Dissertations / Theses on the topic 'Bio-oil'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Bio-oil.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sakaguchi, Masakazu. "Gasification of bio-oil and bio-oil/char slurry." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/23347.
Full textZhang, Mingming. "Properties of bio-oil based fuel mixtures: biochar/bio-oil slurry fuels and glycerol/bio-oil fuel blends." Thesis, Curtin University, 2015. http://hdl.handle.net/20.500.11937/1825.
Full textOrtiz-Toral, Pedro J. "Steam reforming of bio-oil effect of bio-oil composition and stability /." [Ames, Iowa : Iowa State University], 2008.
Find full textPollard, Anthony Joseph Sherwood. "Comparison of bio-oil produced in a fractionated bio-oil collection system." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1474690.
Full textAtiku, Farooq Abubakar. "Combustion of bio-oil and heavy fuel oil." Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/12179/.
Full textChan, Jacky. "Ethanol production from bio-oil." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/14730.
Full textLifita, Nguve Tande. "Autothermal reforming of bio-oil model compounds." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/20004/.
Full textCorrell, David. "Optimized landscape plans for bio-oil production." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1464191.
Full textLiu, Kai. "Catalytic hydrodeoxygenation of bio-oil and model compounds." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/51555.
Full textThanamongkollit, Narin. "Modification of Tung Oil for Bio-Based Coating." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1218080747.
Full textWauts, Johann André. "Catalytic microwave pyrolysis to produce upgraded bio-oil." Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/61344.
Full textDissertation (MEng)--University of Pretoria, 2017.
Chemical Engineering
MEng
Unrestricted
Supanchaiyamat, Nontipa. "Bio-based thermoset composites from epoxidised linseed oil." Thesis, University of York, 2012. http://etheses.whiterose.ac.uk/3265/.
Full textWang, Yi. "Transformation of bio-oil during pyrolysis and reforming." Thesis, Curtin University, 2012. http://hdl.handle.net/20.500.11937/676.
Full textKadarwati, Sri. "Coke Formation during the Hydrotreatment of Bio-oil." Thesis, Curtin University, 2016. http://hdl.handle.net/20.500.11937/51889.
Full textWang, Hongqi. "Bio-oil Upgrading via High-Pressure Reactive Distillation." Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/82786.
Full textRückert, Marcel, Katharina Schmitz, and Hubertus Murrenhoff. "Comparison of Heat-Properties and its Implications between Standard-Oil and Bio-Oil." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-200109.
Full textLiu, Peiyan. "Improvement of bio-oil stability in wood pyrolysis process." Thesis, Aston University, 2003. http://publications.aston.ac.uk/10065/.
Full textPattiya, Adisak. "Catalytic pyrolysis of agricultural residues for bio-oil production." Thesis, Aston University, 2007. http://publications.aston.ac.uk/9804/.
Full textWikberg, Elena. "Catalytic Upgrading of Fast Pyrolysis Bio-oil Using Zeolites." Thesis, KTH, Kraft- och värmeteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255683.
Full textSnabb pyrolys bio-olja betraktas som en möjlig källa för produktion av flytande biobränslen och biokemikalier som möjliggör den nödvändiga övergången till ett förnybart energisystem. I detta examensarbete studeras uppgraderingen av snabba pyrolys bio-oljor med FCC MAT-enheten vid RISE ETC i Piteå, Sverige. Studien är inriktad på att utvärdera processen inom ramen för produktion av mervärdesprodukter inklusive petrokemiska material, såsom propen och bensen, toluen, xylen (BTX) och flytande biobränslen. Utvärderingen av processen baserades på det uppgraderade produktutbytet och kvaliteten som kännetecknades av den kemiska sammansättningen av uppsamlade vätske- och gasprover med avseende på flera påverkande faktorer inklusive bio-oljans ursprung, tillsättningen av ZSM-5 zeolit till den kommersiella katalysatorn och FCC-driftparametrar, såsom reaktionstemperatur, förhållandet katalysator till olja (CTO) och ZSM-5 zeolitkatalysatorers surhet. Flera analysmetoder användes för karaktärisering av både råmaterial och produkter, inklusive GC MS-analys och bestämning av kokpunkternas fördelning av de flytande produkterna genom simulerad destillation. Resultaten av detta arbete visade att processen för uppgradering av ren pyrolys bio-olja var utmanande och kräver ytterligare studier för att utveckla en praktisk driftsprocess. Medan processen för sam-matning av pyrolys bio-olja med kommersiell FCC-fossil råvara bestämdes vara genomförbar vid industriellt relevanta förhållanden. Katalytisk omvandling av sam-matad pyrolys bio-olja i förhållandet 20/80 resulterade i liknande petrokemiska produkter som kommersiellt fossilt råmaterial med full deoxygenering av pyrolys bio-oljan. Resultaten visade dessutom att förhållanden med hög katalytisk reaktionsaktivitet och hög reaktionstemperatur tillsammans med användning av ZSM-5-zeolit var gynnsamma för att maximera produktionen av mervärdesprodukter såsom BTX- och biobränslen.
