Academic literature on the topic 'Bioactive Glass, Bone Cement, Antibacterial'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bioactive Glass, Bone Cement, Antibacterial.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bioactive Glass, Bone Cement, Antibacterial"
Verné, Enrica, Filippo Foroni, Giovanni Lucchetta, and Marta Miola. "Antibacterial and Bioactive Composite Bone Cements." Current Materials Science 12, no. 2 (March 3, 2020): 144–53. http://dx.doi.org/10.2174/1874464812666190819143740.
Full textRusso, Teresa, Roberto De Santis, Antonio Gloria, Katia Barbaro, Annalisa Altigeri, Inna V. Fadeeva, and Julietta V. Rau. "Modification of PMMA Cements for Cranioplasty with Bioactive Glass and Copper Doped Tricalcium Phosphate Particles." Polymers 12, no. 1 (December 25, 2019): 37. http://dx.doi.org/10.3390/polym12010037.
Full textMiola, Marta, Giacomo Fucale, Giovanni Maina, and Enrica Verné. "Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles." Biomedical Materials 10, no. 5 (October 20, 2015): 055014. http://dx.doi.org/10.1088/1748-6041/10/5/055014.
Full textMiola, Marta, Giacomo Fucale, Giovanni Maina, and Enrica Verné. "Composites bone cements with different viscosities loaded with a bioactive and antibacterial glass." Journal of Materials Science 52, no. 9 (January 17, 2017): 5133–46. http://dx.doi.org/10.1007/s10853-017-0750-1.
Full textMiola, Marta, Andrea Cochis, Ajay Kumar, Carla Arciola, Lia Rimondini, and Enrica Verné. "Copper-Doped Bioactive Glass as Filler for PMMA-Based Bone Cements: Morphological, Mechanical, Reactivity, and Preliminary Antibacterial Characterization." Materials 11, no. 6 (June 6, 2018): 961. http://dx.doi.org/10.3390/ma11060961.
Full textHasan, Raquib, Kambri Schaner, Pranothi Mulinti, and Amanda Brooks. "A Bioglass-Based Antibiotic (Vancomycin) Releasing Bone Void Filling Putty to Treat Osteomyelitis and Aid Bone Healing." International Journal of Molecular Sciences 22, no. 14 (July 20, 2021): 7736. http://dx.doi.org/10.3390/ijms22147736.
Full textKokubo, Tadashi, Satoru Yoshihara, Naomi Nishimura, Takao Yamamuro, and Takashi Nakamura. "Bioactive Bone Cement Based on CaOSiO2P2O5 Glass." Journal of the American Ceramic Society 74, no. 7 (July 1991): 1739–41. http://dx.doi.org/10.1111/j.1151-2916.1991.tb07176.x.
Full textKontonasaki, Eleana, Lambrini Papadopoulou, T. Zorba, E. Siarampi, K. Papazisis, A. Kortsaris, Konstantinos M. Paraskevopoulos, and Petros Koidis. "Effect of Bioactive Glass/Cement Weight Ratio on Bioactivity and Biocompatibility of a Bioactive Glass Modified Glass Ionomer Cement." Key Engineering Materials 309-311 (May 2006): 877–80. http://dx.doi.org/10.4028/www.scientific.net/kem.309-311.877.
Full textLim, Hyoung-Bong, and Cheol-Young Kim. "Setting and Hydroxyapatite Formation of Bioactive Glass Bone Cement." Journal of the Korean Ceramic Society 42, no. 11 (November 1, 2005): 770–76. http://dx.doi.org/10.4191/kcers.2005.42.11.770.
Full textFu, Qiang, Nai Zhou, Wenhai Huang, Deping Wang, Liying Zhang, and Haifeng Li. "Preparation and characterization of a novel bioactive bone cement: Glass based nanoscale hydroxyapatite bone cement." Journal of Materials Science: Materials in Medicine 15, no. 12 (December 2004): 1333–38. http://dx.doi.org/10.1007/s10856-004-5742-4.
Full textDissertations / Theses on the topic "Bioactive Glass, Bone Cement, Antibacterial"
Sanders, Lawrence Matthew. "The Synthesis & Characterization of an Antibacterial Bioactive Glass Suitable as a Bone Void Substitute." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo15447109069978.
Full textChen, Song. "Glass Ionomer Cements with Improved Bioactive and Antibacterial Properties." Doctoral thesis, Uppsala universitet, Tillämpad materialvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301924.
Full textCancian, Daniela Cristina Joannitti [UNESP]. "Utilização de enxerto ósseo autógeno, biovidros e cimento de fosfato de cálcio em defeitos ósseos criados cirurgicamente em mandíbulas de macacos Cebus apella. Estudo histológico." Universidade Estadual Paulista (UNESP), 2002. http://hdl.handle.net/11449/104756.
Full textA proposição deste estudo foi avaliar histologicamente a efetividade do PerioGlass, Fillerbone e Bone Source no preenchimento de cavidades ósseas cirurgicamente criadas em mandíbulas de macacos adultos jovens Cebus apella. Foram criadas duas cavidades transfixantes de 5mm de diâmetro nos ângulos mandibulares. Os defeitos ósseos foram preenchidos aleatoriamente e os grupo divididos da seguinte forma: Grupo I - cavidades preenchidas com osso cortiço-medular autógeno de tíbia; Grupo II - cavidades preenchidas com cimento de fosfato de cálcio (Bone Source); Grupo III - cavidades preenchidas com vidro bioativo (Fillerbone); Grupo IV - cavidades preenchidas com vidro bioativo (PerioGlass). Após 180 dias os animais foram sacrificados, as peças removidas e processadas para obtenção de cortes histológicos. A análise histológica dos resultados demonstrou que a utilização de enxerto ósseo autógeno permitiu reparação total do defeito ósseo; os materiais Fillerbone e PerioGlass permitiram reparo total dos defeitos com íntimo contaato dos grânulos dos materiais com o tecido ósseo neoformado; o material Boné Source não permitiu reparação do defeito ósseo ocorrendo preenchimento do defeito por tecido conjuntivo fibroso e foi em grande parte reabsorvido.
The present study evaluated histological results of filling with autogenous bone, PerioGlass, Fillerbone and Bone Source in bone cavities surgically created in mandible of Cebus apella Monkeys. The surgical cavities were prepared through both mandibular cortices, with a diameter of 5mm, inthe mandibular angle region. The cavities were randomized filled and the groups divided according to the material employed as follow: Group I - Filled with tibial autogenous corticocancellous bone; Group II - Filled with calcium phosphate cement (Bone Source); Group III - Filled with bioactive glass (Fillerbone); Group IV - Filled with bioactive glass (PerioGlass). After 180 days the animals were sacrificed and the specimens followed routine laboratory procedures for hematoxilin/eosin staining and histological evaluation. The histological analysis showed that the autogenous bone allowed total repair of the bone defects; Fillerbone and PerioGlass allowed total repair of the defects with intimate contact of the remaining granules and newly formed bone; Bone Source did not allow bone formation with filling of the defects by connective fibrous tissue and the material was almost totally ressorbed.
Cancian, Daniela Cristina Joannitti. "Utilização de enxerto ósseo autógeno, biovidros e cimento de fosfato de cálcio em defeitos ósseos criados cirurgicamente em mandíbulas de macacos Cebus apella. Estudo histológico /." Araraquara : [s.n.], 2002. http://hdl.handle.net/11449/104756.
Full textBanca: Luis Carlos Spolidorio
Banca: Marisa Aparecida Cabrini Gabrielli
Banca: Idelmo Rangel Garcia Junior
Banca: Marcio Zaffalon Casati
Resumo: A proposição deste estudo foi avaliar histologicamente a efetividade do PerioGlass, Fillerbone e Bone Source no preenchimento de cavidades ósseas cirurgicamente criadas em mandíbulas de macacos adultos jovens Cebus apella. Foram criadas duas cavidades transfixantes de 5mm de diâmetro nos ângulos mandibulares. Os defeitos ósseos foram preenchidos aleatoriamente e os grupo divididos da seguinte forma: Grupo I - cavidades preenchidas com osso cortiço-medular autógeno de tíbia; Grupo II - cavidades preenchidas com cimento de fosfato de cálcio (Bone Source); Grupo III - cavidades preenchidas com vidro bioativo (Fillerbone); Grupo IV - cavidades preenchidas com vidro bioativo (PerioGlass). Após 180 dias os animais foram sacrificados, as peças removidas e processadas para obtenção de cortes histológicos. A análise histológica dos resultados demonstrou que a utilização de enxerto ósseo autógeno permitiu reparação total do defeito ósseo; os materiais Fillerbone e PerioGlass permitiram reparo total dos defeitos com íntimo contaato dos grânulos dos materiais com o tecido ósseo neoformado; o material Boné Source não permitiu reparação do defeito ósseo ocorrendo preenchimento do defeito por tecido conjuntivo fibroso e foi em grande parte reabsorvido.
Abstract: The present study evaluated histological results of filling with autogenous bone, PerioGlass, Fillerbone and Bone Source in bone cavities surgically created in mandible of Cebus apella Monkeys. The surgical cavities were prepared through both mandibular cortices, with a diameter of 5mm, inthe mandibular angle region. The cavities were randomized filled and the groups divided according to the material employed as follow: Group I - Filled with tibial autogenous corticocancellous bone; Group II - Filled with calcium phosphate cement (Bone Source); Group III - Filled with bioactive glass (Fillerbone); Group IV - Filled with bioactive glass (PerioGlass). After 180 days the animals were sacrificed and the specimens followed routine laboratory procedures for hematoxilin/eosin staining and histological evaluation. The histological analysis showed that the autogenous bone allowed total repair of the bone defects; Fillerbone and PerioGlass allowed total repair of the defects with intimate contact of the remaining granules and newly formed bone; Bone Source did not allow bone formation with filling of the defects by connective fibrous tissue and the material was almost totally ressorbed.
Doutor
Book chapters on the topic "Bioactive Glass, Bone Cement, Antibacterial"
Lindfors, Nina, Jan Geurts, Lorenzo Drago, J. J. Arts, Vesa Juutilainen, Pekka Hyvönen, Arnold J. Suda, et al. "Antibacterial Bioactive Glass, S53P4, for Chronic Bone Infections – A Multinational Study." In Advances in Experimental Medicine and Biology, 81–92. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/5584_2016_156.
Full textLindfors, Nina, Jan Geurts, Lorenzo Drago, J. J. Arts, Vesa Juutilainen, Pekka Hyvönen, Arnold J. Suda, et al. "Erratum: Antibacterial Bioactive Glass, S53P4, for Chronic Bone Infections – A Multinational Study." In Advances in Experimental Medicine and Biology, 115–16. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/5584_2017_13.
Full textShinzato, S., Takashi Nakamura, Koji Goto, and Tadashi Kokubo. "Bioactive Bone Cement Composed of Crystallized Glass Beads and PMMA: Evaluation of Degradation by an In Vivo Aging Test." In Bioceramics 17, 133–36. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-961-x.133.
Full textNishimura, N., T. Yamamuro, T. Nakamura, Y. Taguchi, T. Kokubo, and S. Yoshihara. "A Novel Bioactive Bone Cement based on CaO-SiO2-P2O5-CaF2 Glass." In Bioceramics, 295–99. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-7506-0269-3.50043-8.
Full text