Journal articles on the topic 'Bio-based polyols'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Bio-based polyols.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kirpluks, Mikelis, Edgars Vanags, Arnis Abolins, Slawomir Michalowski, Anda Fridrihsone, and Ugis Cabulis. "High Functionality Bio-Polyols from Tall Oil and Rigid Polyurethane Foams Formulated Solely Using Bio-Polyols." Materials 13, no. 8 (2020): 1985. http://dx.doi.org/10.3390/ma13081985.
Full textProciak, Aleksander, Michał Kucała, Maria Kurańska, and Mateusz Barczewski. "Effect of Selected Bio-Components on the Cell Structure and Properties of Rigid Polyurethane Foams." Polymers 15, no. 18 (2023): 3660. http://dx.doi.org/10.3390/polym15183660.
Full textLee, Joo Hyung, Seong Hun Kim, and Kyung Wha Oh. "Bio-Based Polyurethane Foams with Castor Oil Based Multifunctional Polyols for Improved Compressive Properties." Polymers 13, no. 4 (2021): 576. http://dx.doi.org/10.3390/polym13040576.
Full textFridrihsone, Anda, Arnis Abolins, and Mikelis Kirpluks. "Screening Life Cycle Assessment of Tall Oil-Based Polyols Suitable for Rigid Polyurethane Foams." Energies 13, no. 20 (2020): 5249. http://dx.doi.org/10.3390/en13205249.
Full textEmeka-Chioke, Eucharia Agborma, Prisca Ifeoma Udeozo, Okechukwu Paul Nsude, Theresa Orieiji Uchechukwu, Kingsley John Orie, and Okoro Ogbobe. "Synthesis of Bio-based Polyol Via Epoxidation and Hydroxylation of Shea Butter Fats." Journal of Applied Chemical Science International 14, no. 2 (2023): 28–36. http://dx.doi.org/10.56557/jacsi/2023/v14i28487.
Full textGosz, Kamila, Agnieszka Tercjak, Adam Olszewski, Józef Haponiuk, and Łukasz Piszczyk. "Bio-Based Polyurethane Networks Derived from Liquefied Sawdust." Materials 14, no. 11 (2021): 3138. http://dx.doi.org/10.3390/ma14113138.
Full textStaccioli, Leo, dos Santos Andreia Maria Rodrigues, Jose Gallego, et al. "A life cycle assessment model to evaluate the environmental sustainability of lignin-based polyols." Sustainable Production and Consumption 52 (November 28, 2024): 624–39. https://doi.org/10.1016/j.spc.2025.01.002.
Full textMoyano-Vallejo, Alejandra, María Pilar Carbonell-Blasco, Carlota Hernández-Fernández, Francisca Arán-Aís, María Dolores Romero-Sánchez, and Elena Orgilés-Calpena. "Enhanced Green Strength in a Polycarbonate Polyol-Based Reactive Polyurethane Hot-Melt Adhesive." Polymers 16, no. 23 (2024): 3356. http://dx.doi.org/10.3390/polym16233356.
Full textIvdre, Aiga, Mikelis Kirpluks, Arnis Abolins, et al. "Rigid Polyurethane Foams’ Development and Optimization from Polyols Based on Depolymerized Suberin and Tall Oil Fatty Acids." Polymers 16, no. 7 (2024): 942. http://dx.doi.org/10.3390/polym16070942.
Full textKurańska, Maria, Milena Leszczyńska, Elżbieta Malewska, Aleksander Prociak, and Joanna Ryszkowska. "Implementation of Circular Economy Principles in the Synthesis of Polyurethane Foams." Polymers 12, no. 9 (2020): 2068. http://dx.doi.org/10.3390/polym12092068.
Full textČuk, Nataša, Miha Steinbücher, Nejc Vidmar, Martin Ocepek, and Peter Venturini. "Fully Bio-Based and Solvent-Free Polyester Polyol for Two-Component Polyurethane Coatings." Coatings 13, no. 10 (2023): 1779. http://dx.doi.org/10.3390/coatings13101779.
Full textRizikovs, Janis, Daniela Godina, Raimonds Makars, et al. "Suberinic Acids as a Potential Feedstock for Polyol Synthesis: Separation and Characterization." Polymers 13, no. 24 (2021): 4380. http://dx.doi.org/10.3390/polym13244380.
Full textBorowicz, Marcin, Marek Isbrandt, Joanna Paciorek-Sadowska, and Paweł Sander. "Comparing the Properties of Bio-Polyols Based on White Mustard (Sinapis alba) Oil Containing Boron and Sulfur Atoms Obtained by Various Methods and Checking Their Influence on the Flammability of Rigid Polyurethane/Polyisocyanurate Foams." Materials 16, no. 9 (2023): 3401. http://dx.doi.org/10.3390/ma16093401.
Full textJi, Dong, Zheng Fang, Zhi Dong Wan, et al. "Rigid Polyurethane Foam Based on Modified Soybean Oil." Advanced Materials Research 724-725 (August 2013): 1681–84. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.1681.
Full textYao, Lyu, Azizah Baharum, Lih Jiun Yu, Zibo Yan, and Khairiah Haji Badri. "A Vegetable-Oil-Based Polyurethane Coating for Controlled Nutrient Release: A Review." Coatings 15, no. 6 (2025): 665. https://doi.org/10.3390/coatings15060665.
Full textIonescu, Mihail, Xianmei Wan, and Zoran S. Petrović. "Bio‐Based, Self‐Condensed Polyols." European Journal of Lipid Science and Technology 122, no. 7 (2020): 2000033. http://dx.doi.org/10.1002/ejlt.202000033.
Full textCoccia, Francesca, Liudmyla Gryshchuk, Pierluigi Moimare, et al. "Chemically Functionalized Cellulose Nanocrystals as Reactive Filler in Bio-Based Polyurethane Foams." Polymers 13, no. 15 (2021): 2556. http://dx.doi.org/10.3390/polym13152556.
Full textCifarelli, Angelica, Laura Boggioni, Adriano Vignali, Incoronata Tritto, Fabio Bertini, and Simona Losio. "Flexible Polyurethane Foams from Epoxidized Vegetable Oils and a Bio-Based Diisocyanate." Polymers 13, no. 4 (2021): 612. http://dx.doi.org/10.3390/polym13040612.
Full textSonnabend, Maresa, Suzanne G. Aubin, Annette M. Schmidt, and Marc C. Leimenstoll. "Sophorolipid-Based Oligomers as Polyol Components for Polyurethane Systems." Polymers 13, no. 12 (2021): 2001. http://dx.doi.org/10.3390/polym13122001.
Full textSantos, Marta, Marcos Mariz, Igor Tiago, Susana Alarico, and Paula Ferreira. "Bio-Based Polyurethane Foams: Feedstocks, Synthesis, and Applications." Biomolecules 15, no. 5 (2025): 680. https://doi.org/10.3390/biom15050680.
Full textRajput, Bhausaheb S., Thien An Phung Hai, and Michael D. Burkart. "High Bio-Content Thermoplastic Polyurethanes from Azelaic Acid." Molecules 27, no. 15 (2022): 4885. http://dx.doi.org/10.3390/molecules27154885.
Full textMorales-Cerrada, Roberto, Romain Tavernier, and Sylvain Caillol. "Fully Bio-Based Thermosetting Polyurethanes from Bio-Based Polyols and Isocyanates." Polymers 13, no. 8 (2021): 1255. http://dx.doi.org/10.3390/polym13081255.
Full textFontana, Dario, Federica Recupido, Giuseppe Cesare Lama, et al. "Effect of Different Methods to Synthesize Polyol-Grafted-Cellulose Nanocrystals as Inter-Active Filler in Bio-Based Polyurethane Foams." Polymers 15, no. 4 (2023): 923. http://dx.doi.org/10.3390/polym15040923.
Full textNiesiobędzka, Joanna, Ewa Głowińska, and Janusz Datta. "Eco-Friendly Ether and Ester-Urethane Prepolymer: Structure, Processing and Properties." International Journal of Molecular Sciences 22, no. 22 (2021): 12207. http://dx.doi.org/10.3390/ijms222212207.
Full textKurańska, Maria, Hynek Beneš, Kamila Sałasińska, Aleksander Prociak, Elżbieta Malewska, and Krzysztof Polaczek. "Development and Characterization of “Green Open-Cell Polyurethane Foams” with Reduced Flammability." Materials 13, no. 23 (2020): 5459. http://dx.doi.org/10.3390/ma13235459.
Full textPaciorek-Sadowska, Joanna, Marcin Borowicz, and Marek Isbrandt. "New Poly(lactide-urethane-isocyanurate) Foams Based on Bio-Polylactide Waste." Polymers 11, no. 3 (2019): 481. http://dx.doi.org/10.3390/polym11030481.
Full textKitisatorn, Wanlop, and Pornlada Pongmuksuwan. "Development of Palm Oil-Based Polyol for the Environmentally Sustainable Production of Polyurethane Foam." Materials Science Forum 1142 (December 23, 2024): 11–16. https://doi.org/10.4028/p-xy3fld.
Full textUram, Katarzyna, Milena Leszczyńska, Aleksander Prociak, et al. "Polyurethane Composite Foams Synthesized Using Bio-Polyols and Cellulose Filler." Materials 14, no. 13 (2021): 3474. http://dx.doi.org/10.3390/ma14133474.
Full textMendis, S. Sameera D. "Synthesis, Characterization of Bio-based Polyol and Assess the Effectiveness of Bio-based Polyurethane Direct-to-metal Coating System." International Journal of Research and Innovation in Applied Science VIII, no. VI (2023): 243–55. http://dx.doi.org/10.51584/ijrias.2023.8625.
Full textEkkaphan, Paweena, Sarintip Sooksai, Nuanphun Chantarasiri, and Amorn Petsom. "Bio-Based Polyols from Seed Oils for Water-Blown Rigid Polyurethane Foam Preparation." International Journal of Polymer Science 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/4909857.
Full textWang, Qingyue, and Nuerjiamali Tuohedi. "Polyurethane Foams and Bio-Polyols from Liquefied Cotton Stalk Agricultural Waste." Sustainability 12, no. 10 (2020): 4214. http://dx.doi.org/10.3390/su12104214.
Full textJabber, Lady Jaharah Y., Jessalyn C. Grumo, Arnold C. Alguno, Arnold A. Lubguban, and Rey Y. Capangpangan. "The Effect of Cellulose Fibers on the Formation of Petroleum-Based and Bio-Based Polyurethane Foams." Key Engineering Materials 803 (May 2019): 371–76. http://dx.doi.org/10.4028/www.scientific.net/kem.803.371.
Full textAlfeche, Fortia Louise Adeliene M., Roger G. Dingcong, Leanne Christie C. Mendija, et al. "In Silico Investigation of the Impact of Reaction Kinetics on the Physico-Mechanical Properties of Coconut-Oil-Based Rigid Polyurethane Foam." Sustainability 15, no. 9 (2023): 7148. http://dx.doi.org/10.3390/su15097148.
Full textSonjui, Tatcha, and Nantana Jiratumnukul. "Physical Properties of Bio-Based Polyurethane Foams from Bio-Based Succinate Polyols." Cellular Polymers 34, no. 6 (2015): 353–66. http://dx.doi.org/10.1177/026248931503400604.
Full textPang, Minhui, Shuqi Dong, Jianguo Zhao, Hongyan Li, Dongsheng Liu, and Lixia Li. "Preparation of High Bio-Content Polyurethane Coatings from Co-Liquefaction of Cellulosic Biomass and Starch for Controlled Release Fertilizers." Coatings 13, no. 1 (2023): 148. http://dx.doi.org/10.3390/coatings13010148.
Full textMendija, Leanne Christie C., Roger G. Dingcong, Fortia Louise Adeliene M. Alfeche, et al. "Elucidating the Impact of Polyol Functional Moieties on Exothermic Poly(urethane-urea) Polymerization: A Thermo-Kinetic Simulation Approach." Sustainability 16, no. 11 (2024): 4587. http://dx.doi.org/10.3390/su16114587.
Full textShin, Se-Ra, and Dai-Soo Lee. "Thermally Healable Polyurethane Elastomers Based on Biomass Polyester Polyol from Isosorbide and Dimer Fatty Acid." Polymers 16, no. 24 (2024): 3571. https://doi.org/10.3390/polym16243571.