Wu, Liping. "Acid-catalysed reactions of bio-oil in liquid phase." Thesis, Curtin University, 2016. http://hdl.handle.net/20.500.11937/48903.
Full textMaqbool, Wahab. "Supercritical carbon dioxide extraction and fractionation of bio-oil." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134415/1/Wahab_Maqbool_Thesis.pdf.
Full textMohammed, Isah Yakub. "Pyrolysis of Napier grass to bio-oil and catalytic upgrading to high grade bio-fuel." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39572/.
Full textSanna, Aimaro. "Bio-oil generation and upgrading using catalysts towards its integration into a crude-oil refinery." Thesis, University of Nottingham, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.556101.
Full textBonnaillie, Laetitia Mary. "Bio-based polymeric foam from soybean oil and carbon dioxide." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 258 p, 2008. http://proquest.umi.com/pqdweb?did=1456290941&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textYu, Joyleene Ruth. "Bio-oil upgrading through biodiesel emulsification and catalytic vapour cracking." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/46841.
Full textAdekunle, Kayode. "Bio-based Composites from Soybean Oil Thermosets and Natural Fibers." Doctoral thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3587.
Full textAkademisk avhandling för avläggande av teknologie doktorsexamen vid Chalmers Tekniska högskola försvaras vid offentlig disputation, den 6:e maj, Chalmers, KE-salen, Kemigården 4, Göteborg, kl. 10.00.
Niroula, Varsha. "HYDROTHERMAL LIQUEFACTION OF SWEET SORGHUM BAGASSE FOR BIO-OIL PRODUCTION." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/theses/2301.
Full textGerhauser, Heiko. "CFD applied to the fast pyrolysis of biomass in fluidised beds." Thesis, Aston University, 2003. http://publications.aston.ac.uk/9645/.
Full textÁgústsson, Arnar. "Fish oil in Icelandic road constructions. : A case study of bituminous binder mixtures modified with bio-oil." Thesis, KTH, Väg- och banteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-149535.
Full textSekar, Ananda Kumaran. "EFFECT OF SUPERCRITICAL WATER TREATMENT ON THE COMPOSITION OF BIO-OIL." MSSTATE, 2008. http://sun.library.msstate.edu/ETD-db/theses/available/etd-08052008-124234/.
Full textOmais, Badaoui. "Oxigen speciation in coal-derived liquids and bio-oil upgrading products." Paris 6, 2012. http://www.theses.fr/2012PA066262.
Full textDans l'optique de leur valorisation en carburants alternatifs, il s'avère important d'acquérir une connaissance plus étendue des liquéfiats de charbon et des huiles de biomasse, notamment d'élucider la composition chimique des oxygénés présents en relativement forte concentration. L'objectif de cette thèse est donc de développer des systèmes analytiques résolutifs permettant de séparer les molécules oxygénées présentes dans ces produits. L'analyse des liquéfiats de charbon (0,5-5%m/m O) a été permise par la chromatographie en phase gazeuse bidimensionnelle et a mené à une quantification inédite des alcools et des phénols. Les autres familles chimiques oxygénées ont été quantifiées par une approche analytique multi-technique faisant appel à la spectrométrie de masse très haute résolution (FT-ICR/MS), à la spectroscopie RMN et à la spectroscopie UV-visible. Au total, 70%m/m et 86%m/m de l'oxygène élémentaire a été quantifié. L'optimisation des conditions en GC×GC a aussi permis de quantifier 60%m/m de l'oxygène élémentaire présent dans les bio-huiles upgradées (10-20%m/m O), mais cette technique reste tout de même limitée en termes de résolution face à la complexité de ces huiles. Une troisième dimension de séparation par chromatographie en fluide supercritique a été couplée en ligne, en amont de l'analyse par GCxGC (SFC-GCxGC). Ce système permet une analyse quantitative détaillée des phénols, benzènediols, guaiacols et naphthols dans ce type de matrice. A travers l'analyse de ces deux produits, des considérations théoriques sur les notions d'orthogonalité et sur les mécanismes de rétention régissant les séparations ont été déduites
Abu, Bakar Muhammad. "Catalytic intermediate pyrolysis of Brunei rice husk for bio-oil production." Thesis, Aston University, 2013. http://publications.aston.ac.uk/20899/.
