Academic literature on the topic 'Big Data, Hadoop, Business Intelligence, MapReduce'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Big Data, Hadoop, Business Intelligence, MapReduce.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Big Data, Hadoop, Business Intelligence, MapReduce"
Xu, Yi Qiao. "Massive Data Analysis Based MapReduce Structure on Hadoop System." Advanced Materials Research 981 (July 2014): 262–66. http://dx.doi.org/10.4028/www.scientific.net/amr.981.262.
Full textMeddah, Ishak H. A., Khaled Belkadi, and Mohamed Amine Boudia. "Parallel Mining Small Patterns from Business Process Traces." International Journal of Software Science and Computational Intelligence 8, no. 1 (January 2016): 32–45. http://dx.doi.org/10.4018/ijssci.2016010103.
Full textSrinivasan, Sujatha, and T. Thirumalai Kumari. "Big data analytics tools a review." International Journal of Engineering & Technology 7, no. 3.3 (June 8, 2018): 685. http://dx.doi.org/10.14419/ijet.v7i2.33.15476.
Full textChiang, Dai-Lun, Sheng-Kuan Wang, Yu-Ying Wang, Yi-Nan Lin, Tsang-Yen Hsieh, Cheng-Ying Yang, Victor R. L. Shen, and Hung-Wei Ho. "Modeling and Analysis of Hadoop MapReduce Systems for Big Data Using Petri Nets." Applied Artificial Intelligence 35, no. 1 (November 14, 2020): 80–104. http://dx.doi.org/10.1080/08839514.2020.1842111.
Full textMeddah, Ishak H. A., Khaled Belkadi, and Mohamed Amine Boudia. "Efficient Implementation of Hadoop MapReduce based Business Process Dataflow." International Journal of Decision Support System Technology 9, no. 1 (January 2017): 49–60. http://dx.doi.org/10.4018/ijdsst.2017010104.
Full textWang, C., F. Hu, X. Hu, S. Zhao, W. Wen, and C. Yang. "A HADOOP-BASED DISTRIBUTED FRAMEWORK FOR EFFICIENT MANAGING AND PROCESSING BIG REMOTE SENSING IMAGES." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-4/W2 (July 10, 2015): 63–66. http://dx.doi.org/10.5194/isprsannals-ii-4-w2-63-2015.
Full textTyagi, Adhishtha, and Sonia Sharma. "A Framework of Security and Performance Enhancement for Hadoop." International Journal of Advanced Research in Computer Science and Software Engineering 7, no. 7 (July 30, 2017): 437. http://dx.doi.org/10.23956/ijarcsse/v7i6/0171.
Full textSong, Miao Miao, Zhe Li, Bin Zhou, and Chao Ling Li. "Cloud Computing Model for Big Geological Data Processing." Applied Mechanics and Materials 475-476 (December 2013): 306–11. http://dx.doi.org/10.4028/www.scientific.net/amm.475-476.306.
Full textManogaran, Gunasekaran, and Daphne Lopez. "Disease Surveillance System for Big Climate Data Processing and Dengue Transmission." International Journal of Ambient Computing and Intelligence 8, no. 2 (April 2017): 88–105. http://dx.doi.org/10.4018/ijaci.2017040106.
Full textBu, Lingrui, Hui Zhang, Haiyan Xing, and Lijun Wu. "Research on parallel data processing of data mining platform in the background of cloud computing." Journal of Intelligent Systems 30, no. 1 (January 1, 2021): 479–86. http://dx.doi.org/10.1515/jisys-2020-0113.
Full textDissertations / Theses on the topic "Big Data, Hadoop, Business Intelligence, MapReduce"
Marchi, Francesca. "Progettazione e sviluppo di una soluzione Hadoop per il calcolo di Big Data Analytics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8591/.
Full textBesson, Henrik. "Konsulters beskrivning av Big Data och dess koppling till Business Intelligence." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-22747.
Full textMiloš, Marek. "Nástroje pro Big Data Analytics." Master's thesis, Vysoká škola ekonomická v Praze, 2013. http://www.nusl.cz/ntk/nusl-199274.
Full textŠoltýs, Matej. "Big Data v technológiách IBM." Master's thesis, Vysoká škola ekonomická v Praze, 2014. http://www.nusl.cz/ntk/nusl-193914.
Full textFirsov, Vitaly. "Big Data a jejích potenciál pro bankovní sektor." Master's thesis, Vysoká škola ekonomická v Praze, 2013. http://www.nusl.cz/ntk/nusl-165114.
Full textKiška, Vladislav. "Integrace Big Data a datového skladu." Master's thesis, Vysoká škola ekonomická v Praze, 2017. http://www.nusl.cz/ntk/nusl-359181.
