed. It was shown that the redox potential, the size of melanin particles and the z-potential had maximum influence on bifidobacteria growth. The greatest activating effect on bifidobacteria was established by using melanin isolated from aqueous microwave extracts in concentrations of 10−13, 10−10, 10−5 g/cm3. The use of this melanin with antioxidant activity 0.67 ± 0.06 mg/g (expressed as ascorbic acid equivalent), and with redox potential −5.51 ± 2.22 mV as a prebiotic allowed the growth of Bifidobacterium bifidum 1 s to increase by 1.4 times in comparison with ascorbic acid by 24 h of cultivation.
APA, Harvard, Vancouver, ISO, and other styles
27

Duranti, Sabrina, Gabriele Andrea Lugli, Alice Viappiani, Leonardo Mancabelli, Giulia Alessandri, Rosaria Anzalone, Giulia Longhi, et al. "Characterization of the phylogenetic diversity of two novel species belonging to the genus Bifidobacterium: Bifidobacterium cebidarum sp. nov. and Bifidobacterium leontopitheci sp. nov." International Journal of Systematic and Evolutionary Microbiology 70, no. 4 (April 1, 2020): 2288–97. http://dx.doi.org/10.1099/ijsem.0.004032.

Full text
Abstract:
Two Bifidobacterium strains, i.e., 2176BT and 2177BT, were isolated from Golden-Headed Lion Tamarin (Leontopithecus chrysomelas) and Goeldi's monkey (Callimico goeldii). Isolates were shown to be Gram-positive, non-motile, non-sporulating, facultative anaerobic and d-fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA sequences, multilocus sequences (including hsp60, rpoB, dnaJ, dnaG and clpC genes) and the core genome revealed that bifidobacterial strains 2176BT and 2177BT exhibit close phylogenetic relatedness to Bifidobacterium felsineum DSM 103139T and Bifidobacterium bifidum LMG 11041T, respectively. Further genotyping based on the genome sequence of the isolated strains combined with phenotypic analyses, clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, Bifidobacterium cebidarum sp. nov. (2176BT=LMG 31469T=CCUG 73785T) and Bifidobacterium leontopitheci sp. nov. (2177BT=LMG 31471T=CCUG 73786T are proposed as novel Bifidobacterium species.
APA, Harvard, Vancouver, ISO, and other styles
28

Lu, Wenwei, Zhangming Pei, Mengning Zang, Yuan-kun Lee, Jianxin Zhao, Wei Chen, Hongchao Wang, and Hao Zhang. "Comparative Genomic Analysis of Bifidobacterium bifidum Strains Isolated from Different Niches." Genes 12, no. 10 (September 25, 2021): 1504. http://dx.doi.org/10.3390/genes12101504.

Full text
Abstract:
The potential probiotic benefits of Bifidobacterium bifidum have received increasing attention recently. We used comparative genomic analysis to explore the differences in the genome and the physiological characteristics of B. bifidum isolated from the fecal samples of Chinese adults and infants. The relationships between genotypes and phenotypes were analyzed to assess the effects of isolation sources on the genetic variation of B. bifidum. The phylogenetic tree results indicated that the phylogeny of B. bifidum may be related to the geographical features of its isolation source. B. bifidum was found to have an open pan-genome and a conserved core genome. The genetic diversity of B. bifidum is mainly reflected in carbohydrate metabolism- and immune/competition-related factors, such as the glycoside hydrolase gene family, bacteriocin operons, antibiotic resistance genes, and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas. Additionally, the type III A CRISPR-Cas system was discovered in B. bifidum for the first time. B. bifidum strains exhibited niche-specific characteristics, and the results of this study provide an improved understanding of the genetics of this species.
APA, Harvard, Vancouver, ISO, and other styles
29

Shibahara-Sone, H., A. Gomi, T. Iino, M. Kano, C. Nonaka, O. Watanabe, K. Miyazaki, and T. Ohkusa. "Living cells of probiotic Bifidobacterium bifidum YIT 10347 detected on gastric mucosa in humans." Beneficial Microbes 7, no. 3 (June 1, 2016): 319–26. http://dx.doi.org/10.3920/bm2015.0138.

Full text
Abstract:
The probiotic strain Bifidobacterium bifidum YIT 10347 has been demonstrated to inhibit Helicobacter pylori activity, prevent injury to the gastric mucosa, and improve general gastric malaise symptoms in H. pylori positive patients. This study aimed to investigate the adhering activity and localisation of B. bifidum YIT 10347 to gastric cells and tissue in vitro, and in human in vivo to clarify the mechanism of its beneficial effects on the stomach. The in vitro study found the adhesion rate of B. bifidum YIT 10347 to human gastric epithelial cells was about 10 times higher than that of lactic acid bacteria and other bifidobacteria. In the human study, 5 H. pylori negative and 12 H. pylori positive subjects ingested milk fermented with B. bifidum YIT 10347. B. bifidum YIT 10347 cells were measured by RT-qPCR for in gastric biopsy samples. Living B. bifidum YIT 10347 cells were detected in the biopsy samples in H. pylori negative subjects (105 cells/g and 104 cells/g at 1 h and 2 h after ingestion, respectively) and H. pylori positive subjects (104 cells/g at 1 h after the ingestion). Moreover, immunostaining analysis of tissue sections found that B. bifidum YIT 10347 cells were located at the interstitial mucin layer of the stomach. These results suggest that cells of probiotic B. bifidum YIT 10347 adhered to the human gastric mucosa in a live state, and that the higher adhering activity of B. bifidum YIT 10347 to the gastric mucosa may be involved in its beneficial effects on the human stomach.
APA, Harvard, Vancouver, ISO, and other styles
30

Abdelazez, Amro, Zafarullah Muhammad, Qiu-Xue Zhang, Zong-Tao Zhu, Heba Abdelmotaal, Rokayya Sami, and Xiang-Chen Meng. "Production of a Functional Frozen Yogurt Fortified with Bifidobacterium spp." BioMed Research International 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/6438528.

Full text
Abstract:
Frozen dairy products have characteristics of both yogurt and ice cream and could be the persuasive carriers of probiotics. Functions of the frozen yogurt containing viable bifidobacterial cells are recognized and favored by the people of all ages. We developed a kind of yogurt supplemented by Bifidobacterium species. Firstly, five strains of Bifidobacterium spp. (Bifidobacterium bifidum ATCC 11547, Bifidobacterium longum ATCC 11549, Bifidobacterium infantis ATCC 11551, Bifidobacterium adolescentis ATCC 11550, and Bifidobacterium breve ATCC 11548) were evaluated based on the feasibility criteria of probiotics, comprising acid production, bile tolerance, and adhesion to epithelial cells. Formerly, we combined the optimum strains with yogurt culture (Lactobacillus delbrueckii subsp. bulgaricus EMCC 11102 and Streptococcus salivarius subsp. thermophilus EMCC 11044) for producing frozen yogurt. Finally, physiochemical properties and sensory evaluation of the frozen yogurt were investigated during storage of 60 days at −18°C. Results directed that Bifidobacterium adolescentis ATCC 11550 and Bifidobacterium infantis ATCC 11551 could be utilized with yogurt culture for producing frozen yogurt. Moreover, the frozen yogurt fermented by two bifidobacterial strains and yogurt culture gained the high evaluation in the physiochemical properties and sensory evaluation. In summary, our results revealed that there was no significant difference between frozen yogurt fermented by Bifidobacterium spp. and yogurt culture and that fermented by yogurt culture only.
APA, Harvard, Vancouver, ISO, and other styles
31

ZAVAGLIA, ANDREA GÓMEZ, GUILLERMO KOCIUBINSKI, PABLO PÉREZ, and GRACIELA DE ANTONI. "Isolation and Characterization of Bifidobacterium Strains for Probiotic Formulation." Journal of Food Protection 61, no. 7 (July 1, 1998): 865–73. http://dx.doi.org/10.4315/0362-028x-61.7.865.

Full text
Abstract:
Twenty-five Bifidobacterium strains isolated from infant feces were identified by sugar fermentation patterns and whole-cell protein analysis. Using gradient SDS-PAGE, six characteristic protein bands of the genus were detected in 40 strains of bifidobacteria but not in lactobacilli. Computerized numerical analysis enabled strains to be grouped in two main clusters. Strains of Bifidobacterium bifidum belong to a well-differentiated cluster that joins the cluster of the remaining species at 0.582 similarity. The predominant species among isolated strains from infant feces were B. bifidum, B. longum, and B. breve. Probiotic and technological indicators such as surface properties, inhibitory capacity, resistance to bile and low pH, and ability to grow under aerobic conditions were studied. Not all desirable characteristics were present in a single strain. In general, adherent and inhibitory strains were not resistant to bile, low pH, and aerobic conditions. Only 10 of 40 strains were resistant to 0.5% bile.
APA, Harvard, Vancouver, ISO, and other styles
32

Khailova, Ludmila, Sarah K. Mount Patrick, Kelly M. Arganbright, Melissa D. Halpern, Toshi Kinouchi, and Bohuslav Dvorak. "Bifidobacterium bifidum reduces apoptosis in the intestinal epithelium in necrotizing enterocolitis." American Journal of Physiology-Gastrointestinal and Liver Physiology 299, no. 5 (November 2010): G1118—G1127. http://dx.doi.org/10.1152/ajpgi.00131.2010.

Full text
Abstract:
Necrotizing enterocolitis (NEC) is a devastating intestinal disease of neonates, and clinical studies suggest the beneficial effect of probiotics in NEC prevention. Recently, we have shown that administration of Bifidobacterium bifidum protects against NEC in a rat model. Intestinal apoptosis can be suppressed by activation of cyclooxygenase-2 (COX-2) and increased production of prostaglandin E2 (PGE2). The present study investigates the effect of B. bifidum on intestinal apoptosis in the rat NEC model and in an intestinal epithelial cell line (IEC-6), as a mechanism of protection against mucosal injury. Premature rats were divided into the following three groups: dam fed, hand fed with formula (NEC), or hand fed with formula supplemented with B. bifidum (NEC + B. bifidum ). Intestinal Toll-like receptor-2 (TLR-2), COX-2, PGE2, and apoptotic regulators were measured. The effect of B. bifidum was verified in IEC-6 cells using a model of cytokine-induced apoptosis. Administration of B. bifidum increased expression of TLR-2, COX-2, and PGE2 and significantly reduced apoptosis in the intestinal epithelium of both in vivo and in vitro models. The Bax-to-Bcl-w ratio was shifted toward cell survival, and the number of cleaved caspase-3 positive cells was markedly decreased in B. bifidum -treated rats. Experiments in IEC-6 cells showed anti-apoptotic effect of B. bifidum . Inhibition of COX-2 signaling blocked the protective effect of B. bifidum treatment in both in vivo and in vitro models. In conclusion, oral administration of B. bifidum activates TLR-2 in the intestinal epithelium. B. bifidum increases expression of COX-2, which leads to higher production of PGE2 in the ileum and protects against intestinal apoptosis associated with NEC. This study indicates the ability of B. bifidum to downregulate apoptosis in the rat NEC model and in IEC-6 cells by a COX-2-dependent matter and suggests a molecular mechanism by which this probiotic reduces mucosal injury and preserves intestinal integrity.
APA, Harvard, Vancouver, ISO, and other styles
33

Preising, Julia, David Philippe, Marita Gleinser, Hua Wei, Stephanie Blum, Bernhard J. Eikmanns, Jan-Hendrik Niess, and Christian U. Riedel. "Selection of Bifidobacteria Based on Adhesion and Anti-Inflammatory Capacity In Vitro for Amelioration of Murine Colitis." Applied and Environmental Microbiology 76, no. 9 (March 12, 2010): 3048–51. http://dx.doi.org/10.1128/aem.03127-09.

Full text
Abstract:
ABSTRACT Adhesion and anti-inflammatory properties of eight strains of bifidobacteria were tested using the intestinal epithelial cell lines Caco-2, T84, and HT29. Two strains were selected for further assessment of their anti-inflammatory capacity in two murine models of colitis. In vivo results confirmed the high anti-inflammatory capacity of a Bifidobacterium bifidum strain.
APA, Harvard, Vancouver, ISO, and other styles
34

Langkamp-Henken, Bobbi, Cassie C. Rowe, Amanda L. Ford, Mary C. Christman, Carmelo Nieves, Lauren Khouri, Gretchen J. Specht, Stephanie-Anne Girard, Samuel J. Spaiser, and Wendy J. Dahl. "Bifidobacterium bifidum R0071 results in a greater proportion of healthy days and a lower percentage of academically stressed students reporting a day of cold/flu: a randomised, double-blind, placebo-controlled study." British Journal of Nutrition 113, no. 3 (January 21, 2015): 426–34. http://dx.doi.org/10.1017/s0007114514003997.

Full text
Abstract:
Acute psychological stress is positively associated with a cold/flu. The present randomised, double-blind, placebo-controlled study examined the effect of three potentially probiotic bacteria on the proportion of healthy days over a 6-week period in academically stressed undergraduate students (n 581) who received Lactobacillus helveticus R0052, Bifidobacterium longum ssp. infantis R0033, Bifidobacterium bifidum R0071 or placebo. On each day, participants recorded the intensity (scale: 0 = not experiencing to 3 = very intense) for nine cold/flu symptoms, and a sum of symptom intensity >6 was designated as a day of cold/flu. B. bifidum resulted in a greater proportion of healthy days than placebo (P≤ 0·05). The percentage of participants reporting ≥ 1 d of cold/flu during the 6-week intervention period was significantly lower with B. bifidum than with placebo (P< 0·05). There were no effects of B. infantis or L. helveticus compared with placebo on either outcome. A predictive model accounted for influential characteristics and their interactions on daily reporting of cold/flu episodes. The proportion of participants reporting a cold on any given day was lower at weeks 2 and 3 with B. bifidum and B. infantis than with placebo for the average level of stress and the most commonly reported number of hours of sleep. Daily intake of bifidobacteria provides benefit related to cold/flu outcomes during acute stress.
APA, Harvard, Vancouver, ISO, and other styles
35

Martín, Rebeca, Francesca Bottacini, Muireann Egan, Celia Chamignon, Valérie Tondereau, Raphaël Moriez, Jan Knol, et al. "The Infant-Derived Bifidobacterium bifidum Strain CNCM I-4319 Strengthens Gut Functionality." Microorganisms 8, no. 9 (August 28, 2020): 1313. http://dx.doi.org/10.3390/microorganisms8091313.

Full text
Abstract:
Bifidobacteria are among the first colonisers of the gastrointestinal tract of breast-fed newborns due to, among other things, their ability to metabolise oligosaccharides naturally occurring in human milk. The presence of bifidobacteria in the infant gut has been shown to promote intestinal health and homeostasis as well as to preserve a functional gut barrier, thus positively influencing host health and well-being. Among human-associated gut commensals, Bifidobacterium bifidum has been described as the only species capable of the extracellular degradation of both mucin-type glycans and HMOs, thereby giving this species a special role as a commensal gut forager of both host and diet-derived glycans. In the present study, we assess the possible beneficial properties and probiotic potential of B. bifidum strain CNCM I-4319. In silico genome analysis and growth experiments confirmed the expected ability of this strain to consume HMOs and mucin. By employing various animal models, we were also able to assess the ability of B. bifidum CNCM I-4319 to preserve gut integrity and functionality from stress-induced and inflammatory damage, thereby enforcing its potential as an effective probiotic strain.
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, He, Jianbo Kou, Man Hu, and Guowei Shu. "Optimization of nitrogen source for Bifidobacterium bifidum using response surface methodology." Acta Universitatis Cibiniensis. Series E: Food Technology 20, no. 1 (June 1, 2016): 53–64. http://dx.doi.org/10.1515/aucft-2016-0004.

Full text
Abstract:
Abstract In order to improve the viable counts of Bifidobacterium bifidum BB01 in the liquid medium, the Central Composite Design (CCD) was used to optimize the nitrogen source in the medium of B. bifidum BB01. The results showed that the nitrogen source composition of B. bifidum BB01 was: peptone 0.9%, yeast extracts 0.3%, beef paste 0.7%. Under the optimal conditions, the viable counts of B. bifidum BB01 reached (2.49±0.06)×109CFU/mL after cultured at 18h, which was 42.97% higher than MRS (lactose), and 12.85% higher than the optimized MRS medium (carbon source and prebiotics were optimized). Therefore, the CCD used in this study is workable for promoting the growth of B. bifidum BB01.
APA, Harvard, Vancouver, ISO, and other styles
37

Bukharin, O. V., N. B. Perunova, I. N. Chainikova, E. V. Ivanova, and S. V. Andryushchenko. "An accelerated method for determining «self/non-self» microorganisms in the agglutination reaction." Russian Journal of Infection and Immunity 10, no. 4 (November 27, 2020): 792–96. http://dx.doi.org/10.15789/2220-7619-aam-1482.

Full text
Abstract:
A simple accelerated method for determining «self/non-self» microorganisms by using the agglutination reaction (RA) and therapeutic/prophylactic serum (Immunoglobulin complex preparation, lyophilized IgG, IgA, IgM immunoglobulins, developed by CSC Immuno-Gem, Moscow) is proposed to test for pathogenic, opportunistic and dominant probiotic Bifidobacteria spp. In parallel, all the microbial cell cultures examined were registered in the databases of Russia-wide and international collections and tested by the intermicrobial “self/non-self” recognition method, previously developed by us. 16 collection strains of various microorganisms were assessed by the RA with relevant therapeutic and prophylactic serum. Biological samples were obtained from the collection bacterial strains of Bifidobacterium bifidum 791, Escherichia coli LEGM-18, Klebsiella pneumoniae 278, Lactobacillus fermentum 90T-C4, Bifidobacterium longum MC-42, Escherichia coli M-17, Shigella sonnei 177b, Shigella flexneri 170, Escherichia coli 157, Staphylococcus aureus 209, Candida albicans 10231 and Salmonella serovar Enteritidis ATCC 10708. In addition, cell cultures obtained from the Museum of the Institute of Cellular and Intracellular Symbiosis UB RAS such as Bifidobacterium longum ICIS-505, Lactobacillus acidophilus ICIS-1127, Bifidobacterium bifidum ICIS-202, Bifidobacterium bifidum ICIS-310 were also included into the study. To assess microbial peptidoglycan foreignness, the intermicrobial “self/non-self” recognition method was also used based on inducing metabolites produced by the “dominant” test strain Bifidobacterium longum MC-42 after pre-incubation with metabolites collected from the studied cell cultures (“associates”) followed by established “dominant-associate” feedback loop. The data were evaluated by assessing change-fold in reproduction (growth/replication) and adaptation (biofilm formation and anti-lysozyme test) of microbial cultures in accordance with the described technique followed by comparing these two methods for intermicrobial “self/non-self” recognition. All the RA data were found to fully agree with those obtained after previous studies by using intermicrobial “self/non-self” recognition method coupled to “dominant-associate” system. Moreover, compared to analogous “intermicrobial recognition” method (5 days), ease of use and test timeframe (24 hours) allow to consider RA attractive for screening studies to select strains for scientific and industrial purposes.
APA, Harvard, Vancouver, ISO, and other styles
38

Makino, H., R. Martin, E. Ishikawa, A. Gawad, H. Kubota, T. Sakai, K. Oishi, et al. "Multilocus sequence typing of bifidobacterial strains from infant’s faeces and human milk: are bifidobacteria being sustainably shared during breastfeeding?" Beneficial Microbes 6, no. 4 (August 2015): 563–72. http://dx.doi.org/10.3920/bm2014.0082.

Full text
Abstract:
Bifidobacteria are considered to be one of the most important beneficial intestinal bacteria for infants, contributing to the priming of the mucosal immune system. These microbes can also be detected in mother’s milk, suggesting a potential role of human milk in the colonisation of infant’s gut. However, little is known about the timing of bacteria appearance in human milk, and whether human milk is the first source of inoculation. Here, we investigated whether specific strains are shared sustainably between maternal milk and infant’s gut. Faecal samples and human milk were collected from 102 healthy mother-infant pairs (infant’s faeces: meconium, 7, 30 days of age; mother’s milk: once before delivery, colostrum, 7, 30 days after delivery). Bifidobacterial strains were isolated from these samples, and were discriminated by means of multilocus sequencing typing. No bifidobacteria were detected from human milk collected before delivery, or colostrum. Strains were isolated only from human milk samples obtained 7 days after birth or later. On the other hand, bifidobacterial strains were obtained from infant’s faeces throughout the study period, sometimes as early as the first day of life (meconium). We have found that bifidobacterial species belonging to Bifidobacterium bifidum, Bifidobacterium breve, and Bifidobacterium longum subsp. longum could be identified as monophyletic between infant’s faeces and their mother’s milk. These strains were confirmed to be sustainably shared between maternal milk and infant’s gut. Moreover, monophyletic strains were isolated at the same time point or earlier from infant’s faeces than from human milk, and none were isolated earlier from human milk than from infant’s faeces. Although it remains unclear whether human milk is the first source of microbes for infants, our results confirm that human milk is a reservoir of bifidobacteria, and specific strains are shared between infant’s intestine and human milk during breastfeeding.
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Fan, Min Zhao, Wei Wang, and Tie Feng Hu. "Encapsulation of Bifidobacterium bifidum in Improved Alginate Microcapsules to Prolonging Viability." Advanced Materials Research 183-185 (January 2011): 1481–85. http://dx.doi.org/10.4028/www.scientific.net/amr.183-185.1481.

Full text
Abstract:
Bifidobacterium bifidum were encapsulated as fresh cultures in water insoluble food grade microcapsules by emulsification–internal gelation technique, using gelatin, pectin, alginate and chitose as immobilization material. The optical photomicroscope photograph and laser scanning confocal microscope photograph shows that the microcapsules obtained by this method has narrow size distribution (10-20 μm). Survival of Bifidobacterium bifidum in microcapsules was 109cfu•g-1 , and the embedding ratio was 72.32%. The survival was remaining more than 108cfu•g-1 after exposure to gastric acid and bile acid, which implies that the microcapsules expressed superior acid resistance. These microcaosules were disaggregation subtotal after 15 min in simulated intestinal juices, and the release rate was 96%. The survival was 108 cfu•g-1 at room temperature after 1 year by classic accelerated test. The results indicate that encapsulation of Bifidobacterium bifidum in alginate microcapsules is a good approach to prolonging viability.
APA, Harvard, Vancouver, ISO, and other styles
40

Kim, Geun-Bae, Carol M. Miyamoto, Edward A. Meighen, and Byong H. Lee. "Cloning and Characterization of the Bile Salt Hydrolase Genes (bsh) from Bifidobacterium bifidum Strains." Applied and Environmental Microbiology 70, no. 9 (September 2004): 5603–12. http://dx.doi.org/10.1128/aem.70.9.5603-5612.2004.

Full text
Abstract:
ABSTRACT Biochemical characterization of the purified bile salt hydrolase (BSH) from Bifidobacterium bifidum ATCC 11863 revealed some distinct characteristics not observed in other species of Bifidobacterium. The bsh gene was cloned from B. bifidum, and the DNA flanking the bsh gene was sequenced. Comparison of the deduced amino acid sequence of the cloned gene with previously known sequences revealed high homology with BSH enzymes from several microorganisms and penicillin V amidase (PVA) of Bacillus sphaericus. The proposed active sites of PVA were highly conserved, including that of the Cys-1 residue. The importance of the SH group in the N-terminal cysteine was confirmed by substitution of Cys with chemically and structurally similar residues, Ser or Thr, both of which resulted in an inactive enzyme. The transcriptional start point of the bsh gene has been determined by primer extension analysis. Unlike Bifidobacterium longum bsh, B. bifidum bsh was transcribed as a monocistronic unit, which was confirmed by Northern blot analysis. PCR amplification with the type-specific primer set revealed the high level of sequence homology in their bsh genes within the species of B. bifidum.
APA, Harvard, Vancouver, ISO, and other styles
41

Kim, Min, Seockmo Ku, Sun Kim, Hyun Lee, Hui Jin, Sini Kang, Rui Li, Tony Johnston, Myeong Park, and Geun Ji. "Safety Evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI." International Journal of Molecular Sciences 19, no. 5 (May 9, 2018): 1422. http://dx.doi.org/10.3390/ijms19051422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bukharin, O. V., S. V. Andryuschenko, N. B. Perunova, and E. V. Ivanova. "Mechanism of persistence of indigenous bifidobacteria under the impact of acetate in the human colon biotope." Journal of microbiology, epidemiology and immunobiology 98, no. 3 (July 3, 2021): 276–82. http://dx.doi.org/10.36233/0372-9311-86.

Full text
Abstract:
Aim. To determine the role of the acetate in the persistence of indigenous bifidobacteria in the colon biotope through the lysozyme resistance in model conditions of the acetylation–deacetylation of peptidoglycan.Materials and methods. The study was performed on 16 strains of the two indigenous bifidobacteria speсies: Bifidobacterium bifidum и Bifidobacterium longum subsp. longum. Bifidobacteria was cultivated in the 0.6% O2 and 9% CO2 atmosphere at the temperature 37ºС in CO2 incubator for 48 hours. The production of the acetate by the bifidobacteria was determined by gas chromatography. The effect of the acetate on the lysozyme resistance of non-indigenous gram-positive bacteria was determined on the Listeria monocytogenes ICIS-280 model strain by the cultivation in LB-Lennox broth with ammonium acetate added in the concentration range matching the concentrations produced by the studied bifidobacteria, in lysozyme serial dilutions at final concentrations 5 μg/ml to 40 μg/ml within 24 hours.Results. It was found that the acetate release of Bifidobacterium longum subsp. longum was on average two times higher that of Bifidobacterium bifidum (27.0 and 14.7 mmol/liter, respectively) and was quite consistent with the concentrations of acetic acid determined in the intestinal contents (up to 50 mmol/liter). Cultivation of bifidobacteria in a medium with lysozyme, ammonium acetate and their combination did not have a significant impact on their growth parameters at the maximum used concentrations of these substances. In the test strain, the addition of ammonium acetate in the range created by bifidobacteria caused a decrease in the minimum inhibitory concentration of lysozyme by more than two times — from 40 μg/ml to less than 20 μg/ml. In the control medium without lysozyme, no inhibition of the growth of the indicator culture was observed up to the maximum concentrations of ammonium acetate.Conclusion. The mechanism of persistence (survival) of indigenous bifidobacteria in the human intestinal biotope has been identified, which is associated with the production of acetic acid at a level that selectively suppresses lysozyme resistance of non-indigenous gram-positive microbiota viareversible deacetylation of peptidoglycan. This allows indigenous bifidobacteria to maintain a stable dominant position in the biotope.
APA, Harvard, Vancouver, ISO, and other styles
43

Khailova, Ludmila, Katerina Dvorak, Kelly M. Arganbright, Melissa D. Halpern, Toshi Kinouchi, Masako Yajima, and Bohuslav Dvorak. "Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis." American Journal of Physiology-Gastrointestinal and Liver Physiology 297, no. 5 (November 2009): G940—G949. http://dx.doi.org/10.1152/ajpgi.00141.2009.

Full text
Abstract:
Neonatal necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants. Oral administration of probiotics has been suggested as a promising strategy for prevention of NEC. However, little is known about the mechanism(s) of probiotic-mediated protection against NEC. The aim of this study was to evaluate the effects of Bifidobacterium bifidum treatment on development of NEC, cytokine regulation, and intestinal integrity in a rat model of NEC. Premature rats were divided into three groups: dam fed (DF), hand fed with formula (NEC), or hand fed with formula supplemented with 5 × 106CFU B. bifidum per day ( B. bifidum ). All groups were exposed to asphyxia and cold stress to develop NEC. Intestinal injury, mucin and trefoil factor 3 (Tff3) production, cytokine levels, and composition of tight junction (TJ) and adherens junction (AJ) proteins were evaluated in the terminal ileum. B. bifidum decreased the incidence of NEC from 57 to 17%. Increased levels of IL-6, mucin-3, and Tff3 in the ileum of NEC rats was normalized in B. bifidum treated rats. Reduced mucin-2 production in the NEC rats was not affected by B. bifidum . Administration of B. bifidum normalized the expression and localization of TJ and AJ proteins in the ileum compared with animals with NEC. In conclusion, administration of B. bifidum protects against NEC in the neonatal rat model. This protective effect is associated with reduction of inflammatory reaction in the ileum, regulation of main components of mucus layer, and improvement of intestinal integrity.
APA, Harvard, Vancouver, ISO, and other styles
44

Haarman, Monique, and Jan Knol. "Quantitative Real-Time PCR Assays To Identify and Quantify Fecal Bifidobacterium Species in Infants Receiving a Prebiotic Infant Formula." Applied and Environmental Microbiology 71, no. 5 (May 2005): 2318–24. http://dx.doi.org/10.1128/aem.71.5.2318-2324.2005.

Full text
Abstract:
ABSTRACT A healthy intestinal microbiota is considered to be important for priming of the infants' mucosal and systemic immunity. Breast-fed infants typically have an intestinal microbiota dominated by different Bifidobacterium species. It has been described that allergic infants have different levels of specific Bifidobacterium species than healthy infants. For the accurate quantification of Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium infantis, and Bifidobacterium longum in fecal samples, duplex 5′ nuclease assays were developed. The assays, targeting rRNA gene intergenic spacer regions, were validated and compared with conventional PCR and fluorescent in situ hybridization methods. The 5′ nuclease assays were subsequently used to determine the relative amounts of different Bifidobacterium species in fecal samples from infants receiving a standard formula or a standard formula supplemented with galacto- and fructo-oligosaccharides (OSF). A breast-fed group was studied in parallel as a reference. The results showed a significant increase in the total amount of fecal bifidobacteria (54.8% ± 9.8% to 73.4% ± 4.0%) in infants receiving the prebiotic formula (OSF), with a diversity of Bifidobacterium species similar to breast-fed infants. The intestinal microbiota of infants who received a standard formula seems to resemble a more adult-like distribution of bifidobacteria and contains relatively more B. catenulatum and B. adolescentis (2.71% ± 1.92% and 8.11% ± 4.12%, respectively, versus 0.15% ± 0.11% and 1.38% ± 0.98% for the OSF group). In conclusion, the specific prebiotic infant formula used induces a fecal microbiota that closely resembles the microbiota of breast-fed infants also at the level of the different Bifidobacterium species.
APA, Harvard, Vancouver, ISO, and other styles
45

Hong, Pei-Ying, Gaik Chin Yap, Bee Wah Lee, Kaw Yan Chua, and Wen-Tso Liu. "Hierarchical Oligonucleotide Primer Extension as a Time- and Cost-Effective Approach for Quantitative Determination of Bifidobacterium spp. in Infant Feces." Applied and Environmental Microbiology 75, no. 8 (February 13, 2009): 2573–76. http://dx.doi.org/10.1128/aem.02576-08.

Full text
Abstract:
ABSTRACT The Bifidobacterium spp. present in 10 infant fecal samples (4 from infants with eczema and 6 from healthy infants) were quantified with both hierarchical oligonucleotide primer extension (HOPE) and fluorescence in situ hybridization-flow cytometry. The relative abundances of Bifidobacterium longum and B. catenulatum with respect to the total bifidobacteria had a poor correlation (ρ, <0.600; P value, >0.208), presumably due to differences in primer specificity and the level of hybridization stringency of both methods. In contrast, the relative abundances of organisms of the genus Bifidobacterium against the total amplified 16S rRNA genes and those of B. adolescentis, B. bifidum, and B. breve against the genus Bifidobacterium exhibited a good statistical correlation (ρ, >0.783; P value, <0.066). This good comparability supports HOPE as a method to achieve high-throughput quantitative determination of bacterial targets in a time- and cost-effective manner.
APA, Harvard, Vancouver, ISO, and other styles
46

Trsic-Milanovic, Nada, Aleksandar Kodzic, Josip Baras, and Suzana Dimitrijevic-Brankovic. "The influence of a cryoprotective medium containing glycerol on the lyophilization of lactic acid bacteria." Journal of the Serbian Chemical Society 66, no. 7 (2001): 435–41. http://dx.doi.org/10.2298/jsc0107435t.

Full text
Abstract:
The aims of liophilization (freeze-drying) of lactic acid bacteria are to preserve pure cultures or to prepare starters for the dairy industry. In both cases, the choice of the cryoprotectant is very important. In this work, samples of Bifidobacterium breve A71 and Bifidobacterium bifidum BbTD were freeze-dried in a new cryoprotective medium containing lactose, gelatine and glycerol (medium B). The reference medium contained saccharose, gelatine and skim milk (medium A). Before liophilization, the eutectic points of both media were determined, because the products must be cooled to a temperature below its freezing point. The success of the cryoprotectants was estimated in terms of the number of surviving organisms after lyophilization. Bifidobacterium breve A71 and Bifidobacterium bifidum BbTD freeze-dried in mediaAandBshowed high survival rates. Bifidobacterium breve A71 showed a greater percentage survival in combination with medium B than with medium A. These results could be utilized in the manufacture of Bifidobacterium breve A71 as a starter in the diary industry because it is a human isolate which, except for acidification, has probiotic activity.
APA, Harvard, Vancouver, ISO, and other styles
47

Ménard, Odile, Marie-José Butel, Valérie Gaboriau-Routhiau, and Anne-Judith Waligora-Dupriet. "Gnotobiotic Mouse Immune Response Induced by Bifidobacterium sp. Strains Isolated from Infants." Applied and Environmental Microbiology 74, no. 3 (December 14, 2007): 660–66. http://dx.doi.org/10.1128/aem.01261-07.

Full text
Abstract:
ABSTRACT Bifidobacterium, which is a dominant genus in infants’ fecal flora and can be used as a probiotic, has shown beneficial effects in various pathologies, including allergic diseases, but its role in immunity has so far been little known. Numerous studies have shown the crucial role of the initial intestinal colonization in the development of the intestinal immune system, and bifidobacteria could play a major role in this process. For a better understanding of the effect of Bifidobacterium on the immune system, we aimed at determining the impact of Bifidobacterium on the T-helper 1 (TH1)/TH2 balance by using gnotobiotic mice. Germfree mice were inoculated with Bifidobacterium longum NCC2705, whose genome is sequenced, and with nine Bifidobacterium strains isolated from infants’ fecal flora. Five days after inoculation, mice were killed. Transforming growth factor β1 (TGF-β1), interleukin-4 (IL-4), IL-10, and gamma interferon (IFN-γ) gene expressions in the ileum and IFN-γ, tumor necrosis factor alpha (TNF-α), IL-10, IL-4, and IL-5 secretions by splenocytes cultivated for 48 h with concanavalin A were quantified. Two Bifidobacterium species had no effect (B. adolescentis) or little effect (B. breve) on the immune system. Bifidobacterium bifidum, Bifidobacterium dentium, and one B. longum strain induced TH1 and TH2 cytokines at the systemic and intestinal levels. One B. longum strain induced a TH2 orientation with high levels of IL-4 and IL-10, both secreted by splenocytes, and of TGF-β gene expression in the ileum. The other two strains induced TH1 orientations with high levels of IFN-γ and TNF-α splenocyte secretions. Bifidobacterium's capacity to stimulate immunity is species specific, but its influence on the orientation of the immune system is strain specific.
APA, Harvard, Vancouver, ISO, and other styles
48