Full textTao, Yongwen. "Catalytic transformation of crude bio-oil to valuable chemicals and fuels." Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/15906.
Full textKim, Kyungduk. "Novel Nanocatalyst for the Selective Hydrogenation of Bio-Oil Model Compounds." Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16353.
Full textChen, Mengmeng. "Hydrodeoxygenation of bio-oil model compounds on supported noble metal catalysts." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/9398.
Full textRazzaque, Md Abdur. "Development and assessment of a fast pyrolysis reactor for bio-oil, syngas and bio-char production from biomass residues." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/32706/.
Full textJahangiri, Hessam. "Clean catalytic technologies for upgrading bio-oil to produce fuels and chemicals." Thesis, Cranfield University, 2016. http://dspace.lib.cranfield.ac.uk/handle/1826/11809.
Full textMatayeva, Aisha <1990>. "Development of innovative processes and catalysts for the valorisation of Bio-Oil." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amsdottorato.unibo.it/8785/1/thesis_final_Bologna-resubmission%20Matayeva.pdf.
Full textPietrzyk, Julian Darius. "Use of microbial consortia for conversion of biomass pyrolysis liquids into value-added products." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31562.
Full textAlves, Margot. "Carbon dioxide and vegetable oil for the synthesis of bio-based polymer precursors." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0129/document.
Full textAlthough it is a thermodynamically and kinetically stable molecule, carbon dioxide can beconverted into five- and six-membered cyclic carbonates by coupling with epoxides or oxetanes, respectively, using appropriate catalysts. Cyclic carbonates are used as green solvents, electrolytes for Liion batteries or intermediates for the synthesis of polymers. However, the catalytic performance must be further enhanced in particular for the coupling of CO2 with epoxidized vegetable oils or oxetanes. In this context, we developed a new highly efficient bicomponent homogeneous organocatalyst composed of anammonium salt as the catalyst and fluorinated single or double hydrogen bond donors as co-catalysts. First,a screening of onium-based catalysts and hydrogen-bond donors was performed. Performances of thecatalysts and optimization of the reaction was realized through detailed kinetics studies using in-situ FTIR/Raman spectroscopy under pressure. We demonstrated that fluorinated alcohols showed unexpected co-catalytic activity due to synergisms between the onium salt and fluorinated co-catalysts enabling the fast and selective addition of CO2 on to model epoxides and epoxidized vegetable oils under solvent-free and mild experimental conditions. The use of this powerful dual catalyst was then extended to the first organocatalytic coupling of CO2 with less reactive oxetanes to produce hydroxyl telechelic oligocarbonates that were used asprecursor of CO2-based polyurethanes by chain-extension with a diisocyanate. In addition, a fine comprehension of the mechanisms was investigated by DFT calculations highlighting that the co-catalytic performance of the onium salt/fluorinated alcohol binary catalyst arose from the strong stabilization of the intermediates and transitions states by hydrogen-bonding. To date, through comparative studies, we evidenced that this new catalyst is one
Menon, Akshay. "Partial hydrodeoxygenation of a heavy bio-based oil fraction : (A technical feasibility study)." Thesis, KTH, Kemiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288988.
Full textGreenhalf, Charles. "Thermochemical characterisation of various biomass feedstock and bio-oil generated by fast pyrolysis." Thesis, Aston University, 2014. http://publications.aston.ac.uk/20906/.
Full textKalgo, Abba Sani. "The development and optimisation of a fast pyrolysis process for bio-oil production." Thesis, Aston University, 2011. http://publications.aston.ac.uk/15808/.
Full textSaithai, Pimchanok. "Synthesis and characterization of bio-based copolymers from soybean oil and methyl methacrylate." Thesis, Montpellier, SupAgro, 2013. http://www.theses.fr/2013NSAM0008.
