Academic literature on the topic 'Binomial distribution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Binomial distribution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Binomial distribution"
Sampath, S. "Hybrid Binomial Distribution." International Journal of Fuzzy System Applications 2, no. 4 (October 2012): 64–75. http://dx.doi.org/10.4018/ijfsa.2012100104.
Full textKalev, Krasimir. "APPLICATION OF BINOMIAL DISTRIBUTION IN LOGISTICS SYSTEMS." Journal Scientific and Applied Research 6, no. 1 (November 12, 2014): 114–20. http://dx.doi.org/10.46687/jsar.v6i1.147.
Full textČekanavičius, V., and B. Roos. "Binomial Approximation to the Markov Binomial Distribution." Acta Applicandae Mathematicae 96, no. 1-3 (March 23, 2007): 137–46. http://dx.doi.org/10.1007/s10440-007-9114-1.
Full textEhm, Werner. "Binomial approximation to the Poisson binomial distribution." Statistics & Probability Letters 11, no. 1 (January 1991): 7–16. http://dx.doi.org/10.1016/0167-7152(91)90170-v.
Full textHandayani, Deby. "Karakterisasi Sebaran Binomial Negatif-Binomial Negatif." Jurnal Penelitian Dan Pengkajian Ilmiah Eksakta 1, no. 2 (July 26, 2022): 94–97. http://dx.doi.org/10.47233/jppie.v1i2.558.
Full textAnjela, Wanjala, and George Muhua. "Negative Binomial Three Parameter Lindley Distribution and Its Properties." International Journal of Theoretical and Applied Mathematics 10, no. 1 (June 14, 2024): 1–5. http://dx.doi.org/10.11648/j.ijtam.20241001.11.
Full textIso, C., and K. Mori. "Negative binomial multiplicity distribution from binomial cluster production." Zeitschrift für Physik C: Particles and Fields 46, no. 1 (March 1990): 59–61. http://dx.doi.org/10.1007/bf02440833.
Full textMUNTEANU, Bogdan-Gheorghe. "QUALITATIVE ASPECTS OF THE MIN PARETO BINOMIAL DISTRIBUTION." Review of the Air Force Academy 15, no. 2 (October 20, 2017): 63–68. http://dx.doi.org/10.19062/1842-9238.2017.15.2.8.
Full textRoss, G. J. S., and D. A. Preece. "The Negative Binomial Distribution." Statistician 34, no. 3 (1985): 323. http://dx.doi.org/10.2307/2987659.
Full textOmey, E., J. Santos, and Gulck Van. "A Markov-binomial distribution." Applicable Analysis and Discrete Mathematics 2, no. 1 (2008): 38–50. http://dx.doi.org/10.2298/aadm0801038o.
Full textDissertations / Theses on the topic "Binomial distribution"
Hansen, Peder. "Approximating the Binomial Distribution by the Normal Distribution – Error and Accuracy." Thesis, Uppsala universitet, Matematisk statistik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-155336.
Full textWei, Jiajin. "Estimation of the reciprocal of a binomial proportion." HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/847.
Full textROCHA, Samy Marques. "Distribuição Binomial e Aplicações." Universidade Federal do Maranhão, 2017. http://tedebc.ufma.br:8080/jspui/handle/tede/1271.
Full textMade available in DSpace on 2017-04-07T15:18:02Z (GMT). No. of bitstreams: 1 Samy marques.pdf: 1541887 bytes, checksum: 6335e5c12fc4f4fec24616c00e7613b4 (MD5) Previous issue date: 2017-02-16
The Binomial probability distribution is one of the most commonly used to represent data of discrete random variables. In this work, we present the construction of the Binomial model and its main characteristics. The relationship with other distributions is explored following the theoretical aspects and examples of applications. The examples using data from the Brazilian soccer championship can become a motivational proposal for the students of the High School. The methodology is applied with the computational support of free software Geogebra.
A distribuição de probabilidade Binomial é uma das mais utilizadas para representar dados de variáveis aleatórias discretas. Neste trabalho, apresentamos a construção do modelo Binomial e suas principais caracter´ısticas. O relacionamento com outras distribuições é explorado seguindo os aspectos teóricos e exemplos de aplicações. Os exemplos usando dados do campeonato brasileiro de futebol podem se tornar uma proposta motivadora para os alunos do Ensino Médio. A metodologia é aplicada com o apoio computacional do software livre GeoGebra
Dai, Xiaogang. "Score Test and Likelihood Ratio Test for Zero-Inflated Binomial Distribution and Geometric Distribution." TopSCHOLAR®, 2018. https://digitalcommons.wku.edu/theses/2447.
Full textHörmann, Wolfgang. "The generation of binomial random variates." Institut für Statistik und Mathematik, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business, 1992. http://epub.wu.ac.at/1242/1/document.pdf.
Full textSeries: Preprint Series / Department of Applied Statistics and Data Processing
Rodrigues, Cristiane. "Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-28062011-095106/.
Full textIn this paper, some result such as moments generating function, recurrence relations for moments and some theorems of the class of modified power series distributions (MPSD) proposed by Gupta (1974) and of the class of inflated modified power series distributions (IMPSD) both at a different point of zero as the zero point are presented. The standard Poisson model, the standard negative binomial model and zero inflated models for count data, ZIP and ZINB, using the techniques of the GLMs, were used to analyse two real data sets together with the normal plot with simulated envelopes. The new distribution Weibull negative binomial (WNB) was proposed. Some mathematical properties of the WNB distribution which is quite flexible in analyzing positive data were studied. It is an important alternative model to the Weibull, and Weibull geometric distributions as they are sub-models of WNB. We demonstrate that the WNB density can be expressed as a mixture of Weibull densities. We provide their moments, moment generating function, plots of the skewness and kurtosis, explicit expressions for the mean deviations, Bonferroni and Lorenz curves, quantile function, reliability and entropy, the density of order statistics and explicit expressions for the moments of order statistics. The method of maximum likelihood is used for estimating the model parameters. The expected information matrix is derived. The usefulness of the new distribution is illustrated in two analysis of real data sets.
OLIVEIRA, Cícero Carlos Felix de. "Uma priori beta para distribuição binomial negativa." Universidade Federal Rural de Pernambuco, 2011. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4537.
Full textMade available in DSpace on 2016-05-25T16:16:39Z (GMT). No. of bitstreams: 1 Cicero Carlos Felix de Oliveira.pdf: 934310 bytes, checksum: 4f4332b0b319f6bf33cdc1d615c36324 (MD5) Previous issue date: 2011-07-08
This dissertation is being dealt with a discrete distribution based on Bernoulli trials, which is the Negative Binomial distribution. The main objective is to propose a new non-informative prior distribution for the Negative Binomial model, which is being termed as a possible prior distribution Beta(0; 0), which is an improper distribution. This distribution is also known for the Binomial model as Haldane prior, but for the Negative Binomial model there are no studies to date. The study of the behavior of this prior was based on Bayesian and classical contexts. The idea of using a non-informative prior is the desire to make statistical inference based on the minimum of information prior subjective as possible. Well, makes it possible to compare the results of classical inference that uses only sample information, for example, the maximum likelihood estimator. When is compared the Beta(0; 0) distribution with the Bayes-Laplace prior and Jeffreys prior, based on the Bayesian estimators (posterior mean and posterior mode) and the maximum likelihood estimator, note that the possible Beta(0; 0) prior is less informative than the others prior. It is also verified that is prior possible is a limited distribution in parameter space, thus, an important feature for non-informative prior. The main argument shows that the possible Beta(0; 0) prior is adequate, when it is applied in a predictive posterior distribution for Negative Binomial model, leading the a Beta-Negative Binomial distribution (which corresponds the a hypergeometric multiplied by a probability). All observations citas are strengthened by several studies, such as: basic concepts related to Bayesian Inference and concepts of the negative binomial distribution and Beta-Negative Binomial (a mixture of Beta with the negative binomial) distribution.
Nesta dissertação está sendo abordado uma distribuição discreta baseada em ensaios de Bernoulli, que é a distribuição Binomial Negativa. O objetivo principal é prôpor uma nova distribuição a priori não informativa para o modelo Binomial Negativa, que está sendo denominado como uma possível distribuição a priori Beta(0; 0), que é uma distribuição imprópria. Essa distribuição também é conhecida para o modelo Binomial como a priori de Haldane, mas para o modelo Binomial Negativa não há nenhum estudo até o momento. O estudo do comportamento desta a priori foi baseada nos contextos bayesiano e clássico. A ideia da utilização de uma a priori não informativa é o desejo de fazer inferência estatística baseada no mínimo de informação subjetiva a priori quanto seja possível. Assim, torna possível a comparação com os resultados da inferência clássica que só usa informação amostral, como por exemplo, o estimador de máxima verossimilhança. Quando é comparado a distribuição Beta(0; 0) com a priori de Bayes - Laplace e a priori de Jeffreys, baseado-se nos estimadores bayesiano (média a posteriori e moda a posteriori) e no estimador de máxima verossimilhança, nota-se que a possível a priori Beta(0; 0) é menos informativa do que as outras a priori. É verificado também, que esta possível a priori é uma distribuição limitada no espaço paramétrico, sendo assim, uma característica importante para a priori não informativa. O principal argumento mostra que a possível a priori Beta(0; 0) é adequada, quando ela é aplicada numa distribuição a posteriori preditiva para modelo Binomial Negativa, levando a uma distribuição Beta Binomial Negativa (que corresponde a uma hipergeométrica multiplicada por uma probabilidade). Todas as observações citadas são fortalecidas por alguns estudos feitos, tais como: conceitos básicos associados à Inferência Bayesiana e conceitos das distribuições Binomial Negativa e Beta Binomial Negativa (que uma mistura da Beta com a Binomial Negativa).