Full textCzifrák, Katalin, Csilla Lakatos, Csaba Cserháti, Gergő Vecsei, Miklós Zsuga, and Sándor Kéki. "Bio-Based Polyurethane Networks Containing Sunflower Oil Based Polyols." International Journal of Molecular Sciences 25, no. 13 (2024): 7300. http://dx.doi.org/10.3390/ijms25137300.
Full textAndrade Breves, Rodolfo, Daniel Ajiola, Roseany de Vasconcelos Vieira Lopes, et al. "Bio-Based Polyurethane Composites from Macauba Kernel Oil: Part 1, Matrix Synthesis from Glycerol-Based Polyol." Journal of Composites Science 8, no. 9 (2024): 363. http://dx.doi.org/10.3390/jcs8090363.
Full textPomilovskis, Ralfs, Inese Mierina, Hynek Beneš, et al. "The Synthesis of Bio-Based Michael Donors from Tall Oil Fatty Acids for Polymer Development." Polymers 14, no. 19 (2022): 4107. http://dx.doi.org/10.3390/polym14194107.
Full textCappello, Miriam, Sara Filippi, Damiano Rossi, et al. "Waste-Cooking-Oil-Derived Polyols to Produce New Sustainable Rigid Polyurethane Foams." Sustainability 16, no. 21 (2024): 9456. http://dx.doi.org/10.3390/su16219456.
Full textDingcong, Roger G., Daryl B. Radjac, Fortia Louise Adeliene M. Alfeche, et al. "An Iterative Method for the Simulation of Rice Straw-Based Polyol Hydroxyl Moieties." Sustainability 15, no. 15 (2023): 12082. http://dx.doi.org/10.3390/su151512082.
Full textSarim, Muntajab, Mir Mohammad Alavi Nikje, and Maryam Dargahi. "Preparation and Characterization of Polyurethane Rigid Foam Nanocomposites from Used Cooking Oil and Perlite." International Journal of Polymer Science 2023 (April 11, 2023): 1–13. http://dx.doi.org/10.1155/2023/7185367.
Full textArshanitsa, Alexandr, Matiss Pals, Laima Vevere, Lilija Jashina, and Oskars Bikovens. "The Complex Valorization of Black Alder Bark Biomass in Compositions of Rigid Polyurethane Foam." Materials 18, no. 1 (2024): 50. https://doi.org/10.3390/ma18010050.
Full textVenkatesh, D., and V. Jaisankar. "Synthesis and characterization of bio-polyurethanes prepared using certain bio-based polyols." Materials Today: Proceedings 14 (2019): 482–91. http://dx.doi.org/10.1016/j.matpr.2019.04.171.
Full textXue, Bai-Liang, Pan-Li Huang, Yong-Chang Sun, Xin-Ping Li, and Run-Cang Sun. "Hydrolytic depolymerization of corncob lignin in the view of a bio-based rigid polyurethane foam synthesis." RSC Advances 7, no. 10 (2017): 6123–30. http://dx.doi.org/10.1039/c6ra26318f.
Full textTshibalonza, Nelly Ntumba, and Jean-Christophe M. Monbaliu. "The deoxydehydration (DODH) reaction: a versatile technology for accessing olefins from bio-based polyols." Green Chemistry 22, no. 15 (2020): 4801–48. http://dx.doi.org/10.1039/d0gc00689k.
Full textGOPALAKRISHNAN, S., and T. LINDA FERNANDO. "Influence of polyols on properties of bio-based polyurethanes." Bulletin of Materials Science 35, no. 2 (2012): 243–51. http://dx.doi.org/10.1007/s12034-012-0279-5.
Full textPals, Matiss, Jevgenija Ponomarenko, Maris Lauberts, Lilija Jashina, Vilhelmine Jurkjane, and Alexandr Arshanitsa. "Unveiling the Potential of Plant-Derived Diarylheptanoids and Their Derivatives in Bio-Based Polyurethane Compositions." Plants 14, no. 5 (2025): 775. https://doi.org/10.3390/plants14050775.
Full textHan, Biao, Yongming Xing, and Chao Li. "Investigation on Dynamic and Static Modulus and Creep of Bio-Based Polyurethane-Modified Asphalt Mixture." Polymers 17, no. 3 (2025): 359. https://doi.org/10.3390/polym17030359.
Full text