Academic literature on the topic 'Binomial tree'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Binomial tree.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Binomial tree"
Leduc, Guillaume, and Merima Nurkanovic Hot. "Joshi’s Split Tree for Option Pricing." Risks 8, no. 3 (August 1, 2020): 81. http://dx.doi.org/10.3390/risks8030081.
Full textHanafizadeh, Payam, Amir Hossein Mortazavi Qahi, and Kumaraswamy Ponnambalam. "Robust Option through Binomial Tree Method." International Journal of Strategic Decision Sciences 6, no. 4 (October 2015): 42–53. http://dx.doi.org/10.4018/ijsds.2015100103.
Full textMuroi, Yoshifumi, and Shintaro Suda. "Computation of Greeks Using Binomial Tree." Journal of Mathematical Finance 07, no. 03 (2017): 597–623. http://dx.doi.org/10.4236/jmf.2017.73031.
Full textGanikhodja, Nasir, and Kamola Bayram. "Random Binomial Tree Models and Options." Journal of Applied Sciences 12, no. 18 (September 1, 2012): 1978–81. http://dx.doi.org/10.3923/jas.2012.1978.1981.
Full textXiaoping, Hu, and Cao Jie. "Randomized Binomial Tree and Pricing of American-Style Options." Mathematical Problems in Engineering 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/291737.
Full textBRATHA, I. GEDE RENDIAWAN ADI, KOMANG DHARMAWAN, and NI LUH PUTU SUCIPTAWATI. "PENENTUAN HARGA KONTRAK OPSI KOMODITAS EMAS MENGGUNAKAN METODE POHON BINOMIAL." E-Jurnal Matematika 6, no. 2 (June 7, 2017): 99. http://dx.doi.org/10.24843/mtk.2017.v06.i02.p153.
Full textLeipus, Remigijus, and Alfredas Račkauskas. "Security price modelling by a binomial tree." Applicationes Mathematicae 26, no. 3 (1999): 253–66. http://dx.doi.org/10.4064/am-26-3-253-266.
Full textYinghua, Li, and Li Xingsi. "Entropy Binomial Tree Model for Option Pricing." Applied Mathematics & Information Sciences 7, no. 1 (January 1, 2013): 151–59. http://dx.doi.org/10.12785/amis/070118.
Full textWU, JIE. "TIGHT BOUNDS ON THE NUMBER OF l-NODES IN A FAULTY HYPERCUBE." Parallel Processing Letters 05, no. 02 (June 1995): 321–28. http://dx.doi.org/10.1142/s0129626495000308.
Full textCaicedo R., Luis Sigifredo, Edgar Herney Varón D., and Helena Luisa Brochero. "Binomial sampling of Paraleyrodes Quaintance pos. bondari (Hemiptera: Aleyrodidae) in Persea americana Mill." Agronomía Colombiana 34, no. 2 (May 1, 2016): 209–16. http://dx.doi.org/10.15446/agron.colomb.v34n2.54084.
Full textDissertations / Theses on the topic "Binomial tree"
Sun, Xihao. "Pricing Options with Monte Carlo and Binomial Tree Methods." Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/687.
Full textVan, Wyk Ettienne. "Binomial and trinomial tree methods in derivatives pricing / Ettienne van Wyk." Thesis, North-West University, 2006. http://hdl.handle.net/10394/1269.
Full textThesis (M.Sc. (Risk Analysis))--North-West University, Potchefstroom Campus, 2007.
Stewart, Thomas Gordon. "Generalized Random Walks, Their Trees, and the Transformation Method of Option Pricing." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2608.pdf.
Full textYang, Yuankai. "Pricing American and European options under the binomial tree model and its Black-Scholes limit model." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-68264.
Full textLewenhaupt, Hugo. "Optimizing the Number of Time-steps Used in Option Pricing." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159648.
Full textTwarog, Marek B. "Pricing security derivatives under the forward measure." Link to electronic thesis, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-053007-142223/.
Full textRibeiro, Lucas Vioto dos Santos. "Modelos de precificação de Opções Americanas a partir de plataformas paralelas." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55137/tde-05022018-103941/.
Full textThe objective of this dissertation is to provide first the necessary framework for the understanding of the derivative options, widely used in the world financial markets, and later to execute the American option pricing from Monte Carlo least squares models (LSM), the binomial tree model with Richardson extrapolation and the Bjerksund and Stensland analytic approach (BJS) by applying two parallel computational processing platforms, the native TPL (Task Parallel Library) in the .NET framework 4.5 and the CUDA platform (Compute Unified Device Architecture), demonstrating the comparison of the obtained results to each model before each platform.
Lendacký, Peter. "Modely úrokovej miery a ocenenie úrokových opcií." Master's thesis, Vysoká škola ekonomická v Praze, 2010. http://www.nusl.cz/ntk/nusl-18693.
Full textCoelho, Afonso Valente Ricardo de Seabra. "American options and the Black-Scholes Model." Master's thesis, Instituto Superior de Economia e Gestão, 2020. http://hdl.handle.net/10400.5/20735.
Full textOs problemas de apreçamento de opções têm sido um dos principais assuntos de em Matemática Financeira, desde a criação desse conceito nos anos 70. Mais especificamente, as opções americanas são de grande interesse nesta área do conhecimento porque são matematicamente muito mais complexas do que as opções europeias padrão e o modelo de Black-Scholes não fornece, na maioria dos casos, uma fórmula explícita para a determinação do preço deste tipo de opções. Nesta dissertação, mostramos como o estudo de opções americanas conduz à análise de problemas de fronteira livre devido à possibilidade de exercício antecipado, onde nosso principal objetivo é encontrar o preço de exercício ótimo. Também apresentamos a reformulação do problema em termos de um problema de complementaridade linear e de desigualdade variacional parabólica. Além disso, também abordamos a caracterização probabilística das opções americanas com base no conceito de tempos de paragem ótima. Essas formulações, aqui tratadas em termos analíticos ou probabilísticos, podem ser muito úteis na aplicação de métodos numéricos ao problema de precificação de opções do estilo americano, uma vez que, na maioria dos casos, é quase impossível encontrar soluções explícitas. Além disso, utilizamos o Método da Árvore Binomial, que é um método numérico muito simples do ponto de vista matemático, para ilustrar alguns aspectos da teoria estudada ao longo desta tese e para comparar as opções americanas com as opções europeias e bermudas, por meio de alguns exemplos numéricos.
Option pricing problems have been one of the main focuses in the field of Mathematical Finance since the creation of this concept in the 1970s. More specifically, American options are of great interest in this area of knowledge because they are much more complex mathematically than the standard European options and the Black-Scholes model cannot give an explicit formula to value this style options in most cases. In this dissertation, we show how pricing American options leads to free boundary problems because of the possibility of early exercise, where our main goal is to find the optimal exercise price. We also present how to reformulate the problem into a linear complementarity problem and a parabolic variational inequality. Moreover, we also address the probabilistic characterization of American options based on the concept of stopping times. These formulations, here viewed from the analytical and probabilistic point of view, can be very useful for applying numerical methods to the problem of pricing American style options since, in most cases, it is almost impossible to find explicit solutions. Furthermore, we use the Binomial Tree Method, which is a very simple numerical method from the mathematical point of view, to illustrate some aspects of the theory studied throughout this thesis and to compare American options with European and Bermudan Options, by means of a few numerical examples.
info:eu-repo/semantics/publishedVersion
Bock, Alona Verfasser], and Ralf [Akademischer Betreuer] [Korn. "Edgeworth Expansions for Binomial Trees / Alona Bock. Betreuer: Ralf Korn." Kaiserslautern : Technische Universität Kaiserslautern, 2014. http://d-nb.info/1058104284/34.
Full textBooks on the topic "Binomial tree"
Jr, Gerald W. Buetow, and James Sochacki. Term-Structure Models Using Binomial Trees. The Research Foundation of AIMR (CFA Institute), 2001.
Find full textGrijalva Endara, Ana de las Mercedes, Henry Xavier Ponce Solórzano, María Elena Jiménez Heinert, William Johnny Jimenez Jimenez, Laura Leonor Valdez López, María Matilde Duque Mariño, Jeniffer Lucía Mora Loor, and María del Carmen Villacrés Cevallos. La Educación Superior: concepciones para su perfeccionamiento. Mawil Publicaciones de Ecuador, 2020, 2020. http://dx.doi.org/10.26820/978-9942-826-45-9.
Full textBook chapters on the topic "Binomial tree"
Choe, Geon Ho. "The Binomial Tree Method for Option Pricing." In Universitext, 239–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25589-7_14.
Full textLee, Cheng-Few, John Lee, Jow-Ran Chang, and Tzu Tai. "Binomial Option Pricing Model Decision Tree Approach." In Essentials of Excel, Excel VBA, SAS and Minitab for Statistical and Financial Analyses, 801–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-38867-0_25.
Full textCampolieti, Giuseppe, and Roman N. Makarov. "Replication and Pricing in the Binomial Tree Model." In Financial Mathematics, 331–96. 2nd ed. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9780429503665-7.
Full textArnold, Tom. "Implementing an NPV-Embedded Binomial Tree from an NPV Analysis." In A Pragmatic Guide to Real Options, 145–66. New York: Palgrave Macmillan US, 2014. http://dx.doi.org/10.1057/9781137391162_7.
Full textArnold, Tom. "Applying More Real Options Analysis into an NPV-Embedded Binomial Tree." In A Pragmatic Guide to Real Options, 117–43. New York: Palgrave Macmillan US, 2014. http://dx.doi.org/10.1057/9781137391162_6.
Full textSkupien, Z. "From Tree Path-Factors and Doubly Exponential Sequences to a Binomial Inequality." In Topics in Combinatorics and Graph Theory, 595–603. Heidelberg: Physica-Verlag HD, 1990. http://dx.doi.org/10.1007/978-3-642-46908-4_68.
Full textLee, John. "Binomial OPM, Black-Scholes OPM and Their Relationship: Decision Tree and Microsoft Excel Approach." In Handbook of Quantitative Finance and Risk Management, 617–36. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-0-387-77117-5_42.
Full textMishra, Rahul, Dharavath Ramesh, Damodar Reddy Edla, and Manoj Kumar Sah. "Binary Binomial Tree Based Secure and Efficient Electronic Healthcare Record Storage in Cloud Environment." In Innovations for Community Services, 173–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37484-6_10.
Full textLee, John C. "Binomial OPM, Black–Scholes OPM, and Their Relationship: Decision Tree and Microsoft Excel Approach." In Handbook of Financial Econometrics and Statistics, 1025–59. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7750-1_37.
Full textLi, Yamin, Shietung Peng, and Wanming Chu. "Binomial-Tree Fault Tolerant Routing in Dual-Cubes with Large Number of Faulty Nodes." In Computational and Information Science, 51–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30497-5_9.
Full textConference papers on the topic "Binomial tree"
Ming, Zeng, Tian Kuo, and Yan Fan. "Transmission investment decision analysis using fuzzy binomial tree." In 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2010. http://dx.doi.org/10.1109/fskd.2010.5569190.
Full textWu, Qin, and Ru-xiang Wei. "Research of military software pricing based on binomial tree method." In 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccsit.2010.5564676.
Full textYuan, Quan, Baojun Bian, and Guiqiu Yuan. "Binomial Tree Method for American Options in a Regime Switching Model." In 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2008. http://dx.doi.org/10.1109/wicom.2008.2312.
Full textTargiel, Krzysztof S. "Dynamic programming in the binomial tree structures for real options analysis." In 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). IEEE, 2015. http://dx.doi.org/10.1109/icmsao.2015.7152225.
Full textWu, Qin, Min Wu, and Yunzhou Sun. "Analysis of software pricing based on binomial tree option pricing model." In 2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS). IEEE, 2020. http://dx.doi.org/10.1109/ispds51347.2020.00066.
Full textLye, Koh Hock, Teh Su Yean, and Kew Lee Ming. "Modified Binomial Tree and Market Efficiency: The Case for KLCI and LTCM." In 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery. IEEE, 2009. http://dx.doi.org/10.1109/fskd.2009.760.
Full textWang, Jin-feng, Yan An, Li-jie Feng, and Xin Wang. "Analysis on coal mine investment decision based on binomial tree pricing model." In EM2010). IEEE, 2010. http://dx.doi.org/10.1109/icieem.2010.5646405.
Full textZhao, Xu. "Investment Evaluation of Land Expropriation Based on the Fuzzy Binomial Tree Model." In 2014 International Conference on Construction and Real Estate Management. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413777.181.
Full textTavakkolnia, Amin. "A binomial tree valuation approach for compound real options with fuzzy phase-specific volatility." In 2016 12th International Conference on Industrial Engineering (ICIE). IEEE, 2016. http://dx.doi.org/10.1109/induseng.2016.7519351.
Full textNing, Zhe, Yan Wang, and Yingli Huang. "European Option Binomial Tree Method in the Carbon Trading Exchange on the Condition "Carbon Finance"." In 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2011. http://dx.doi.org/10.1109/appeec.2011.5749040.
Full text