Luo, Shihua. "Bayesian Estimation of Small Proportions Using Binomial Group Test." FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/744.
Full textPhilippsen, Adriana Strieder. "Abordagem clássica e bayesiana para os modelos de séries temporais da família GARMA com aplicações para dados de contagem." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06062011-164536/.
Full textIn this work, it was studied the GARMA model to model time series count data with Poisson, binomial and negative binomial discrete conditional distributions. The main goal is to analyze, in the bayesian and classic context, the performance and the quality of fit of the corresponding models, as well as the coverage percentages performance to these models. To achieve this purpose we considered the analysis of Bayesian estimators and credible intervals were analyzed. To the Bayesian study it was proposed a priori distribution joined to the models parameters and sought a posteriori distribution, which one associate with to certain loss functions allows finding out Bayesian estimates to the parameters. In the classical approach, it was calculated the maximum likelihood estimators using the method of Fisher scoring, whose interest was to verify, by simulation, the consistence. With the studies developed we can notice that, both classical and inference Bayesian inference for the parameters of those models, presented good properties analysed through the properties of the punctual estimators. The last stage of the work consisted of the analysis of one real data set, being a real serie corresponding to the admission number because of dengue in the city of Campina Grande. These results show that both the classic and the Bayesian studies are able to describe well the behavior of the serie
Tian, Suzhong. "Statistical Inference for the Risk Ratio in 2x2 Binomial Trials with Stuctural Zero." Fogler Library, University of Maine, 2004. http://www.library.umaine.edu/theses/pdf/TianS2004.pdf.
Full textBooks on the topic "Binomial distribution"
von Collani, Elart, and Klaus Dräger. Binomial Distribution Handbook for Scientists and Engineers. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0215-8.
Full textLeemis, Lawrence M. A comparison of approximate interval estimators for the Bernoulli parameter. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Find full textAdejumo, Adebowale Olusola. Modelling generalized linear (loglinear) models for raters agreement measure: With complete and missing values cases. New York: Peter Lang, 2006.
Find full textSinclair, Margaret. How to get an A in-- statistics & data analysis: Mean, median & mode, standard deviation, binomial distribution. Toronto: Coles Pub., 1998.
Find full textConsortium for Mathematics and Its Applications (U.S.), Chedd-Angier Production Company, American Statistical Association, and Annenberg Media, eds. Against all odds--inside statistics: Disc 3, programs 9-12. S. Burlington, VT: Annenberg Media, 2011.
Find full textDaniel, Oladele, and Harry Peach. Probability, Normal and Binomial Distribution. Independently Published, 2019.
Find full textBook chapters on the topic "Binomial distribution"
Laudański, Ludomir M. "Binomial Distribution." In Intelligent Systems Reference Library, 245–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25697-4_13.
Full textLaudański, Ludomir M. "Binomial Distribution." In Intelligent Systems Reference Library, 87–127. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25697-4_7.
Full textKaliski, Burt. "Binomial Distribution." In Encyclopedia of Cryptography and Security, 86. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-5906-5_396.
Full textPhilippou, Andreas N., and Demetrios L. Antzoulakos. "Binomial Distribution." In International Encyclopedia of Statistical Science, 152–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-04898-2_146.
Full textGooch, Jan W. "Binomial Distribution." In Encyclopedic Dictionary of Polymers, 971. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15164.
Full textLesigne, Emmanuel. "The binomial distribution." In The Student Mathematical Library, 15–17. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/stml/028/05.
Full textNguyen, Hung T., and Gerald S. Rogers. "The Binomial Distribution." In Springer Texts in Statistics, 123–39. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-1013-9_17.
Full textJolicoeur, Pierre. "The binomial distribution." In Introduction to Biometry, 108–23. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4777-8_18.
Full textRussell, Kenneth G. "The Binomial Distribution." In Design of Experiments for Generalized Linear Models, 89–148. Boca Raton, Florida : CRC Press, [2019] | Series: Chapman & Hall/CRC interdisciplinary statistics: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780429057489-4.
Full textČekanavičius, V., and S. Y. Novak. "Markov Binomial distribution." In Compound Poisson Approximation, 150–67. Boca Raton: Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9781003478164-9.
Full textConference papers on the topic "Binomial distribution"
Fernández, Nicolás, Jaime García-García, Elizabeth Arredondo, and Isaac Imilpán. "Knowledge of Binomial Distribution in Pre-service Mathematics Teachers." In Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. International Association for Statistical Education, 2022. http://dx.doi.org/10.52041/iase.icots11.t8b2.
Full textD'Souza, Richard, and Adya P. Mishra. "Generalized distribution of negative binomial states." In 1992 Shanghai International Symposium on Quantum Optics, edited by Yuzhu Wang, Yiqiu Wang, and Zugeng Wang. SPIE, 1992. http://dx.doi.org/10.1117/12.130401.
Full textBodhisuwan, Winai, Chookait Pudprommarat, Rujira Bodhisuwan, and Luckhana Saothayanun. "Zero-truncated negative binomial - Erlang distribution." In PROCEEDINGS OF THE 13TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND THEIR APPLICATIONS (ICMSA2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5012230.
Full textDenthet, Sunthree, Ampai Thongteeraparp, and Winai Bodhisuwan. "Mixed distribution of negative binomial and two-parameter Lindley distributions." In 2016 12th International Conference on Mathematics, Statistics, and Their Application (ICMSA). IEEE, 2016. http://dx.doi.org/10.1109/icmsa.2016.7954318.
Full textHu, Sigui. "Optimum truncated sequential test of binomial distribution." In 2011 9th International Conference on Reliability, Maintainability and Safety (ICRMS 2011). IEEE, 2011. http://dx.doi.org/10.1109/icrms.2011.5979278.
Full textSÖDERHOLM, JONAS, and SHUICHIRO INOUE. "THE NEGATIVE BINOMIAL DISTRIBUTION IN QUANTUM PHYSICS." In Proceedings of the 9th International Symposium. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814282130_0077.
Full textLi, Bing, Xianneng Li, Shingo Mabu, and Kotaro Hirasawa. "Variable Size Genetic Network Programming with Binomial Distribution." In 2011 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2011. http://dx.doi.org/10.1109/cec.2011.5949723.
Full textJordanova, Pavlina K., Monika P. Petkova, and Milan Stehlík. "Compound negative binomial distribution with negative multinomial summands." In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE’16): Proceedings of the 42nd International Conference on Applications of Mathematics in Engineering and Economics. Author(s), 2016. http://dx.doi.org/10.1063/1.4968501.
Full textJi, Jia-Wei, Qiang Yang, Xu-Dong Gao, Peilan Xu, and Zhen-Yu Lu. "Binomial Distribution Assisted Individual Selection for Differential Evolution." In 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2023. http://dx.doi.org/10.1109/smc53992.2023.10394491.
Full textPrasongporn, Pralongpol, and Winai Bodhisuwan. "Negative Binomial - Two Parameter Weighted Exponential (NB-TWE) Distribution." In 5th Annual International Conference on Operations Research and Statistics (ORS 2017). Global Science & Technology Forum (GSTF), 2017. http://dx.doi.org/10.5176/2251-1938_ors17.18.
Full textReports on the topic "Binomial distribution"
Tang, Victor K., Ronald B. Sindler, and Raymond M. Shirven. Bayesian Estimation of n in a Binomial Distribution. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada196623.
Full textButler, Ken, and Michael Stephens. The Distribution of a Sum of Binomial Random Variables. Fort Belvoir, VA: Defense Technical Information Center, April 1993. http://dx.doi.org/10.21236/ada266969.
Full textChernoff, Herman, and Eric Lander. Asymptotic Distribution of the Likelihood Ratio Test That a Mixture of Two Binomials is a Single Binomial. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236714.
Full textCollins, Joseph C. Binomial Distribution: Hypothesis Testing, Confidence Intervals (CI), and Reliability with Implementation in S-PLUS. Fort Belvoir, VA: Defense Technical Information Center, June 2010. http://dx.doi.org/10.21236/ada523927.
Full textMathew, Sonu, Srinivas S. Pulugurtha, and Sarvani Duvvuri. Modeling and Predicting Geospatial Teen Crash Frequency. Mineta Transportation Institute, June 2022. http://dx.doi.org/10.31979/mti.2022.2119.
Full textGuilfoyle, Michael, Ruth Beck, Bill Williams, Shannon Reinheimer, Lyle Burgoon, Samuel Jackson, Sherwin Beck, Burton Suedel, and Richard Fischer. Birds of the Craney Island Dredged Material Management Area, Portsmouth, Virginia, 2008-2020. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45604.
Full text