Full textThe aim of this research to study the effect the production method and the formulation of transparent soybean oil-based bioplastics on their structure and their thermal and mechanical properties. We focused on epoxidized soybean oil (ESO), that was acrylated and copolymerized methyl methacrylate (MMA) with and without titanium dioxide (TiO2). Two methods of ESO preparation were compared. The first used chemical epoxidation in the presence of H2O2 and formic acid, using sulfuric acid as a catalyst to produce peracids as strong oxydants for the epoxidation. The second one was a chemo-enzymatic method where the peracids were generated in mild conditions by an enzyme in the presence of H2O2. Two types of lipases were selected as biocatalysts for the chemo-enzymatic epoxidation: Novozyme®435 and a non-commercial lipase/acyltransferase (CpLIP2). The reaction was controlled so as to obtain different degrees of epoxidation (DOE), i.e. 50+/-3 mol% and 75+/-3 mol%, from both methods. Acrylated ESO (AESO) was chemically synthesized by acrylation of ESO and acrylic acid. Then AESO was copolymerized with MMA and cured to form a rigid polymer using 1 wt% of benzoyl peroxide as a free radical initiator. A nanocomposite was prepared by blending AESO-co-PMMA with 0.1-0.2 wt% nano-TiO2 (particle size 2-5 nm). The effect of degree of acrylation, MMA content and titanium dioxide content on structural, tensile and thermal properties of the obtained bioplastics were studied using Fourier transform infrared spectrometer (FTIR), 1D and 2D NMR, dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA) and mechanical properties determination
Wang, Meng. "Steam reforming of model compounds of bio-oil with and without CO₂ sorbent." HKBU Institutional Repository, 2014. https://repository.hkbu.edu.hk/etd_oa/212.
Full textUmar, Mohammed Ibrahim. "Screening environmental Pseudomonads for characteristics suitable for a bio-engineered oil remediation agent." Thesis, Abertay University, 2016. https://rke.abertay.ac.uk/en/studentTheses/fa731d6c-bbb6-4698-88aa-5405234c3deb.
Full textCosta, da Cruz Ana Rita. "Compositional and kinetic modeling of bio-oil from fast pyrolysis from lignocellulosic biomass." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1006/document.
Full textFast pyrolysis is one of the thermochemical conversion routes that enable the transformation of solid lignocellulosic biomass into liquid bio-oils. These complex mixtures are different from oil fractions and cannot be directly integrated into existing petroleum upgrading facilities. Indeed, because of their high levels of oxygen compounds, bio-oils require a dedicated pre-refining step, such as hydrotreating, to remove these components.The aim of the present work is to understand the structure, composition and reactivity of bio-oil compounds through modeling of experimental data. To understand the structure and composition, molecular reconstruction techniques, based on analytical data, were applied generating a synthetic mixture, whose properties are consistent with the mixture properties. To understand the reactivity, the hydrotreating of two model molecules was studied: Guaiacol and Furfural. A deterministic and stochastic model were created for each compounds. The deterministic approach intended to retrieve a range of kinetic parameters, later on refined by the stochastic simulation approach into a new model. This approach generates an reaction network by defining and using a limited number of reaction classes and reaction rules. To consolidate the work, the synthetic mixture was used in the stochastic simulation of the hydrotreating of bio-oils, supported by the kinetics of the model compounds.In sum, the present work was able to recreate the light fraction of bio-oil and simulate the hydrotreating of bio-oils, via the kinetic parameters of model compounds, which can reasonably predict the effluents of the hydrotreating of these, but are unsuitable for bio-oil.Fast pyrolysis is one of the thermochemical conversion routes that enable the transformation of solid lignocellulosic biomass into liquid bio-oils. These complex mixtures are different from oil fractions and cannot be directly integrated into existing petroleum upgrading facilities. Indeed, because of their high levels of oxygen compounds, bio-oils require a dedicated pre-refining step, such as hydrotreating, to remove these components.The aim of the present work is to understand the structure, composition and reactivity of bio-oil compounds through modeling of experimental data. To understand the structure and composition, molecular reconstruction techniques, based on analytical data, were applied generating a synthetic mixture, whose properties are consistent with the mixture properties. To understand the reactivity, the hydrotreating of two model molecules was studied: Guaiacol and Furfural. A deterministic and stochastic model were created for each compounds. The deterministic approach intended to retrieve a range of kinetic parameters, later on refined by the stochastic simulation approach into a new model. This approach generates an reaction network by defining and using a limited number of reaction classes and reaction rules. To consolidate the work, the synthetic mixture was used in the stochastic simulation of the hydrotreating of bio-oils, supported by the kinetics of the model compounds.In sum, the present work was able to recreate the light fraction of bio-oil and simulate the hydrotreating of bio-oils, via the kinetic parameters of model compounds, which can reasonably predict the effluents of the hydrotreating of these, but are unsuitable for bio-oil
Gao, Wenran. "Fuel Properties and Thermal Processing of Bio-oil and Its Derived Fuel Mixtures." Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/75545.
Full textChapelliere, Yann. "Investigation of the structure-property relationships of hierarchical Y zeolites for the co-processing of bio-oil with vacuum gas oil." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSE1046.
Full textFluid Catalytic Cracking (FCC) gasoline represents one third of the global gasoline pool. In order to meet objectives regarding increased renewable share in transportation fuels, the production of a hybrid bio/fossil fuel by co-refining biomass pyrolysis liquids with crude oil fractions in an oil refinery is an achievable approach. Oxygenated molecules, typical of the bio-feedstock, are present in liquids produced from biomass pyrolysis. Because large lignocellulosic fragments could strongly adsorb on the FCC zeolite surface, they may not access catalytic sites or could diffuse very slowly in the microporous network. Hence, for high oxygenated molecule content, co-refining may lead to severe changes in product quality, such as a higher aromaticity, coke and residual oxygenates in the hybrid fuels that are produced. To adjust the reactivity of FCC catalysts towards bio-oil, four Y zeolites with well controlled hierarchical mesoporous – microporous network have been investigated. They mainly vary by the characteristics of the secondary mesoporous network (pore size, mesoporous volume) while their globally similar acidity displays some changes in nature (Lewis/Brønsted). The impact of hierarchical porous structures combined with changes in acidity is studied on catalytic activity and selectivity (e.g., coke formation). The issue of diffusion limitation in line with acidity changes are discussed based on Zero Length Column (ZLC) measurements, pyridine adsorption measurements, catalytic cracking of n-hexane and co-processing of vacuum gas oil and bio-oil in micro-activity test unit
RODRIGUES, Dauci Pinheiro. "Avaliação da estabilidade térmica do bio-óleo de girassol obtido por craqueamento térmico e termocatalítico: síntese e caracterização." Universidade Federal de Campina Grande, 2014. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2006.
Full textMade available in DSpace on 2018-10-17T20:21:34Z (GMT). No. of bitstreams: 1 DAUCI PINHEIRO RODRIGUES - TESE PPGEP 2014..pdf: 15558379 bytes, checksum: 466dcc6a1f195a3b008e5ed0c6d8321a (MD5) Previous issue date: 2014-02-12
A utilização de combustíveis alternativos vem ganhando destaque no mundo inteiro, pois além do petróleo ser uma fonte esgotável de energia, emite grandes quantidades de gases poluentes. Propostas têm surgido para substituição dos combustíveis fósseis, entre elas se destacam os biocombustíveis, a partir de óleos vegetais e gorduras animais. Partindo deste contexto, este trabalho tem como objetivo avaliar a estabilidade térmica do bio-óleo de girassol, obtido por craqueamento térmico e termocatalítico. Inicialmente as amostras do catalisador foram sintetizadas e caracterizadas por DRX, área superficial por adsorção de nitrogénio, FRX, FTIR, TG/DTG/DTA, TPD-NH3, infravermelho por adsorção de piridina e RMN de31P,27Al, e 29Si. Os resultados obtidos pela difratometria de raios-X indicaram que as amostras de SAPO-5 possuem boa cristalinidade, evidenciando que o método de síntese empregado foi eficiente. A acidez das amostras do catalisador nos diversos teores de silício foi avaliada por (TPD-NH3) e infravermelho por adsorção de piridina. Pela TPD-NH3 verificou-se a presença de dois tipos de sítios ácidos, um mais fraco que dessorve amónia em temperaturas mais baixas e outro mais forte que dessorve amónia em temperaturas mais altas. Por meio da adsorção de piridina detectou-se a maior presença de sítios ácidos fracos de Bronsted para todas as amostras analisadas, sendo a amostra S040 a que apresentou maior quantidade de sítios de Bronsted e Lewis. A análise RMN de 29Si indicou para todas as amostras, a presença de mais de um tipo de mecanismo de incorporação do silício à rede de um aluminofosfato, tendo o SM2 ocorrido em maior proporção. Os craqueamentos térmico e termocatalítico do óleo de girassol, realizados da temperatura ambiente a 550°C, em um reator batelada com sistema de destilação simples, forneceram duas frações líquidas orgânicas. A primeira fração coletada em ambos os processos apresentou índice de acidez elevado (170 mg KOH/mg de bio-óleo), indicando que o catalisador não foi efetivo sobre esta fração. Por outro lado, a segunda fração líquida obtida em presença de catalisador apresentou baixo índice de acidez, principalmente aquela obtida nos processos realizados sobre as amostras S025 e S040. Indicando que essas amostras foram mais efetívas no craqueamento secundário do óleo, no qual os ácidos carboxílicos se decompõem gerando hidrocarbonetos. O bio-óleo obtido na segunda fração por ambos os métodos, foi submetido às análises físico-químicas: destilação atmosférica, massa específica, viscosidade cinemática e índice de cetano. Os resultados obtidos indicaram que essas propriedades permaneceram dentro das especificações da ANP para o diesel mineral, tendo o bio-óleo obtido pelo processo de craqueamento termocatalítico propriedades mais adequadas para uso como combustível. A estabilidade térmica do óleo de girassol e dos bio-óleos com e sem a presença de catalisadores foi avaliada utilizando as técnicas TG/DTG/DTA nas razões de aquecimento de 5, 10, 15 e 20(°C.min") em atmosfera de N2. Os resultados obtidos indicaram que os bio-óleos apresentam baixas estabilidades térmicas, necessitando, portanto do uso de aditivo melhorador da estabilidade térmica do bioóleo, para, assim, poder aumentar o tempo de prateleira do mesmo.
The use of alternative fuels is gaining prominence worldwide, because beyond petroleum be an exhaustible source of energy, emits large amounts of polluting gases. Proposals have emerged to replace fóssil fuels, among which stand out biofuels from vegetable oils and animal fats. From this context, this work aims to evaluate the thermal stability of sunflower bio-oil, obtained by thermal and thermo-catalytic cracking. Initially the samples of the catalyst were synthesized and characterized by XRD, textural analysis by nitrogen adsorption, XRF, FTIR, TG/DTG/DTA, TPD-NH3, infrared by pyridine adsorption and 31P, 27A1, and 29Si NMR. The results obtained by X-ray diffraction showed that the samples of SAPO-5 have good crystallinity, indicating that the synthesis method used was efficient. The acidity of the catalyst samples at various silicon contents was evaluated by (TPD-NH3) and infrared by pyridine adsorption. For the TPD-NH3 it was verified the presence of two types of acid sites, a weaker which desorbs ammonia at lower temperatures and another stronger which desorbs ammonia at higher temperatures. By means of the pyridine adsorption was detected greater presence of weak Bronsted acid sites for ali samples analyzed, being the S040 sample which presented the highest amount of Bronsted and Lewis sites. The 29Si NMR analysis indicated for ali the samples the presence of more than one type of mechanism incorporation of the silicon to the network of an aluminophosphate, having the SM2 occurred in greater proportion. The thermal and thermo-catalytic cracking of sunflower oil, performed from room temperature to 550°C in a batch reactor with simple distillation system, provided two organic liquid fractions. The first fraction collected in both processes showed higher index of acidity (170 mg KOH/mg of bio-oil), indicating that the catalyst was not effective on this fraction. In contrast, the second liquid fraction showed low index of acidity, particularly those obtained in the processes performed on the samples S025 and S040. Indicating that these samples were more effective in secondary cracking of the oil, in which the carboxylic acids decompose themselves generating hydrocarbons. The bio-oil obtained from the second fraction by both methods, was subjected to physicochemical analyzes: atmospheric distillation, specific mass, kinematic viscosity and cetane. The results indicated that these properties remain within the specifications of ANP for mineral diesel, having the bio-oil obtained by the thermo-catalytic cracking process, properties more suitable for use as fuel. The thermal stability of sunflower oil and bio-oils with and without the presence of catalyst was evaluated using the techniques TG / DTG / DTA in the heating ratios of 5, 10, 15 and 20 ("C.min1) in atmosphere of N2. The obtained results indicated that sunflower oil and bio-oils are of low thermal stabilities, requiring therefore the use of improver additives of thermal stability of bio-oil, and thus be able to increase the shelf life of the same.