Academic literature on the topic 'BigData'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'BigData.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "BigData"
Zhang, Jinson, Mao Huang, and Zhao-Peng Meng. "Visual analytics for BigData variety and its behaviours." Computer Science and Information Systems 12, no. 4 (2015): 1171–91. http://dx.doi.org/10.2298/csis141122050z.
Full textFromm, Davida, and Brian MacWhinney. "AphasiaBank as BigData." Seminars in Speech and Language 37, no. 01 (February 16, 2016): 010–22. http://dx.doi.org/10.1055/s-0036-1571357.
Full textИбрагимов, И. Р., and М. С. У. Халиев. "Большие данные и их структура." ТЕНДЕНЦИИ РАЗВИТИЯ НАУКИ И ОБРАЗОВАНИЯ 92, no. 10 (2022): 87–89. http://dx.doi.org/10.18411/trnio-12-2022-486.
Full textEt. al., Govindaraju G. N,. "Big Data Analytics Performance Enhancement For Covid-19 Data Using Machine Learning And Cloud." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 10 (April 28, 2021): 5608–14. http://dx.doi.org/10.17762/turcomat.v12i10.5371.
Full textKaur, Pankaj Deep, Amneet Kaur, and Sandeep Kaur. "Performance Analysis in Bigdata." International Journal of Information Technology and Computer Science 7, no. 11 (October 8, 2015): 55–61. http://dx.doi.org/10.5815/ijitcs.2015.11.07.
Full textZolotov, Oleg, Yulia Romanovskaya, and Varvara Rzhannikova. "On Definition of BigData." EPJ Web of Conferences 224 (2019): 04011. http://dx.doi.org/10.1051/epjconf/201922404011.
Full textRanjan, Rajiv, Saurabh Garg, Ali Reza Khoskbar, Ellis Solaiman, Philip James, and Dimitrios Georgakopoulos. "Orchestrating BigData Analysis Workflows." IEEE Cloud Computing 4, no. 3 (2017): 20–28. http://dx.doi.org/10.1109/mcc.2017.55.
Full textRaikhlin, Vadim A., and Roman K. Klassen. "Clusterix-Like BigData DBMS." Data Science and Engineering 5, no. 1 (February 20, 2020): 80–93. http://dx.doi.org/10.1007/s41019-020-00116-2.
Full textRidho, Farid, and Arya Aji Kusuma. "Deteksi Intrusi Jaringan dengan K-Means Clustering pada Akses Log dengan Teknik Pengolahan Big Data." Jurnal Aplikasi Statistika & Komputasi Statistik 10, no. 1 (August 15, 2019): 53. http://dx.doi.org/10.34123/jurnalasks.v10i1.202.
Full textChahal, Ayushi, Preeti Gulia, and Nasib Singh Gill. "Different analytical frameworks and bigdata model for internet of things." Indonesian Journal of Electrical Engineering and Computer Science 25, no. 2 (February 1, 2022): 1159. http://dx.doi.org/10.11591/ijeecs.v25.i2.pp1159-1166.
Full textDissertations / Theses on the topic "BigData"
Яковець, Р. І., and Ігор Віталійович Пономаренко. "Основні тенденції в BigData." Thesis, КНУТД, 2016. https://er.knutd.edu.ua/handle/123456789/4083.
Full textVitali, Federico. "Map-Matching su Piattaforma BigData." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18089/.
Full textUrssi, Nelson José. "Metacidade: projeto, bigdata e urbanidade." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/16/16134/tde-01062017-154915/.
Full textThe technologies of information and communication in all the instances of our daily life modifies the way we live and think. Urban computing, ubiquitous, locative, multimídia and interconnected, generates a large amount of data, resulting in an abundance of information on almost everything in our world. Cities permeated by personal, vehicular and environmental sensors acquire sentient characteristics. A citizen-sensitive city can work with individualized day-to-day strategies. The thesis discusses the role of cities and the complexity of our lives, the interrelationship of hardware, symbolic models and patterns of use (applications), and the design challenges to this global hybrid information ecosystem. It presents netnographic research, through case studies, urban explorations and interviews, where one can observe our presente contemporary condition. The hypothesis verified in the thesis, the city updated in real time, an urban informational ecosystem of new and infinite possibilities of interfaces and interactions.
Hashem, Hadi. "Modélisation intégratrice du traitement BigData." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLL005/document.
Full textNowadays, multiple actors of Internet technology are producing very large amounts of data. Sensors, social media or e-commerce, all generate real-time extending information based on the 3 Vs of Gartner: Volume, Velocity and Variety. In order to efficiently exploit this data, it is important to keep track of the dynamic aspect of their chronological evolution by means of two main approaches: the polymorphism, a dynamic model able to support type changes every second with a successful processing and second, the support of data volatility by means of an intelligent model taking in consideration key-data, salient and valuable at a specific moment without processing all volumes of history and up to date data.The primary goal of this study is to establish, based on these approaches, an integrative vision of data life cycle set on 3 steps, (1) data synthesis by selecting key-values of micro-data acquired by different data source operators, (2) data fusion by sorting and duplicating the selected key-values based on a de-normalization aspect in order to get a faster processing of data and (3) the data transformation into a specific format of map of maps of maps, via Hadoop in the standard MapReduce process, in order to define the related graph in applicative layer.In addition, this study is supported by a software prototype using the already described modeling tools, as a toolbox compared to an automatic programming software and allowing to create a customized processing chain of BigData
Hashem, Hadi. "Modélisation intégratrice du traitement BigData." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLL005.
Full textNowadays, multiple actors of Internet technology are producing very large amounts of data. Sensors, social media or e-commerce, all generate real-time extending information based on the 3 Vs of Gartner: Volume, Velocity and Variety. In order to efficiently exploit this data, it is important to keep track of the dynamic aspect of their chronological evolution by means of two main approaches: the polymorphism, a dynamic model able to support type changes every second with a successful processing and second, the support of data volatility by means of an intelligent model taking in consideration key-data, salient and valuable at a specific moment without processing all volumes of history and up to date data.The primary goal of this study is to establish, based on these approaches, an integrative vision of data life cycle set on 3 steps, (1) data synthesis by selecting key-values of micro-data acquired by different data source operators, (2) data fusion by sorting and duplicating the selected key-values based on a de-normalization aspect in order to get a faster processing of data and (3) the data transformation into a specific format of map of maps of maps, via Hadoop in the standard MapReduce process, in order to define the related graph in applicative layer.In addition, this study is supported by a software prototype using the already described modeling tools, as a toolbox compared to an automatic programming software and allowing to create a customized processing chain of BigData
Оверчук, Олексій Сергійович. "Методи кодування інформаційних потоків BigData фінансового ринку." Master's thesis, КПІ ім. Ігоря Сікорського, 2019. https://ela.kpi.ua/handle/123456789/32122.
Full textMaster's Thesis: 100 p., 17 fig., 14 tabl., 3 suppl., 20 sources. Object of Study - Methods for Using Bigdata Numerical Market Flows. Metal works - research of methods used on modern algorithms of modern elemental data and reliable data on preservation of data on the system of methods of diagnostics. Research Methods - Statistical methods of using and diagnosing graphs. New knowledge of work - the use of multicompressor data styling techniques and Big Data structural decompositions for the use of diagnostic diagrams. The study analyzes modern methods that are used by their data compression algorithms and develops publicly available data on various multi-compressor data compression methods; The main comparisons obtained for the Code of Regular Data Data are big data on the use of system diagnostic methods. The results of the master's thesis are published in two publications. The results obtained were used in the research works of MMSA-1/2018. In this work, it is recommended that you review additional methods of code use and explore other ways to secure information flows.
Прасол, І. Г. "Застосування технологій обробки великих даних (BigData) в маркетингу." Thesis, Київський національний універститет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/10404.
Full textDíaz, Huiza César, and Balcázar César Quezada. "Charla sobre aplicaciones de Bigdata en el mercado." Universidad Peruana de Ciencias Aplicadas (UPC), 2019. http://hdl.handle.net/10757/627937.
Full textGault, Sylvain. "Improving MapReduce Performance on Clusters." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL0985/document.
Full textNowadays, more and more scientific fields rely on data mining to produce new results. These raw data are produced at an increasing rate by several tools like DNA sequencers in biology, the Large Hadron Collider (LHC) in physics that produced 25 petabytes per year as of 2012, or the Large Synoptic Survey Telescope (LSST) that should produce 30 petabyte of data per night. High-resolution scanners in medical imaging and social networks also produce huge amounts of data. This data deluge raise several challenges in terms of storage and computer processing. The Google company proposed in 2004 to use the MapReduce model in order to distribute the computation across several computers.This thesis focus mainly on improving the performance of a MapReduce environment. In order to easily replace the software parts needed to improve the performance, designing a modular and adaptable MapReduce environment is necessary. This is why a component based approach is studied in order to design such a programming environment. In order to study the performance of a MapReduce application, modeling the platform, the application and their performance is mandatory. These models should be both precise enough for the algorithms using them to produce meaningful results, but also simple enough to be analyzed. A state of the art of the existing models is done and a new model adapted to the needs is defined. On order to optimise a MapReduce environment, the first studied approach is a global optimization which result in a computation time reduced by up to 47 %. The second approach focus on the shuffle phase of MapReduce when all the nodes may send some data to every other node. Several algorithms are defined and studied when the network is the bottleneck of the data transfers. These algorithms are tested on the Grid'5000 experiment platform and usually show a behavior close to the lower bound while the trivial approach is far from it
Melkes, Miloslav. "BigData řešení pro zpracování rozsáhlých dat ze síťových toků." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-236039.
Full textBooks on the topic "BigData"
Wei, Jinpeng, and Liang-Jie Zhang, eds. Big Data – BigData 2021. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96282-1.
Full textChin, Francis Y. L., C. L. Philip Chen, Latifur Khan, Kisung Lee, and Liang-Jie Zhang, eds. Big Data – BigData 2018. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94301-5.
Full textNepal, Surya, Wenqi Cao, Aziz Nasridinov, MD Zakirul Alam Bhuiyan, Xuan Guo, and Liang-Jie Zhang, eds. Big Data – BigData 2020. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59612-5.
Full textChen, Keke, Sangeetha Seshadri, and Liang-Jie Zhang, eds. Big Data – BigData 2019. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23551-2.
Full textHu, Bo, Yunni Xia, Yiwen Zhang, and Liang-Jie Zhang, eds. Big Data – BigData 2022. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-23501-6.
Full textZhang, Shunli, Bo Hu, and Liang-Jie Zhang, eds. Big Data – BigData 2023. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44725-9.
Full textQiu, Daowen, Yusheng Jiao, and William Yeoh, eds. Proceedings of the 2022 International Conference on Bigdata Blockchain and Economy Management (ICBBEM 2022). Dordrecht: Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-030-5.
Full textKozli︠a︡kov, V. V. Polikarp Nikitich Bigdash-Bogdashev: Zhiznʹ, tvorcheskai︠a︡ dei︠a︡telʹnostʹ. Tambov: Tambovskiĭ gos. universitet, 2001.
Find full textposvi︠a︡shchennai︠a︡ 125-letii︠u︡ so dni︠a︡ rozhdenii︠a︡ P.N. Bigdash-Bogdasheva Mezhdunarodnai︠a︡ nauchno-prakticheskai︠a︡ konferent︠s︡ii︠a︡. Narodno-pevcheskai︠a︡ kulʹtura: Regionalʹnye tradit︠s︡ii, problemy izuchenii︠a︡, puti razvitii︠a︡ : materialy mezhdunarodnoĭ nauchno-prakticheskoĭ konferent︠s︡ii, posvi︠a︡shchennoĭ 125-letii︠u︡ so dni︠a︡ rozhdenii︠a︡ P.N. Bigdash-Bogdasheva, 12-14 marta 2002 goda, g. Tambov. Tambov: Tambovskiĭ gos. universitet, 2002.
Find full textBook chapters on the topic "BigData"
Deinum, Marten, Josh Long, Gary Mak, and Daniel Rubio. "NoSQL and BigData." In Spring Recipes, 549–90. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-5909-1_13.
Full textChen, Li M. "Images, Videos, and BigData." In Mathematical Problems in Data Science, 75–100. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25127-1_5.
Full textKrithika, D. R., and K. Rohini. "Blockchain with Bigdata Analytics." In Intelligent Computing and Innovation on Data Science, 403–9. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3284-9_46.
Full textLevner, Eugene, Boris Kriheli, Arriel Benis, Alexander Ptuskin, Amir Elalouf, Sharon Hovav, and Shai Ashkenazi. "Entropy-Based Approach to Efficient Cleaning of Big Data in Hierarchical Databases." In Big Data – BigData 2020, 3–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59612-5_1.
Full textCarvalho, Andre Luis Costa, Darine Ameyed, and Mohamed Cheriet. "Ensemble Learning for Heterogeneous Missing Data Imputation." In Big Data – BigData 2020, 127–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59612-5_10.
Full textSupakkul, Sam, Robert Ahn, Ronaldo Gonçalves Junior, Diana Villarreal, Liping Zhao, Tom Hill, and Lawrence Chung. "Validating Goal-Oriented Hypotheses of Business Problems Using Machine Learning: An Exploratory Study of Customer Churn." In Big Data – BigData 2020, 144–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59612-5_11.
Full textWang, Nan, Yong Liu, Peiyao Han, Xiaokun Li, and Jinbao Li. "The Collaborative Influence of Multiple Interactions on Successive POI Recommendation." In Big Data – BigData 2020, 159–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59612-5_12.
Full textIsobe, Takashi, and Yoshihiro Okada. "Chemical XAI to Discover Probable Compounds’ Spaces Based on Mixture of Multiple Mutated Exemplars and Bioassay Existence Ratio." In Big Data – BigData 2020, 177–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59612-5_13.
Full textPerez-Arriaga, Martha O., and Krishna Ashok Poddar. "Clinical Trials Data Management in the Big Data Era." In Big Data – BigData 2020, 190–205. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59612-5_14.
Full textZhou, Jonathan, Baldwin Chen, and Nianjun Zhou. "Cross-Cancer Genome Analysis on Cancer Classification Using Both Unsupervised and Supervised Approaches." In Big Data – BigData 2020, 206–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59612-5_15.
Full textConference papers on the topic "BigData"
Malhotra, Shweta, M. N. Doja, Bashir Alam, and Mansaf Alam. "Bigdata analysis and comparison of bigdata analytic approches." In 2017 International Conference on Computing, Communication and Automation (ICCCA). IEEE, 2017. http://dx.doi.org/10.1109/ccaa.2017.8229821.
Full textSarma, Somina Venkata Surya Brahma Linga. "Scalability and Operational Metrics of various BigData Analytics Engines Bigdata Analytics." In Annual International Conference on ICT: Big Data, Cloud and Security (ICT-BDCS 2015). Global Science and Technology Forum (GSTF), 2015. http://dx.doi.org/10.5176/2382-5669_ict-bdcs15.27.
Full text"Bigdata in Mobile Networks." In Sept. 17-19, 2018 Paris (France). Excellence in Research & Innovation, 2018. http://dx.doi.org/10.17758/eirai4.f0918115.
Full text"BigData 2023 Committee Member." In 2023 IEEE International Conference on Big Data (BigData). IEEE, 2023. http://dx.doi.org/10.1109/bigdata59044.2023.10386716.
Full text"BigData 2023 Author Index." In 2023 IEEE International Conference on Big Data (BigData). IEEE, 2023. http://dx.doi.org/10.1109/bigdata59044.2023.10386465.
Full text"BigData 2023 Cover Page." In 2023 IEEE International Conference on Big Data (BigData). IEEE, 2023. http://dx.doi.org/10.1109/bigdata59044.2023.10386506.
Full text"BigData 2023 Cover Page." In 2023 IEEE International Conference on Big Data (BigData). IEEE, 2023. http://dx.doi.org/10.1109/bigdata59044.2023.10386176.
Full text"BigData 2023 Program Committee." In 2023 IEEE International Conference on Big Data (BigData). IEEE, 2023. http://dx.doi.org/10.1109/bigdata59044.2023.10386815.
Full textMilutinovic, Veljko. "DataFlow SuperComputing for BigData." In 2016 5th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2016. http://dx.doi.org/10.1109/meco.2016.7525678.
Full textMilutinovic, Veljko. "DataFlow SuperComputing for bigdata." In 2018 7th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2018. http://dx.doi.org/10.1109/meco.2018.8405950.
Full textReports on the topic "BigData"
López Cantos, F. Communication research using BigData methodology. Revista Latina de Comunicación Social, December 2015. http://dx.doi.org/10.4185/rlcs-2015-1076en.
Full textLópez Cantos, F. La investigación en comunicación con metodología BigData. Revista Latina de Comunicación Social, December 2015. http://dx.doi.org/10.4185/rlcs-2015-1076.
Full textWu, Wenji. BigData Express: Toward Predictable, Schedulable, and High-Performance Data Transfer. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1460784.
Full textWu, Wenji, Liang Zhang, Qiming Lu, and Phil DeMar. BigData Express: Toward Predictable, Schedulable, and High-Performance Data Transfer. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1623355.
Full textWu, Wenji. BigData Express: Toward Predictable, Schedulable, and High-Performance Data Transfer. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1565933.
Full text