Shu, Guowei, Shuai Wang, He Chen, Man Hu, Tao Qin, and Qi Ma. "The Effect of Feeding Neutralizer on the Growth of Bifidobacterium Bifidum." Acta Universitatis Cibiniensis. Series E: Food Technology 19, no. 1 (July 1, 2015): 11–18. http://dx.doi.org/10.1515/aucft-2015-0002.

Full text
Abstract:
AbstractIn order to investigative the effect of different neutralizers and their feeding time on culture of Bifidobacterium bifidum BB01, and pH, OD and viable count of B. bifidumBB01 in the medium in different time were measured. The results indicated that the NaOH solution was the optimum neutralizer compared with the others, and feeding time of the neutralizer to B. bifidum BB01 was 13 hours after inoculation. Furthermore, the OD value and viable count reached maximum at 21h (OD value= 1.667) and 20h (viable count: (3.52±0.046) ×109CFU/mL) after the NaOH solution was added to the medium, respectively. In addition, the maximum OD value implied that the logarithmic phase of B. bifidum BB01 was delayed compared with the control and the viable count were 29.26% larger than the control group. The result of the study provides a method and an important basis for improving the viable counts of B. bifidum BB01.
APA, Harvard, Vancouver, ISO, and other styles
49

Dmytrow, Izabela, Anna Mituniewicz-Małek, Ziarno Małgorzata, and Jerzy Balejko. "Storage stability of fermented milk with probiotic monoculture and transglutaminase." Czech Journal of Food Sciences 37, No. 5 (October 31, 2019): 332–37. http://dx.doi.org/10.17221/22/2019-cjfs.

Full text
Abstract:
The effect of microbial transglutaminase on selected physicochemical and organoleptic characteristics and viability of probiotic bacteria in fermented milk inoculated with probiotic monoculture (Lactobacillus acidophilus LA 5 or Bifidobacterium bifidum BB 12) was analysed. Four types of samples were prepared: (1) fermented milk inoculated with Lactobacillus acidophilus LA 5, (2) fermented milk inoculated with Bifidobacterium bifidum BB 12, (3) fermented milk produced from milk previously treated with mTGase and inoculated with Lactobacillus acidophilus LA 5, (4) and fermented milk produced from milk previously treated with mTGase and inoculated with Bifidobacterium bifidum strain BB 12. The samples were analysed after the 1st, 7th and 14th day of storage at 5 ± 1°C. It has been found that the use of microbial transglutaminase for the production of fermented milk inoculated with monoculture affected its viscosity, hardness, acetaldehyde content and increased the viability of probiotic bacteria. The enzyme activity resulted in an significant decrease in the titratable acidity of the experimental products, positively affected viscosity, the viability of probiotic bacteria and the organoleptic properties of fermented milk.
APA, Harvard, Vancouver, ISO, and other styles
50

Guglielmetti, Simone, Isabella Tamagnini, Diego Mora, Mario Minuzzo, Alessio Scarafoni, Stefania Arioli, Jukka Hellman, Matti Karp, and Carlo Parini. "Implication of an Outer Surface Lipoprotein in Adhesion of Bifidobacterium bifidum to Caco-2 Cells." Applied and Environmental Microbiology 74, no. 15 (June 6, 2008): 4695–702. http://dx.doi.org/10.1128/aem.00124-08.

Full text
Abstract:
ABSTRACT We found that the human intestinal isolate Bifidobacterium bifidum MIMBb75 strongly adhered to Caco-2 cells. Proteinase K and lithium chloride treatments showed that proteins play a key role in MIMBb75 adhesion to Caco-2 cells. By studying the cell wall-associated proteins, we identified a surface protein, which we labeled BopA. We purified the protein chromatographically and found that it functioned as an adhesion promoter on Caco-2 cells. In silico analysis of the gene coding for this protein and globomycin experiments showed that BopA is a cysteine-anchored lipoprotein expressed as a precursor polypeptide. A database search indicated that BopA appears to function biologically as an oligopeptide/tripeptide-solute-binding protein in the ABC transport system. We discovered a protein corresponding to BopA and its gene in eight other highly adherent B. bifidum strains. Finally, we found that B. bifidum MIMBb75 and BopA affected the production of interleukin-8 in Caco-2 epithelial cells. BopA is the first protein described to date to be directly involved in the adhesion of bifidobacteria to Caco-2 cells and to show immunomodulatory activity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography