Academic literature on the topic 'Binary Nitride'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Binary Nitride.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Binary Nitride"

1

FREEMANTLE, MICHAEL. "ELUSIVE BINARY NITRIDE PREPARED." Chemical & Engineering News Archive 80, no. 20 (2002): 9. http://dx.doi.org/10.1021/cen-v080n020.p009a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mondal, S., and A. K. Banthia. "Triethanolamine Molybdate, a New Polymeric Precursor for Molybdenum Nitride." Advanced Materials Research 29-30 (November 2007): 195–98. http://dx.doi.org/10.4028/www.scientific.net/amr.29-30.195.

Full text
Abstract:
Nitrides remain a relatively unexplored class of materials primarily due to the difficulties associated with their synthesis and characterization. Several synthetic routes, including high temperature reactions, microwave assisted synthesis, and the use of plasmas, to prepare binary and ternary nitrides have been explored. Transition metal nitrides form a class of materials with unique physical properties, which give them varied applications, as high temperature ceramics, magnetic materials, superconductors or catalysts. They are commonly prepared by high temperature conventional processes, but alternative synthetic approaches have also been explored, more recently, which utilize moderate temperature condition. Transition metal nitrides particularly, molybdenum nitride, niobium nitride, and tungsten nitride have important applications as catalyst in hydrodenitridation reactions. These nitrides have been traditionally synthesized using high temperature nitridation treatments of the oxides. The nitridation temperatures are very high (> 800- 1000 oC). The aim of our work is to synthesize molybdenum nitride by a simple, low-temperature route. The method involves pyrolysis of a polymeric precursor, which was prepared from the condensation reaction between triethanolamine and molybdic acid. The melting point of the product is 180oC. The polymeric precursor and its pyrolyzed products are characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). X-ray diffraction shows that molybdenum nitride (MoN) obtained from this method has hexagonal crystal structure. MoN is obtained by this method at very low temperature (~ 400 oC).
APA, Harvard, Vancouver, ISO, and other styles
3

Schnick, Wolfgang. "The First Nitride Spinels—New Synthetic Approaches to Binary Group 14 Nitrides." Angewandte Chemie International Edition 38, no. 22 (1999): 3309–10. http://dx.doi.org/10.1002/(sici)1521-3773(19991115)38:22<3309::aid-anie3309>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schwarz, Benjamin, Regina E. Hörth, Ewald Bischoff, Ralf E. Schacherl, and Eric J. Mittemeijer. "The Process of Tungsten-Nitride Precipitation upon Nitriding Ferritic Fe-0.5 at.% W Alloy." Defect and Diffusion Forum 334-335 (February 2013): 284–89. http://dx.doi.org/10.4028/www.scientific.net/ddf.334-335.284.

Full text
Abstract:
The precipitation of tungsten nitride upon internal nitriding of ferritic Fe-0.5 at.% W alloy was investigated at 610°C in a flowing NH3/H2 gas mixture. Different tungsten nitrides developed successively; the thermodynamically stable hexagonal δ-WN could not be detected. The state of deformation of the surface plays an important role for the development of tungsten nitride at the surface. The morphologies of the tungsten nitrides developed at the surface and those precipitated at some depth in the specimen are different. The nitride particles at the surface exhibit mostly an equiaxed morphology (with the size of the order 0.5 µm) and have a crystal structure which can be described as a superstructure derived from hexagonal δ-WN. These nitride particles show a strong preferred orientation with respect to the specimen frame of reference but have no relation with the crystal orientation of the surrounding ferrite matrix. In the bulk, nanosized and finely dispersed platelet-like precipitates grow preferentially along {100}α-Fe. It is unclear whether these precipitates consist of binary iron nitride α´´-Fe16N2 or of a ternary Fe-W-N. Additionally to the finely dispersed particles, bigger nitrides at ferrite grain boundaries develop exhibiting platelet-type morphology and possessing a crystal structure which can be also described as a superstructure derived from hexagonal δ-WN. Upon prolonged nitriding assumed discontinuous precipitation of the initially precipitated finely dispersed nitrides starts from the ferrite-grain boundaries resulting in lamellas consisting of alternate ferrite and hexagonal nitride lamellas, whereas the nitride lamellas having a Pitsch-Schrader orientation relationship with the surrounding ferrite matrix. The nitrides precipitated upon nitriding in the bulk were found to be unstable during H2 reduction at 470°C. Remarkably, upon such low temperature dissolution of the nitrides took place but only the nitrogen from the nitride particles could diffuse out of the nitride platelets and the specimen, leaving W-rich regions (W-clusters) at the location of the original precipitates.
APA, Harvard, Vancouver, ISO, and other styles
5

Kerdoud, Djahida, Faouzia Benkafada, Nora Boussouf, and Chahrazed Benhamideche. "Nitride Materials: Synthesis, Crystal Structures, and Optical Properties." Annales de Chimie - Science des Matériaux 46, no. 2 (2022): 103–8. http://dx.doi.org/10.18280/acsm.460206.

Full text
Abstract:
Our research involves the preparation of transition metal nitrides of the composition Mn4N, NbN, Mo2N, TaN and ZrN. The synthesis of Li3N binary alkali metal nitride was also part of this work. Simple and cost-effective methods with relatively low impact on the environment have been privileged in the selection. The experimental work has focused on determining the optimum conditions of synthesis and the convenient high yield route to the desired nitrides, and ultimately improvement of the properties of the final materials. All samples were characterised by X-ray powder diffraction. Their structures will be discussed in more detail here. Optical band gap has been calculated from diffuse reflectance measurements. The air sensitivity of the nitrides was also probed.
APA, Harvard, Vancouver, ISO, and other styles
6

Bauers, Sage R., Aaron Holder, Wenhao Sun, et al. "Ternary nitride semiconductors in the rocksalt crystal structure." Proceedings of the National Academy of Sciences 116, no. 30 (2019): 14829–34. http://dx.doi.org/10.1073/pnas.1904926116.

Full text
Abstract:
Inorganic nitrides with wurtzite crystal structures are well-known semiconductors used in optical and electronic devices. In contrast, rocksalt-structured nitrides are known for their superconducting and refractory properties. Breaking this dichotomy, here we report ternary nitride semiconductors with rocksalt crystal structures, remarkable electronic properties, and the general chemical formula MgxTM1−xN (TM = Ti, Zr, Hf, Nb). Our experiments show that these materials form over a broad metal composition range, and that Mg-rich compositions are nondegenerate semiconductors with visible-range optical absorption onsets (1.8 to 2.1 eV) and up to 100 cm2 V−1⋅s−1 electron mobility for MgZrN2 grown on MgO substrates. Complementary ab initio calculations reveal that these materials have disorder-tunable optical absorption, large dielectric constants, and electronic bandgaps that are relatively insensitive to disorder. These ternary MgxTM1−xN semiconductors are also structurally compatible both with binary TMN superconductors and main-group nitride semiconductors along certain crystallographic orientations. Overall, these results highlight MgxTM1−xN as a class of materials combining the semiconducting properties of main-group wurtzite nitrides and rocksalt structure of superconducting transition-metal nitrides.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Xinwu, Haobin Sun, Hua Zhang, et al. "Advances in binary nitride coatings for cemented carbides." Journal of Physics: Conference Series 2256, no. 1 (2022): 012020. http://dx.doi.org/10.1088/1742-6596/2256/1/012020.

Full text
Abstract:
Abstract With the development of science and technology, cemented carbide tool coatings for machining are updating constantly. Different chemical elements in tool coatings have different performance. This paper introduces the current status of the use of various chemical elements in carbide tool coatings, common chemical elements include metallic elements (transition metal elements, rare-earth elements and aluminium elements) and non-metallic elements (silicon and boron). In addition, this paper presents the current status of research on related basic coatings which includes CrN, TiN, TiCN and CrCN coating, and it looks ahead the develop of tool coating prospect as well.
APA, Harvard, Vancouver, ISO, and other styles
8

Dziubek, K., M. Ceppatelli, D. Scelta, et al. "Binary arsenic nitride synthesized from elements under pressure." Acta Crystallographica Section A Foundations and Advances 78, a2 (2022): a180. http://dx.doi.org/10.1107/s2053273322095201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ghufran, Muhammad, Ghulam Moeen Uddin, Syed Muhammad Arafat, Muhammad Jawad, and Abdul Rehman. "Development and tribo-mechanical properties of functional ternary nitride coatings: Applications-based comprehensive review." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 235, no. 1 (2020): 196–232. http://dx.doi.org/10.1177/1350650120933412.

Full text
Abstract:
Friction and wear are very crucial aspects of the performance, service life, and the operational costs for a mechanical component or equipment. To reduce the friction and wear at the interface of the sliding or mating parts, different conventional binary coatings like TiN, CrN, TiC, etc., have been used in the last two decades. But ternary nitride coatings have replaced the binary coatings due to better tribo-mechanical properties. Now, ternary nitride coatings are being extensively used in several fields such as cutting tools, machinery parts, orthopedic implants, microelectronics, marine equipment, decorative purposes, automotive, aerospace industry, etc. Many researchers have developed and investigated the ternary nitride coatings for different applications. Nonetheless, there is a huge research potential in the development and optimization of the tribo-mechanical properties of the ternary nitride coatings. Therefore, tribo-mechanical studies of the ternary nitride coatings are needed for fostering the new industrial applications. This paper is focused to summarize and compare the tribo-mechanical properties of the ternary nitride coatings comprehensively and aims to explore the novel research directions in the development of the ternary nitride coatings.
APA, Harvard, Vancouver, ISO, and other styles
10

Schwarz, Ulrich, Kai Guo, William P. Clark та ін. "Ferromagnetic ε-Fe2MnN: High-Pressure Synthesis, Hardness and Magnetic Properties". Materials 12, № 12 (2019): 1993. http://dx.doi.org/10.3390/ma12121993.

Full text
Abstract:
The iron manganese nitride Fe2MnN was obtained by high-pressure–high-temperature synthesis from ζ-Fe2N and elemental Mn at 15(2) GPa and 1573(200) K. The phase crystallizes isostructural to binary ε-Fe3N. In comparison to the corresponding binary iron nitride, the microhardness of ε-Fe2MnN is reduced to 6.2(2) GPa. Above about 800 K the ternary compound decomposes exothermally under loss of nitrogen. ε-Fe2MnN is ferromagnetic with a Curie temperature of roughly 402 K.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography