Journal articles on the topic 'Biocoal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Biocoal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Braverman, V. Ya. "ON THE REPLACEMENT OF FOSSIL COAL IN LOCAL SOLID FUEL BOILERS." Energy Technologies & Resource Saving, no. 1 (March 20, 2019): 7–16. http://dx.doi.org/10.33070/etars.1.2019.01.
Full textStępień, Świechowski, Hnat, et al. "Waste to Carbon: Biocoal from Elephant Dung as New Cooking Fuel." Energies 12, no. 22 (2019): 4344. http://dx.doi.org/10.3390/en12224344.
Full textBryndina, L. V., and O. V. Baklanova. "Restoration of Soil from Herbicide Pollution using Biochar from Sewage Sludge and Sawdust." Ecology and Industry of Russia 25, no. 6 (2021): 32–37. http://dx.doi.org/10.18412/1816-0395-2021-6-32-37.
Full textSyguła, Ewa, Jacek Koziel, and Andrzej Białowiec. "Proof-of-Concept of Spent Mushrooms Compost Torrefaction—Studying the Process Kinetics and the Influence of Temperature and Duration on the Calorific Value of the Produced Biocoal." Energies 12, no. 16 (2019): 3060. http://dx.doi.org/10.3390/en12163060.
Full textSetsepu, R. L., J. Abdulsalam, and S. O. Bada. "Effects of Searsia lancea hydrochar inclusion on the mechanical properties of hydrochar/discard coal pellets." Journal of the Southern African Institute of Mining and Metallurgy 121, no. 12 (2021): 1–5. http://dx.doi.org/10.17159/2411-9717/1449/2021.
Full textPawlak-Kruczek, Halina, Amit Arora, Ashish Gupta, et al. "Biocoal - Quality control and assurance." Biomass and Bioenergy 135 (April 2020): 105509. http://dx.doi.org/10.1016/j.biombioe.2020.105509.
Full textParedes-Sánchez, Beatriz M., José P. Paredes-Sánchez, and Paulino J. García-Nieto. "Energy Multiphase Model for Biocoal Conversion Systems by Means of a Nodal Network." Energies 13, no. 11 (2020): 2728. http://dx.doi.org/10.3390/en13112728.
Full textKim, Heejoon, and Tianji Li. "Denitrification Mechanism in Combustion of Biocoal Briquettes." Environmental Science & Technology 39, no. 4 (2005): 1180–83. http://dx.doi.org/10.1021/es035358k.
Full textKurc, Beata, Piotr Lijewski, Łukasz Rymaniak, et al. "High-Energy Solid Fuel Obtained from Carbonized Rice Starch." Energies 13, no. 16 (2020): 4096. http://dx.doi.org/10.3390/en13164096.
Full textKrylova, A. Yu, E. G. Gorlov, and A. V. Shumovskii. "Production of Biocoal by the Pyrolysis of Biomass." Solid Fuel Chemistry 53, no. 6 (2019): 369–76. http://dx.doi.org/10.3103/s0361521919060107.
Full textTremel, Alexander, Jan Stemann, Michael Herrmann, Berit Erlach, and Hartmut Spliethoff. "Entrained flow gasification of biocoal from hydrothermal carbonization." Fuel 102 (December 2012): 396–403. http://dx.doi.org/10.1016/j.fuel.2012.05.024.
Full textCrnogaca, Bojan. "Torrefaction as a process for biomass conversion into biocoal." Tehnika 72, no. 3 (2017): 323–27. http://dx.doi.org/10.5937/tehnika1703323c.
Full textParmar, Kiran R., and Andrew B. Ross. "Integration of Hydrothermal Carbonisation with Anaerobic Digestion; Opportunities for Valorisation of Digestate." Energies 12, no. 9 (2019): 1586. http://dx.doi.org/10.3390/en12091586.
Full textAmalinda, F., A. Muliawan, and N. Rismawati. "The effectiveness of tabingga briquettes and corncob briquettes as biocoal." Journal of Physics: Conference Series 1434 (January 2020): 012008. http://dx.doi.org/10.1088/1742-6596/1434/1/012008.
Full textBhattacharya, S. C., Ram M. Shrestha, Ashok K. Srivastava, and Suchitra Ngamkajornvivat. "Ranking of selected residues for biocoal production: Case of Thailand." International Journal of Energy Research 14, no. 8 (1990): 869–79. http://dx.doi.org/10.1002/er.4440140809.
Full textBriesemeister, Ludwig, Michael Kremling, Sebastian Fendt, and Hartmut Spliethoff. "Air-Blown Entrained-Flow Gasification of Biocoal from Hydrothermal Carbonization." Chemical Engineering & Technology 40, no. 2 (2016): 270–77. http://dx.doi.org/10.1002/ceat.201600192.
Full textKandpal, J. B., and R. C. Maheshwari. "A decentralized approach for biocoal production in a mud kiln." Bioresource Technology 43, no. 2 (1993): 99–102. http://dx.doi.org/10.1016/0960-8524(93)90166-9.
Full textZaichenko, V. M., M. I. Knyazeva, A. Yu Krylova, K. O. Krysanova, and A. B. Kulikov. "Physicochemical Properties of Biocoal Obtained by the Mild Pyrolysis of Peat." Solid Fuel Chemistry 53, no. 3 (2019): 159–65. http://dx.doi.org/10.3103/s036152191903011x.
Full textDhakate, S. R., Abhishek K. Pathak, Prateek Jain, et al. "Rice Straw Biomass to High Energy Yield Biocoal by Torrefaction:Indian Perspective." Current Science 116, no. 5 (2019): 831. http://dx.doi.org/10.18520/cs/v116/i5/831-838.
Full textNakano, Satoshi, Takanobu Nakajima, and Kanji Yoshioka. "Environmental equipment cost analysis: optimum size of a biocoal briquette machine." Environmental Economics and Policy Studies 6, no. 4 (2005): 249–66. http://dx.doi.org/10.1007/bf03353939.
Full textBriesemeister, Ludwig, Michael Kremling, Sebastian Fendt, and Hartmut Spliethoff. "Air-Blown Entrained Flow Gasification of Biocoal: Gasification Kinetics and Char Behavior." Energy & Fuels 31, no. 9 (2017): 9568–75. http://dx.doi.org/10.1021/acs.energyfuels.7b01611.
Full textNudri, Nadly Aizat, Robert Thomas Bachmann, Wan Azlina Wan Abdul Karim Ghani, Denny Ng Kok Sum, and Atiyyah Ameenah Azni. "Characterization of oil palm trunk biocoal and its suitability for solid fuel applications." Biomass Conversion and Biorefinery 10, no. 1 (2019): 45–55. http://dx.doi.org/10.1007/s13399-019-00419-z.
Full textTan, I. A. W., N. M. Shafee, M. O. Abdullah, and L. L. P. Lim. "Synthesis and characterization of biocoal from Cymbopogon citrates residue using microwave-induced torrefaction." Environmental Technology & Innovation 8 (November 2017): 431–40. http://dx.doi.org/10.1016/j.eti.2017.09.006.
Full textSosa, Victoria, José A. Guerrero, Álvaro Flores-Castorena, Domitila Martínez-Alvarado, Raúl Acevedo-Rosas, and Carlos Aguilar-Ortigoza. "Hacia un nuevo código de nomenclatura biológica: el biocódigo." Botanical Sciences, no. 63 (May 25, 2017): 121. http://dx.doi.org/10.17129/botsci.1572.
Full textLestander, Torbjörn A., Magnus Rudolfsson, Linda Pommer, and Anders Nordin. "NIR provides excellent predictions of properties of biocoal from torrefaction and pyrolysis of biomass." Green Chem. 16, no. 12 (2014): 4906–13. http://dx.doi.org/10.1039/c3gc42479k.
Full textVakalis, S., K. Moustakas, R. Heimann, and M. Loizidou. "The renewable battery concept via conversion of agricultural waste into biocoal using frictional pyrolysis." Journal of Cleaner Production 229 (August 2019): 1183–88. http://dx.doi.org/10.1016/j.jclepro.2019.05.077.
Full textGhiasi, Bahman, Linoj Kumar, Takaaki Furubayashi, et al. "Densified biocoal from woodchips: Is it better to do torrefaction before or after densification?" Applied Energy 134 (December 2014): 133–42. http://dx.doi.org/10.1016/j.apenergy.2014.07.076.
Full textQi, Juan, Qing Li, Jianjun Wu, Jingkun Jiang, Zhenyong Miao, and Duosong Li. "Biocoal Briquettes Combusted in a Household Cooking Stove: Improved Thermal Efficiencies and Reduced Pollutant Emissions." Environmental Science & Technology 51, no. 3 (2017): 1886–92. http://dx.doi.org/10.1021/acs.est.6b03411.
Full textAdekunle, J., J. Ibrahim, and E. Kucha. "Proximate and Ultimate Analyses of Biocoal Briquettes of Nigerian’s Ogboyaga and Okaba Sub-bituminous Coal." British Journal of Applied Science & Technology 7, no. 1 (2015): 114–23. http://dx.doi.org/10.9734/bjast/2015/15154.
Full textMaqhuzu, Andile B., Kunio Yoshikawa, and Fumitake Takahashi. "Potential for thermal conversion of brewer’s spent grain into biocoal via hydrothermal carbonization in Africa." Energy Procedia 158 (February 2019): 291–96. http://dx.doi.org/10.1016/j.egypro.2019.01.091.
Full textNegi, Sushant, Gaurav Jaswal, Kali Dass, Koushik Mazumder, Sasikumar Elumalai, and Joy K. Roy. "Torrefaction: a sustainable method for transforming of agri-wastes to high energy density solids (biocoal)." Reviews in Environmental Science and Bio/Technology 19, no. 2 (2020): 463–88. http://dx.doi.org/10.1007/s11157-020-09532-2.
Full textBarskov, Stan, Mark Zappi, Prashanth Buchireddy, et al. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks." Renewable Energy 142 (November 2019): 624–42. http://dx.doi.org/10.1016/j.renene.2019.04.068.
Full textP, Hengjinda, and Joy Iong Zong Chen. "Renewable Energy Production from Agricultural Waste and Hydrogen Battery Formation." December 2020 2, no. 4 (2021): 151–55. http://dx.doi.org/10.36548/jeea.2020.4.002.
Full textKrysanova, Kristina, Alla Krylova, Victor Zaichenko, Vladimir Lavrenov, and Vladimir Khaskhachikh. "Influence of the parameters of the hydrothermal carbonization of the biomass on the biocoal obtained from peat." E3S Web of Conferences 114 (2019): 07003. http://dx.doi.org/10.1051/e3sconf/201911407003.
Full textKeivani, Babak, Hayati Olgun, and Aysel T. Atimtay. "Optimization of process parameters in oxygen enriched combustion of biocoal and soma lignite blends by response surface methodology." Journal of CO2 Utilization 55 (January 2022): 101819. http://dx.doi.org/10.1016/j.jcou.2021.101819.
Full textAtimtay, Aysel T., Hayati Olgun, and Babak Keivani. "Co-combustion of biocoal and lignite in a circulating fluidised bed combustor to decrease the impact on global warming." International Journal of Global Warming 18, no. 2 (2019): 120. http://dx.doi.org/10.1504/ijgw.2019.10022117.
Full textKeivani, Babak, Hayati Olgun, and Aysel T. Atimtay. "Co-combustion of biocoal and lignite in a circulating fluidised bed combustor to decrease the impact on global warming." International Journal of Global Warming 18, no. 2 (2019): 120. http://dx.doi.org/10.1504/ijgw.2019.100313.
Full textEl Hanandeh, Ali, Ammar Albalasmeh, and Mamoun Gharaibeh. "Effect of pyrolysis temperature and biomass particle size on the heating value of biocoal and optimization using response surface methodology." Biomass and Bioenergy 151 (August 2021): 106163. http://dx.doi.org/10.1016/j.biombioe.2021.106163.
Full textBu Aamiri, Thilakaratne, Tumuluru, and Satyavolu. "An “In-Situ Binding” Approach to Produce Torrefied Biomass Briquettes." Bioengineering 6, no. 4 (2019): 87. http://dx.doi.org/10.3390/bioengineering6040087.
Full textMartin, Awaludin. "Pemanfaatan Air Gambut Untuk Meningkatkan Kualitas Produksi Biocoal dari Limbah Tandan Kosong Kelapa Sawit Dengan Variasi Waktu dan Temperatur Proses Torefaksi." Rekayasa 14, no. 3 (2021): 450–55. http://dx.doi.org/10.21107/rekayasa.v14i3.12226.
Full textGURTLER, JOSHUA B., CHARLES A. MULLEN, AKWASI A. BOATENG, ONDŘEJ MAŠEK, and MARY J. CAMP. "Biocidal Activity of Fast Pyrolysis Biochar against Escherichia coli O157:H7 in Soil Varies Based on Production Temperature or Age of Biochar." Journal of Food Protection 83, no. 6 (2020): 1020–29. http://dx.doi.org/10.4315/0362-028x.jfp-19-331.
Full textQin, Ling, Mengjun Wang, Jinfu Zhu, Yuhu Wei, Xintao Zhou, and Zheng He. "Towards Circular Economy through Waste to Biomass Energy in Madagascar." Complexity 2021 (June 7, 2021): 1–10. http://dx.doi.org/10.1155/2021/5822568.
Full textReza Arrafi Rasyid, Erdawati Erdawati, and Darsef Darwis. "Pengaruh Penambahan Biokar Sekam Padi Terhadap Penyerapan Gas CO2 (Carbon Dioxide) Dan Kuat Tekan Pada Plester Dinding." JRSKT - Jurnal Riset Sains dan Kimia Terapan 8, no. 1 (2019): 10–22. http://dx.doi.org/10.21009/jrskt.081.02.
Full textZazykina, L. "Russian organic fertilizers market." IOP Conference Series: Earth and Environmental Science 937, no. 3 (2021): 032104. http://dx.doi.org/10.1088/1755-1315/937/3/032104.
Full textNdruru, John Ivan, Nelvia Nelvia, and Adiwirman Adiwirman. "Pertumbuhan Padi Gogo pada Medium Ultisol dengan Aplikasi Biochar dan Asap Cair." Jurnal Agroteknologi 9, no. 1 (2018): 9. http://dx.doi.org/10.24014/ja.v9i1.3736.
Full textAwaludin Martin, P. S. Utama, Y. R. Ginting, and N. Khotimah. "Improvement of Biocoal Quality from Empty Oil Palm Fruit Bunches by Using Peat Water to Reducing Potassium Content and Torrefaction at 300°C to Increasing Heating Value." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 90, no. 2 (2022): 32–41. http://dx.doi.org/10.37934/arfmts.90.2.3241.
Full textMohammadi-Aragh, Maryam K., C. Elizabeth Stokes, Jason T. Street, and John E. Linhoss. "Effects of Loblolly Pine Biochar and Wood Vinegar on Poultry Litter Nutrients and Microbial Abundance." Animals 11, no. 8 (2021): 2209. http://dx.doi.org/10.3390/ani11082209.
Full textYustanti, Erlina, Endarto Yudo Wardhono, Anggoro Tri Mursito, and Ali Alhamidi. "Types and Composition of Biomass in Biocoke Synthesis with the Coal Blending Method." Energies 14, no. 20 (2021): 6570. http://dx.doi.org/10.3390/en14206570.
Full textBauer, Tatiana, Tatiana Minkina, Saglara Mandzhieva, Marina Burachevskaya, and Maria Zharkova. "Biochar application to detoxification of the heavy metal-contaminated fluvisols." E3S Web of Conferences 175 (2020): 09009. http://dx.doi.org/10.1051/e3sconf/202017509009.
Full textZulfiqar, Faisal, Adnan Younis, and Jianjun Chen. "Biochar or Biochar-Compost Amendment to a Peat-Based Substrate Improves Growth of Syngonium podophyllum." Agronomy 9, no. 8 (2019): 460. http://dx.doi.org/10.3390/agronomy9080460.
Full text