Full textChiossi, Antony. "Progettazione e prototipazione di un sistema di Social Business Intelligence con Hadoop Impala." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9683/.
Full textBrotánek, Jan. "Apache Hadoop jako analytická platforma." Master's thesis, Vysoká škola ekonomická v Praze, 2017. http://www.nusl.cz/ntk/nusl-358801.
Full textSilva, Neto Arlindo Rodrigues da. "GoldBI: uma solu??o de Business Intelligence como servi?o." PROGRAMA DE P?S-GRADUA??O EM ENGENHARIA DE SOFTWARE, 2016. https://repositorio.ufrn.br/jspui/handle/123456789/22304.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-03-16T23:01:46Z (GMT) No. of bitstreams: 1 ArlindoRodriguesDaSilvaNeto_DISSERT.pdf: 3147140 bytes, checksum: 65ec83f6b7b7603769da720a2273e85b (MD5)
Made available in DSpace on 2017-03-16T23:01:46Z (GMT). No. of bitstreams: 1 ArlindoRodriguesDaSilvaNeto_DISSERT.pdf: 3147140 bytes, checksum: 65ec83f6b7b7603769da720a2273e85b (MD5) Previous issue date: 2016-08-26
Este trabalho consiste em criar uma ferramenta de BI (Business Intelligence) dispon?vel em nuvem (cloud computing) atrav?s de SaaS (Software as Service) utilizando t?cnicas de ETL (Extract, Transform, Load) e tecnologias de Big Data, com a inten??o de facilitar a extra??o descentralizada e o processamento de dados em grande quantidade. Atualmente, constata-se que ? praticamente invi?vel realizar uma an?lise consistente sem o aux?lio de um software para gera??o de relat?rios e estat?sticas. Para tais fins, a obten??o de resultados concretos com a tomada de decis?o exige estrat?gias de an?lise de dados e vari?veis consolidadas. Partindo dessa vis?o, enfatiza-se neste estudo o Business Intelligence (BI) com o objetivo de simplificar a an?lise de informa??es gerenciais e estat?sticas para propiciar indicadores atrav?s de gr?ficos ou listagens din?micas de dados gerenciais. Assim, ? poss?vel inferir que, com o crescimento exponencial dos dados torna-se cada vez mais dif?cil a obten??o de resultados de forma r?pida e consistente, tornando necess?rio atuar com novas t?cnicas e ferramentas para tratamentos de dados em larga escala. Este trabalho ? de natureza t?cnica de cria??o de um produto de Engenharia de Software, fundamentado a partir do estudo da arte da ?rea, e de um comparativo com as principais ferramentas existentes no mercado, evidenciando vantagens e desvantagens da solu??o criada.
This work is to create a BI tool (Business Intelligence) available in the cloud (cloud computing) through SaaS (Software as Service) using ETL techniques (extract, transform, load) and Big Data technologies, with the intention of facilitating decentralized extraction and data processing in large quantities. Currently, it appears that it is practically impossible conduct a consistent analysis without the aid of a software for reporting and statistics. For these purposes, the achievement of concrete results with decision making requires data analysis strategies and consolidated variable. From this view, it is emphasized in this study Business Intelligence (BI) in order to simplify the analysis of management information and statistics to provide indicators through graphs or dynamic lists of data management. Thus, it is possible to infer that with the exponential growth of data becomes increasingly difficult to obtain results quickly and consistently, making it necessary to work with new techniques and tools for large-scale data processing. This work is technical in nature to create a product of Software Engineering, based from the study of art in the area, and a comparison with the main existing tools on the market, showing advantages and disadvantages of the created solution.
2020-12-31
Ghesmoune, Mohammed. "Apprentissage non supervisé de flux de données massives : application aux Big Data d'assurance." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCD061/document.
Full textThe research outlined in this thesis concerns the development of approaches based on growing neural gas (GNG) for clustering of data streams. We propose three algorithmic extensions of the GNG approaches: sequential, distributed and parallel, and hierarchical; as well as a model for scalability using MapReduce and its application to learn clusters from the real insurance Big Data in the form of a data stream. We firstly propose the G-Stream method. G-Stream, as a “sequential" clustering method, is a one-pass data stream clustering algorithm that allows us to discover clusters of arbitrary shapes without any assumptions on the number of clusters. G-Stream uses an exponential fading function to reduce the impact of old data whose relevance diminishes over time. The links between the nodes are also weighted. A reservoir is used to hold temporarily the distant observations in order to reduce the movements of the nearest nodes to the observations. The batchStream algorithm is a micro-batch based method for clustering data streams which defines a new cost function taking into account that subsets of observations arrive in discrete batches. The minimization of this function, which leads to a topological clustering, is carried out using dynamic clusters in two steps: an assignment step which assigns each observation to a cluster, followed by an optimization step which computes the prototype for each node. A scalable model using MapReduce is then proposed. It consists of decomposing the data stream clustering problem into the elementary functions, Map and Reduce. The observations received in each sub-dataset (within a time interval) are processed through deterministic parallel operations (Map and Reduce) to produce the intermediate states or the final clusters. The batchStream algorithm is validated on the insurance Big Data. A predictive and analysis system is proposed by combining the clustering results of batchStream with decision trees. The architecture and these different modules from the computational core of our Big Data project, called Square Predict. GH-Stream for both visualization and clustering tasks is our third extension. The presented approach uses a hierarchical and topological structure for both of these tasks
Books on the topic "Big Data, Hadoop, Business Intelligence, MapReduce"
Big Data Analytics with Microsoft HDInsight in 24 Hours, Sams Teach Yourself: Big Data, Hadoop, and Microsoft Azure for Better Business Intelligence. Pearson Education, 2015.
Find full textRussell, John. Getting Started with Impala: Interactive SQL for Apache Hadoop. O'Reilly Media, Incorporated, 2014.
Find full textBook chapters on the topic "Big Data, Hadoop, Business Intelligence, MapReduce"
Furtado, Pedro. "Scalability and Realtime on Big Data, MapReduce, NoSQL and Spark." In Business Intelligence, 79–104. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61164-8_4.
Full textSavvas, Ilias K., Georgia N. Sofianidou, and M.-Tahar Kechadi. "Applying the K-Means Algorithm in Big Raw Data Sets with Hadoop and MapReduce." In Business Intelligence, 1220–43. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9562-7.ch062.
Full textSamadi, Yassir, Mostapha Zbakh, and Amine Haouari. "Big Data Processing on Cloud Computing Using Hadoop Mapreduce and Apache Spark." In Advances in Business Information Systems and Analytics, 224–50. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3038-1.ch009.
Full textManogaran, Gunasekaran, and Daphne Lopez. "Disease Surveillance System for Big Climate Data Processing and Dengue Transmission." In Web Services, 490–509. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7501-6.ch028.
Full textPal, Kamalendu. "Quality Assurance Issues for Big Data Applications in Supply Chain Management." In Predictive Intelligence Using Big Data and the Internet of Things, 51–76. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-6210-8.ch003.
Full textJakobczak, Dariusz Jacek, and Ahan Chatterjee. "The Rise of “Big Data” in the Field of Cloud Analytics." In Advances in Data Mining and Database Management, 204–25. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4706-9.ch008.
Full textConference papers on the topic "Big Data, Hadoop, Business Intelligence, MapReduce"
Akthar, Nadeem, Mohd Vasim Ahamad, and Shahbaz Khan. "Clustering on Big Data Using Hadoop MapReduce." In 2015 International Conference on Computational Intelligence and Communication Networks (CICN). IEEE, 2015. http://dx.doi.org/10.1109/cicn.2015.161.
Full textPaul, Rajdeep. "Big data analysis of Indian premier league using Hadoop and MapReduce." In 2017 International Conference on Computational Intelligence in Data Science (ICCIDS). IEEE, 2017. http://dx.doi.org/10.1109/iccids.2017.8272628.
Full text"Changing Paradigms of Technical Skills for Data Engineers." In InSITE 2018: Informing Science + IT Education Conferences: La Verne California. Informing Science Institute, 2018. http://dx.doi.org/10.28945/4001.
Full text"Keynote - Performance Impact of Data Locality in MapReduce on Hadoop." In 2017 5th Intl Conf on Applied Computing and Information Technology/4th Intl Conf on Computational Science/Intelligence and Applied Informatics/2nd Intl Conf on Big Data, Cloud Computing, Data Science (ACIT-CSII-BCD). IEEE, 2017. http://dx.doi.org/10.1109/acit-csii-bcd.2017.88.
Full textHuang, Su-yu, and Bo Zhang. "Research on Improved k-Means Clustering Algorithm Based on Hadoop Platform." In 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). IEEE, 2019. http://dx.doi.org/10.1109/mlbdbi48998.2019.00067.
Full textYulong, Zhao, and Lin Weiting. "A Research on Battlefield Situation Analysis and Decision-making Modeling based on a Hadoop Framework." In 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). IEEE, 2020. http://dx.doi.org/10.1109/mlbdbi51377.2020.00083.
Full textWahid, Ali, Steven Munkeby, and Samuel Sambasivam. "Machine Learning-based Flu Forecasting Study Using the Official Data from the Centers for Disease Control and Prevention and Twitter Data." In InSITE 2021: Informing Science + IT Education Conferences. Informing Science Institute, 2021. http://dx.doi.org/10.28945/4773.
Full text