To see the other types of publications on this topic, follow the link: Biocrust.

Journal articles on the topic 'Biocrust'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Biocrust.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chen, Ning, Kailiang Yu, Rongliang Jia, Jialing Teng, and Changming Zhao. "Biocrust as one of multiple stable states in global drylands." Science Advances 6, no. 39 (September 2020): eaay3763. http://dx.doi.org/10.1126/sciadv.aay3763.

Full text
Abstract:
Biocrusts cover ~30% of global drylands with a prominent role in the biogeochemical cycles. Theoretically, biocrusts, vascular plants, and bare soil can represent multiple stable states in drylands. However, no empirical evidence for the existence of a biocrust stable state has been reported. Here, using a global drylands dataset, we found that biocrusts form an alternative stable state (biocrust cover, ~80%; vascular cover, ≤10%) besides bare soil (both biocrust and vascular cover, ≤10%) and vascular plants (vascular cover, >50%; biocrust cover, ~5%). The pattern of multiple stable states associated with biocrusts differs from the classic fold bifurcation, and values of the aridity index in the range of 0 to 0.6 define a bistable region where multiple stable states coexist. This study empirically demonstrates the existence and thresholds of multiple stable states associated with biocrusts along climatic gradients and thus may greatly contribute to conservation and restoration of global drylands.
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Xueqin, Mingxiang Xu, Yunge Zhao, Liqian Gao, and Shanshan Wang. "Moss-dominated biological soil crusts improve stability of soil organic carbon on the Loess Plateau, China." Plant, Soil and Environment 65, No. 2 (February 1, 2019): 104–9. http://dx.doi.org/10.17221/473/2018-pse.

Full text
Abstract:
The succession of biological soil crust (biocrust) may alter soil organic carbon (SOC) stability by affecting SOC fractions in arid and semi-arid regions. In the study, the SOC fractions were measured including soil easily oxidizable carbon (SEOC), soil microbial biomass carbon (SMBC), soil water soluble carbon (SWSC), and soil mineralizable carbon (SMC) at the Loess Plateau of China by using four biocrusts. The results show that SOC fractions in the biocrust layer were consistently higher than that in the subsoil layers. The average SOC content of moss crust was approximately 1.3–2.0 fold that of three other biocrusts. Moss crusts contain the lowest ratio of SEOC to SOC compared with other biocrusts. The ratio of SMC to SOC was the highest in light cyanobacteria biocrust and the lowest in moss crust, but no difference was observed in SMBC to SOC and SWSC to SOC in biocrust layers among four studied biocrusts. The results show that the moss crusts increase the accumulation of organic carbon into soil and reduce the ratio of SEOC to SOC and SMC to SOC. Together, these findings indicate that moss crusts increase the SOC stability and have important implications that SOC fractions and mineralization amount are good indicators for assessing the SOC stability.
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Minsu, and Dani Or. "Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts." Biogeosciences 14, no. 23 (December 1, 2017): 5403–24. http://dx.doi.org/10.5194/bg-14-5403-2017.

Full text
Abstract:
Abstract. Biological soil crusts (biocrusts) are self-organised thin assemblies of microbes, lichens, and mosses that are ubiquitous in arid regions and serve as important ecological and biogeochemical hotspots. Biocrust ecological function is intricately shaped by strong gradients of water, light, oxygen, and dynamics in the abundance and spatial organisation of the microbial community within a few millimetres of the soil surface. We report a mechanistic model that links the biophysical and chemical processes that shape the functioning of biocrust representative microbial communities that interact trophically and respond dynamically to cycles of hydration, light, and temperature. The model captures key features of carbon and nitrogen cycling within biocrusts, such as microbial activity and distribution (during early stages of biocrust establishment) under diurnal cycles and the associated dynamics of biogeochemical fluxes at different hydration conditions. The study offers new insights into the highly dynamic and localised processes performed by microbial communities within thin desert biocrusts.
APA, Harvard, Vancouver, ISO, and other styles
4

Kammann, Sandra, Ulf Schiefelbein, Christian Dolnik, Tatiana Mikhailyuk, Eduard Demchenko, Ulf Karsten, and Karin Glaser. "Successional Development of the Phototrophic Community in Biological Soil Crusts on Coastal and Inland Dunes." Biology 12, no. 1 (December 29, 2022): 58. http://dx.doi.org/10.3390/biology12010058.

Full text
Abstract:
(1) Biological soil crusts (biocrusts) are microecosystems consisting of prokaryotic and eukaryotic microorganisms growing on the topsoil. This study aims to characterize changes in the community structure of biocrust phototrophic organisms along a dune chronosequence in the Baltic Sea compared to an inland dune in northern Germany. (2) A vegetation survey followed by species determination and sediment analyses were conducted. (3) The results highlight a varying phototrophic community composition within the biocrusts regarding the different successional stages of the dunes. At both study sites, a shift from algae-dominated to lichen- and moss-dominated biocrusts in later successional dune types was observed. The algae community of both study sites shared 50% of the identified species while the moss and lichen community shared less than 15%. This indicates a more generalized occurrence of the algal taxa along both chronosequences. The mosses and lichens showed a habitat-specific species community. Moreover, an increase in the organic matter and moisture content with advanced biocrust development was detected. The enrichment of carbon, nitrogen, and phosphorus in the different biocrust types showed a similar relationship. (4) This relation can be explained by biomass growth and potential nutrient mobilization by the microorganisms. Hence, the observed biocrust development potentially enhanced soil formation and contributed to nutrient accumulation.
APA, Harvard, Vancouver, ISO, and other styles
5

Steven, Blaire, Cheryl R. Kuske, La Verne Gallegos-Graves, Sasha C. Reed, and Jayne Belnap. "Climate Change and Physical Disturbance Manipulations Result in Distinct Biological Soil Crust Communities." Applied and Environmental Microbiology 81, no. 21 (August 14, 2015): 7448–59. http://dx.doi.org/10.1128/aem.01443-15.

Full text
Abstract:
ABSTRACTBiological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remains poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2°C soil warming, altered summer precipitation [wetting], and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional changes. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in the cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreasedCyanobacteriaabundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities, and the communities' functional profiles can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands.
APA, Harvard, Vancouver, ISO, and other styles
6

Sommer, V., A. Palm, A. Schink, P. Leinweber, N. Gose, U. Karsten, and K. Glaser. "Artificial biocrust establishment on materials of potash tailings piles along a salinity gradient." Journal of Applied Phycology 34, no. 1 (October 13, 2021): 405–21. http://dx.doi.org/10.1007/s10811-021-02609-7.

Full text
Abstract:
Abstract Biocrust communities provide a pallet of ecosystem services, such as soil stabilization, altering of hydrological cycles and primary production, and often are the first colonizers of unvegetated surfaces during succession. Therefore, artificially establishing biocrusts can improve soil properties, for example, by stabilizing bare soil surfaces against erosion or by accumulating nutrients. In this study, the establishment of artificial biocrusts was tested for the restoration of potash tailings piles that result from potash fertilizer production and mostly consist of NaCl. A biocrust cover as primary vegetation could decrease the saline seepage waters by trapping rainwaters, thereby reducing the environmental pollution. In a laboratory experiment, we created a salt gradient by mixing the tailings materials with non-saline dune sand. Surface material of the abandoned potash tailings pile Neuhof-Ellers (NE) and material of the Infiltration Hampering Stratum (IHS) were tested, along with a treatment with bone charplus (BCplus) and sodium alginate. A mixture of 50% (w/w) IHS and dune sand was most successful for the establishment of green biocrust microalgae, based on increased biomass and photosynthetic performance. The chlorophyll a content was negatively correlated with the electrical conductivity (EC), and was significantly increased in the BCplus and sodium alginate treatment, while biocrusts failed to establish on pure tailings piles substrates. The limit of the substrates EC for biocrust establishment was 35 mS cm−1. This limit provides a baseline for future studies that should use BCplus and sodium alginate to increase the success of biocrust establishment on potash tailings piles.
APA, Harvard, Vancouver, ISO, and other styles
7

Duran, Paola, María de la Luz Mora, Francisco Matus, Patricio Javier Barra, Ignacio Jofré, Yakov Kuzyakov, and Carolina Merino. "Biological Crusts to Increase Soil Carbon Sequestration: New Challenges in a New Environment." Biology 10, no. 11 (November 16, 2021): 1190. http://dx.doi.org/10.3390/biology10111190.

Full text
Abstract:
The major priority of research in the present day is to conserve the environment by reducing GHG emissions. A proposed solution by an expert panel from 195 countries meeting at COP 21 was to increase global SOC stocks by 0.4% year−1 to compensate for GHG emissions, the ‘4 per 1000′ agreement. In this context, the application of biocrusts is a promising framework with which to increase SOC and other soil functions in the soil–plant continuum. Despite the importance of biocrusts, their application to agriculture is limited due to: (1) competition with native microbiota, (2) difficulties in applying them on a large scale, (3) a lack of studies based on carbon (C) balance and suitable for model parameterization, and (4) a lack of studies evaluating the contribution of biocrust weathering to increase C sequestration. Considering these four challenges, we propose three perspectives for biocrust application: (1) natural microbiome engineering by a host plant, using biocrusts; (2) quantifying the contribution of biocrusts to C sequestration in soils; and (3) enhanced biocrust weathering to improve C sequestration. Thus, we focus this opinion article on new challenges by using the specialized microbiome of biocrusts to be applied in a new environment to counteract the negative effects of climate change.
APA, Harvard, Vancouver, ISO, and other styles
8

Samolov, Elena, Karen Baumann, Burkhard Büdel, Patrick Jung, Peter Leinweber, Tatiana Mikhailyuk, Ulf Karsten, and Karin Glaser. "Biodiversity of Algae and Cyanobacteria in Biological Soil Crusts Collected Along a Climatic Gradient in Chile Using an Integrative Approach." Microorganisms 8, no. 7 (July 14, 2020): 1047. http://dx.doi.org/10.3390/microorganisms8071047.

Full text
Abstract:
Biocrusts are associations of various prokaryotic and eukaryotic microorganisms in the top millimeters of soil, which can be found in every climate zone on Earth. They stabilize soils and introduce carbon and nitrogen into this compartment. The worldwide occurrence of biocrusts was proven by numerous studies in Europe, Africa, Asia and North America, leaving South America understudied. Using an integrative approach, which combines morphological and molecular characters (small subunit rRNA and ITS region), we examined the diversity of key biocrust photosynthetic organisms at four sites along the latitudinal climate gradient in Chile. The most northern study site was located in the Atacama Desert (arid climate), followed by open shrubland (semiarid climate), a dry forest region (Mediterranean climate) and a mixed broad leaved-coniferous forest (temperate climate) in the south. The lowest species richness was recorded in the desert (18 species), whereas the highest species richness was observed in the Mediterranean zone (40 species). Desert biocrusts were composed exclusively of single-celled Chlorophyta algae, followed by cyanobacteria. Chlorophyta, Streptophyta and cyanobacteria dominated semiarid biocrusts, whereas Mediterranean and temperate Chilean biocrusts were composed mostly of Chlorophyta, Streptophyta and Ochrophyta. Our investigation of Chilean biocrust suggests high biodiversity of South American biocrust phototrophs.
APA, Harvard, Vancouver, ISO, and other styles
9

Guan, Hongjie, and Xinyu Liu. "Biocrust effects on soil infiltrability in the Mu Us Desert: Soil hydraulic properties analysis and modeling." Journal of Hydrology and Hydromechanics 69, no. 4 (November 15, 2021): 378–86. http://dx.doi.org/10.2478/johh-2021-0026.

Full text
Abstract:
Abstract The presence of biocrusts changes water infiltration in the Mu Us Desert. Knowledge of the hydraulic properties of biocrusts and parameterization of soil hydraulic properties are important to improve simulation of infiltration and soil water dynamics in vegetation-soil-water models. In this study, four treatments, including bare land with sporadic cyanobacterial biocrusts (BL), lichen-dominated biocrusts (LB), early-successional moss biocrusts (EMB), and late-successional moss biocrusts (LMB), were established to evaluate the effects of biocrust development on soil water infiltration in the Mu Us Desert, northwest of China. Moreover, a combined Wooding inverse approach was used for the estimation of soil hydraulic parameters. The results showed that infiltration rate followed the pattern BL > LB > EMB > LMB. Moreover, the LB, EMB, and LMB treatments had significantly lower infiltration rates than the BL treatment. The saturated soil moisture (θs ) and shape parameter (α VG) for the EMB and LMB treatments were higher than that for the BL and LB treatments, although the difference among four treatments was insignificant. Water retention increased with biocrust development at high-pressure heads, whereas the opposite was observed at low-pressure heads. The development of biocrusts influences van Genuchten parameters, subsequently affects the water retention curve, and thereby alters available water in the biocrust layer. The findings regarding the parameterization of soil hydraulic properties have important implications for the simulation of eco-hydrological processes in dryland ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
10

Concostrina-Zubiri, Laura, Juan M. Arenas, Isabel Martínez, and Adrián Escudero. "Unassisted establishment of biological soil crusts on dryland road slopes." Web Ecology 19, no. 1 (June 6, 2019): 39–51. http://dx.doi.org/10.5194/we-19-39-2019.

Full text
Abstract:
Abstract. Understanding patterns of habitat natural recovery after human-made disturbances is critical for the conservation of ecosystems under high environmental stress, such as drylands. In particular, the unassisted establishment of nonvascular plants such as biological soil crusts or biocrust communities (e.g., soil lichens, mosses and cyanobacteria) in newly formed habitats is not yet fully understood. However, the potential of biocrusts to improve soil structure and function at the early stages of succession and promote ecosystem recovery is enormous. In this study, we evaluated the capacity of lichen biocrusts to spontaneously establish and develop on road slopes in a Mediterranean shrubland. We also compared taxonomic and functional diversity of biocrusts between road slopes and natural habitats in the surroundings. Biocrust richness and cover, species composition, and functional structure were measured in 17 road slopes (nine roadcuts and eight embankments) along a 13 km highway stretch. Topography, soil properties and vascular plant communities of road slopes were also characterized. We used Kruskal–Wallis tests and applied redundancy analysis (RDA) to test the effect of environmental scenario (road slopes vs. natural habitat) and other local factors on biocrust features. We found that biocrusts were common in road slopes after ∼20 years of construction with no human assistance needed. However, species richness and cover were still lower than in natural remnants. Also, functional structure was quite similar between roadcuts (i.e., after soil excavation) and natural remnants, and topography and soil properties influenced species composition while environmental scenario type and vascular plant cover did not. These findings further support the idea of biocrusts as promising restoration tools in drylands and confirm the critical role of edaphic factors in biocrust establishment and development in land-use change scenarios.
APA, Harvard, Vancouver, ISO, and other styles
11

Gabay, Talia, Eva Petrova, Osnat Gillor, Yaron Ziv, and Roey Angel. "Only a minority of bacteria grow after wetting in both natural and post-mining biocrusts in a hyperarid phosphate mine." SOIL 9, no. 1 (May 2, 2023): 231–42. http://dx.doi.org/10.5194/soil-9-231-2023.

Full text
Abstract:
Abstract. Biological soil crusts (biocrusts) are key contributors to desert ecosystem functions, therefore, biocrust restoration following mechanical disturbances is imperative. In the Negev Desert hyperarid regions, phosphate mining has been practiced for over 60 years, destroying soil habitats and fragmenting the landscape. In this study, we selected one mining site restored in 2007, and we used DNA stable isotope probing (DNA-SIP) to identify which bacteria grow in post-mining and adjacent natural biocrusts. Since biocrust communities activate only after wetting, we incubated the biocrusts with H218O for 96 h under ambient conditions. We then evaluated the physicochemical soil properties, chlorophyll a concentrations, activation, and functional potential of the biocrusts. The DNA-SIP assay revealed low bacterial activity in both plot types and no significant differences in the proliferated communities' composition when comparing post-mining and natural biocrusts. We further found no significant differences in the microbial functional potential, photosynthetic rates, or soil properties. Our results suggest that growth of hyperarid biocrust bacteria after wetting is minimal. We hypothesize that due to the harsh climatic conditions, during wetting, bacteria devote their meager resources to prepare for the coming drought, by focusing on damage repair and organic compound synthesis and storage rather than on growth. These low growth rates contribute to the sluggish recovery of desert biocrusts following major disturbances such as mining. Therefore, our findings highlight the need for implementing active restoration practices following mining.
APA, Harvard, Vancouver, ISO, and other styles
12

Kashi Zenouzi, Leila, Seyed Hasan Kaboli, Kazem Khavazi, Mohammad Sohrabi, Mohammad Khosroshahi, and Ulf Karsten. "Selecting phototrophic species of native biocrusts in arid and semi-arid regions." Environmental Health Engineering and Management 8, no. 3 (August 30, 2021): 153–67. http://dx.doi.org/10.34172/ehem.2021.19.

Full text
Abstract:
Background: Biological soil crusts (BSCs) that are able to produce sticky extracellular polymeric substances (EPS) play an important role in the formation of soil aggregates, thereby, reducing soil erosion. In this study, experiments were undertaken to identify biocrust species that produce EPS, in order to combat desertification in the Sejzi desert of Iran. Methods: A biocrust distribution map of Sejzi plain was prepared using Landsat 8 OLI images, then, various sampling points were selected. Some physicochemical parameters of samples from lichen-dominated and non-biocrusted areas were measured. The relationship between soil parameters and biocrusts presence was confirmed based on the Pearson’s correlation coefficient and principal component analysis (PCA) method. The type of chemical compounds in the soil content were determined via Fourier transform infrared spectroscopy (FTIR), including polysaccharides. To estimate the degradability of polysaccharides, each soil sample was placed under defined UV-B radiation for 24, 48, and 72 hours at three replications. Results: There was no significant correlation between moss and lichen species with the amount of EPS (%) values and various occurring cyanolichen species in three biocrusted soil samples, which included Collema coccophorum, Collema tenax, Peccania terricola, and Placidium squamulosum. It was speculated that these polysaccharides were produced by the photobiotic partners (microalgae or cyanobacteria) and secreted to the soil. Conclusion: According to the results, the cyanobacteria species of biocrusted samples might have high potential to combat desertification and soil stabilization in Sejzi desert.
APA, Harvard, Vancouver, ISO, and other styles
13

Cantón, Yolanda, Sonia Chamizo, Emilio Rodriguez-Caballero, Roberto Lázaro, Beatriz Roncero-Ramos, José Raúl Román, and Albert Solé-Benet. "Water Regulation in Cyanobacterial Biocrusts from Drylands: Negative Impacts of Anthropogenic Disturbance." Water 12, no. 3 (March 6, 2020): 720. http://dx.doi.org/10.3390/w12030720.

Full text
Abstract:
Arid and semi-arid ecosystems are characterized by patchy vegetation and variable resource availability. The interplant spaces of these ecosystems are very often covered by cyanobacteria-dominated biocrusts, which are the primary colonizers of terrestrial ecosystems and key in facilitating the succession of other biocrust organisms and plants. Cyanobacterial biocrusts regulate the horizontal and vertical fluxes of water, carbon and nutrients into and from the soil and play crucial hydrological, geomorphological and ecological roles in these ecosystems. In this paper, we analyze the influence of cyanobacterial biocrusts on water balance components (infiltration-runoff, evaporation, soil moisture and non-rainfall water inputs (NRWIs)) in representative semiarid ecosystems in southeastern Spain. The influence of cyanobacterial biocrusts, in two stages of their development, on runoff-infiltration was studied by rainfall simulation and in field plots under natural rainfall at different spatial scales. Results showed that cover, exopolysaccharide content, roughness, organic carbon, total nitrogen, available water holding capacity, aggregate stability, and other properties increased with the development of the cyanobacterial biocrust. Due to the effects on these soil properties, runoff generation was lower in well-developed than in incipient-cyanobacterial biocrusts under both simulated and natural rainfall and on different spatial scales. Runoff yield decreased at coarser spatial scales due to re-infiltration along the hillslope, thus decreasing hydrological connectivity. Soil moisture monitoring at 0.03 m depth revealed higher moisture content and slower soil water loss in plots covered by cyanobacterial biocrusts compared to bare soils. Non-rainfall water inputs were also higher under well-developed cyanobacterial biocrusts than in bare soils. Disturbance of cyanobacterial biocrusts seriously affected the water balance by increasing runoff, decreasing soil moisture and accelerating soil water loss, at the same time that led to a very significant increase in sediment yield. The recovery of biocrust cover after disturbance can be relatively fast, but its growth rate is strongly conditioned by microclimate. The results of this paper show the important influence of cyanobacterial biocrust in modulating the different processes supporting the capacity of these ecosystems to provide key services such as water regulation or erosion control, and also the important impacts of their anthropic disturbance.
APA, Harvard, Vancouver, ISO, and other styles
14

Blanco-Sacristán, Javier, Cinzia Panigada, Giulia Tagliabue, Rodolfo Gentili, Roberto Colombo, Mónica Ladrón de Guevara, Fernando T. Maestre, and Micol Rossini. "Spectral Diversity Successfully Estimates the α-Diversity of Biocrust-Forming Lichens." Remote Sensing 11, no. 24 (December 9, 2019): 2942. http://dx.doi.org/10.3390/rs11242942.

Full text
Abstract:
Biocrusts, topsoil communities formed by mosses, lichens, liverworts, algae, and cyanobacteria, are a key biotic component of dryland ecosystems worldwide. Experiments carried out with lichen- and moss-dominated biocrusts indicate that climate change may dramatically reduce their cover and diversity. Therefore, the development of reproducible methods to monitor changes in biocrust diversity and abundance across multiple spatio-temporal scales is key for evaluating how climate change may impact biocrust communities and the myriad of ecosystem functions and services that rely on them. In this study, we collected lichen-dominated biocrust samples from a semi-arid ecosystem in central Spain. Their α-diversity was then evaluated using very high spatial resolution hyperspectral images (pixel size of 0.091 mm) measured in laboratory under controlled conditions. Support vector machines were used to map the biocrust composition. Traditional α-diversity metrics (i.e., species richness, Shannon’s, Simpson’s, and Pielou’s indices) were calculated using lichen fractional cover data derived from their classifications in the hyperspectral imagery. Spectral diversity was calculated at different wavelength ranges as the coefficient of variation of different regions of the reflectance spectra of lichens and as the standard deviation of the continuum removal algorithm (SD_CR). The accuracy of the classifications of the images obtained was close to 100%. The results showed the best coefficient of determination (r2 = 0.47) between SD_CR calculated at 680 nm and the α-diversity calculated as the Simpson’s index, which includes species richness and their evenness. These findings indicate that this spectral diversity index could be used to track spatio-temporal changes in lichen-dominated biocrust communities. Thus, they are the first step to monitor α-diversity of biocrust-forming lichens at the ecosystem and regional levels, a key task for any program aiming to evaluate changes in biodiversity and associated ecosystem services in drylands.
APA, Harvard, Vancouver, ISO, and other styles
15

Ma, Yunyao, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada. "Exploring environmental and physiological drivers of the annual carbon budget of biocrusts from various climatic zones with a mechanistic data-driven model." Biogeosciences 20, no. 13 (July 4, 2023): 2553–72. http://dx.doi.org/10.5194/bg-20-2553-2023.

Full text
Abstract:
Abstract. Biocrusts are a worldwide phenomenon, contributing substantially to ecosystem functioning. Their growth and survival depend on multiple environmental factors, including climatic ones, and the relations of these factors to physiological processes. Responses of biocrusts to individual environmental factors have been examined in a large number of field and laboratory experiments. These observational data, however, have rarely been assembled into a comprehensive, consistent framework that allows quantitative exploration of the roles of multiple environmental factors and physiological properties for the performance of biocrusts, in particular across climatic regions. Here we used a data-driven mechanistic modelling framework to simulate the carbon balance of biocrusts, a key measure of their growth and survival. We thereby assessed the relative importance of physiological and environmental factors for the carbon balance at six study sites that differ in climatic conditions. Moreover, we examined the role of seasonal acclimation of physiological properties using our framework, since the effects of this process on the carbon balance of biocrusts are poorly constrained so far. We found substantial effects of air temperature, CO2 concentration, and physiological parameters that are related to respiration on biocrust carbon balance, which differ, however, in their patterns across regions. The ambient CO2 concentration is the most important factor for biocrusts from drylands, while air temperature has the strongest impact at alpine and temperate sites. Metabolic respiration cost plays a more important role than optimum temperature for gross photosynthesis at the alpine site; this is not the case, however, in drylands and temperate regions. Moreover, we estimated a small annual carbon gain of 1.5 gm-2yr-1 by lichen-dominated biocrust and 1.9 gm-2yr-1 by moss-dominated biocrust at a dryland site, while the biocrusts lost a large amount of carbon at some of the temperate sites (e.g. −92.1 for lichen-dominated and −74.7 gm-2yr-1 for moss-dominated biocrust). These strongly negative values contradict the observed survival of the organisms at the sites and may be caused by the uncertainty in environmental conditions and physiological parameters, which we assessed in a sensitivity analysis. Another potential explanation for this result may be the lack of acclimation in the modelling approach, since the carbon balance can increase substantially when testing for seasonally varying parameters in the sensitivity analysis. We conclude that the uncertainties in air temperature, CO2 concentration, respiration-related physiological parameters, and the absence of seasonal acclimation in the model for humid temperate and alpine regions may be a relevant source of error and should be taken into account in future approaches that aim at estimating the long-term biocrust carbon balance based on ecophysiological data.
APA, Harvard, Vancouver, ISO, and other styles
16

Caesar, Jennifer, Alexandra Tamm, Nina Ruckteschler, Anna Lena Leifke, and Bettina Weber. "Revisiting chlorophyll extraction methods in biological soil crusts – methodology for determination of chlorophyll <i>a</i> and chlorophyll <i>a</i> + <i>b</i> as compared to previous methods." Biogeosciences 15, no. 5 (March 8, 2018): 1415–24. http://dx.doi.org/10.5194/bg-15-1415-2018.

Full text
Abstract:
Abstract. Chlorophyll concentrations of biological soil crust (biocrust) samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO) as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual). Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.
APA, Harvard, Vancouver, ISO, and other styles
17

Karaoz, Ulas, Estelle Couradeau, Ulisses Nunes da Rocha, Hsiao-Chien Lim, Trent Northen, Ferran Garcia-Pichel, and Eoin L. Brodie. "Large Blooms ofBacillales(Firmicutes) Underlie the Response to Wetting of Cyanobacterial Biocrusts at Various Stages of Maturity." mBio 9, no. 2 (March 6, 2018): e01366-16. http://dx.doi.org/10.1128/mbio.01366-16.

Full text
Abstract:
ABSTRACTBiological soil crusts (biocrusts) account for a substantial portion of primary production in dryland ecosystems. They successionally mature to deliver a suite of ecosystem services, such as carbon sequestration, water retention and nutrient cycling, and climate regulation. Biocrust assemblages are extremely well adapted to survive desiccation and to rapidly take advantage of the periodic precipitation events typical of arid ecosystems. Here we focus on the wetting response of incipient cyanobacterial crusts as they mature from “light” to “dark.” We sampled a cyanobacterial biocrust chronosequence before (dry) and temporally following a controlled wetting event and used high-throughput 16S rRNA and rRNA gene sequencing to monitor the dynamics of microbial response. Overall, shorter-term changes in phylogenetic beta diversity attributable to periodic wetting were as large as those attributable to biocrust successional stage. Notably, more mature crusts showed significantly higher resistance to precipitation disturbance. A large bloom of a few taxa within theFirmicutes, primarily in the orderBacillales, emerged 18 h after wetting, while filamentous crust-forming cyanobacteria showed variable responses to wet-up across the successional gradient, with populations collapsing in less-developed light crusts but increasing in later-successional-stage dark crusts. Overall, the consistentBacillalesbloom accompanied by the variable collapse of pioneer cyanobacteria of theOscillatorialesorder across the successional gradient suggests that the strong response of few organisms to a hydration pulse with the mortality of the autotroph might have important implications for carbon (C) balance in semiarid ecosystems.IMPORTANCEDesert biological soil crusts are terrestrial topsoil microbial communities common to arid regions that comprise 40% of Earth’s terrestrial surface. They successionally develop over years to decades to deliver a suite of ecosystem services of local and global significance. Ecosystem succession toward maturity has been associated with both resistance and resilience to disturbance. Recent work has shown that the impacts of both climate change and physical disturbance on biocrusts increase the potential for successional resetting. A larger proportion of biocrusts are expected to be at an early developmental stage, hence increasing susceptibility to changes in precipitation frequencies. Therefore, it is essential to characterize how biocrusts respond to wetting across early developmental stages. In this study, we document the wetting response of microbial communities from a biocrust chronosequence. Overall, our results suggest that the cumulative effects of altered precipitation frequencies on the stability of biocrusts will depend on biocrust maturity.
APA, Harvard, Vancouver, ISO, and other styles
18

López-Rodríguez, María D., Sonia Chamizo, Yolanda Cantón, and Emilio Rodriguez-Caballero. "Identifying social–ecological gaps to promote biocrust conservation actions." Web Ecology 20, no. 2 (September 23, 2020): 117–32. http://dx.doi.org/10.5194/we-20-117-2020.

Full text
Abstract:
Abstract. Globally, most bare-looking areas in dryland regions are covered by biocrusts which play a crucial role in modifying several soil surface properties and driving key ecosystem processes. These keystone communities face important threats (e.g. climate change) that place their conservation at risk and in turn the sustainability of the ecosystems they inhabit. Therefore, there is an urgent need to develop ecosystem management strategies to ensure their protection. However, to provide a solid path towards biocrust conservation, the understanding by stakeholders and governance structures of the ecological functions of these communities, their role as benefit providers, and the pressures threatening their important effects are indispensable. Whereas the ecological scope of biocrust has been widely studied in the last decades, the social dimension of their role remained unexplored. By reviewing literature in biocrusts from a social–ecological approach, here we identified knowledge gaps and new research areas that need to be addressed in order to produce scientific knowledge that better guides dryland conservation policies and actions. This research agenda is a prerequisite to advance biocrust conservation.
APA, Harvard, Vancouver, ISO, and other styles
19

Ferrenberg, Scott, Sasha C. Reed, and Jayne Belnap. "Climate change and physical disturbance cause similar community shifts in biological soil crusts." Proceedings of the National Academy of Sciences 112, no. 39 (September 14, 2015): 12116–21. http://dx.doi.org/10.1073/pnas.1509150112.

Full text
Abstract:
Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. Although there has been long-standing concern over impacts of physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, we examined the effects of 10 y of experimental warming and altered precipitation (in full-factorial design) on biocrust communities and compared the effects of altered climate with those of long-term physical disturbance (>10 y of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increases in cyanobacteria cover, with more variable effects on lichens. Although the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in our study.
APA, Harvard, Vancouver, ISO, and other styles
20

Adessi, Alessandra, Roberto De Philippis, and Federico Rossi. "Drought-tolerant cyanobacteria and mosses as biotechnological tools to attain land degradation neutrality." Web Ecology 21, no. 1 (April 13, 2021): 65–78. http://dx.doi.org/10.5194/we-21-65-2021.

Full text
Abstract:
Abstract. The induction of biocrusts through inoculation-based techniques has gained increasing scientific attention in the last 2 decades due to its potential to address issues related to soil degradation and desertification. The technology has shown the most rapid advances in the use of biocrust organisms, particularly cyanobacteria and mosses, as inoculants and biocrust initiators. Cyanobacteria and mosses are poikilohydric organisms – i.e., desiccation-tolerant organisms capable of reactivating their metabolism upon rehydration – that can settle on bare soils in abiotically stressing habitats, provided that selected species are used and an appropriate and customized protocol is applied. The success of inoculation of cyanobacteria and mosses depends on the inoculant's physiology, but also on the ability of the practitioner to identify and control, with appropriate technical approaches in each case study, those environmental factors that most influence the inoculant settlement and its ability to develop biocrusts. This review illustrates the current knowledge and results of biocrust induction biotechnologies that use cyanobacteria or mosses as inoculants. At the same time, this review's purpose is to highlight the current technological gaps that hinder an efficient application of the technology in the field.
APA, Harvard, Vancouver, ISO, and other styles
21

Guan, Hongjie, and Rongjiang Cao. "Effects of biocrusts and rainfall characteristics on runoff generation in the Mu Us Desert, northwest China." Hydrology Research 50, no. 5 (August 30, 2019): 1410–23. http://dx.doi.org/10.2166/nh.2019.046.

Full text
Abstract:
Abstract How the presence of biocrusts regulates runoff generation in the Mu Us Desert is not well known. Runoff experiments under natural and artificial rainfalls and numerical simulations were conducted in semiarid environments to evaluate the effects of biocrust type and rainfall characteristics on runoff. The experimental results showed that the water drop penetration time (WDPT) of the moss-dominated biocrusts was 68.7% higher than that of lichen-dominated biocrusts. Nevertheless, the saturated hydraulic conductivity (Ks) for moss-dominated biocrusts was 72.7% lower than that for the lichen-dominated biocrusts. Runoff yield for moss-dominated biocrusts was significantly higher than that for lichen-dominated biocrusts. Runoff yield was mainly explained by rainfall amount (or maximum 5-min rainfall intensity, I5max) (P &lt; 0.001) and WDPT (P = 0.001). The influences of biocrust type, rainfall intensity, and their interaction on runoff coefficient were significant at the probability level of 0.01. The results of numerical simulations concluded that surface runoff was generated for lichen- and moss-dominated biocrusts when rainfall intensity reached 73.5 and 49 mm h–1, respectively. Runoff coefficient in the moss-covered soil increased obviously when rainfall intensity changed from 49 to 73.5 mm h–1. The results suggest that runoff could be changed substantially under increasing trends in rainfall intensity in the Mu Us Desert.
APA, Harvard, Vancouver, ISO, and other styles
22

Drahorad, Sylvie Laureen, Vincent J. M. N. L. Felde, Ruth H. Ellerbrock, and Anja Henss. "Water repellency decreases with increasing carbonate content and pH for different biocrust types on sand dunes." Journal of Hydrology and Hydromechanics 69, no. 4 (November 15, 2021): 369–77. http://dx.doi.org/10.2478/johh-2021-0022.

Full text
Abstract:
Abstract Biocrusts are biological communities that occupy the soil surface, accumulate organic matter and mineral particles and hence strongly affect the properties of the soils they cover. Moreover, by affecting water repellency, biocrusts may cause a preferential infiltration of rainwater, with a high impact on the formation of local water pathways, especially for sand dunes. The aim of this study is to shed light on the connections between water repellency and pH, carbonate and organic matter content in two dune ecosystems with different biocrust types. For this, we used contact angle measurements, gas volumetric carbonate determination and organic matter characterization via FT-IR and TOF-SIMS. In both ecosystems, moss-dominated biocrusts showed higher water repellency and higher amounts of organic matter compared to algal or cyanobacterial biocrusts. Surprisingly, the biocrusts of the two dune systems did not show differences in organic matter composition or organic coatings of the mineral grains. Biocrusts on the more acidic dunes showed a significantly higher level of water repellency as compared to higher carbonate containing dunes. We conclude that the driving factor for the increase in water repellency between cyanobacterial and moss-dominated biocrusts within one study site is the content of organic matter. However, when comparing the different study sites, we found that higher amounts of carbonate reduced biocrust water repellency.
APA, Harvard, Vancouver, ISO, and other styles
23

Pushkareva, Ekaterina, Israel Barrantes, Peter Leinweber, and Ulf Karsten. "Microbial Diversity in Subarctic Biocrusts from West Iceland following an Elevation Gradient." Microorganisms 9, no. 11 (October 21, 2021): 2195. http://dx.doi.org/10.3390/microorganisms9112195.

Full text
Abstract:
Biological soil crusts (biocrusts) are essential communities of organisms in the Icelandic soil ecosystem, as they prevent erosion and cryoturbation and provide nutrients to vascular plants. However, biocrust microbial composition in Iceland remains understudied. To address this gap in knowledge, we applied high-throughput sequencing to study microbial community composition in biocrusts collected along an elevation gradient (11–157 m a.s.l.) stretching away perpendicular to the marine coast. Four groups of organisms were targeted: bacteria and cyanobacteria (16S rRNA gene), fungi (transcribed spacer region), and other eukaryotes (18S rRNA gene). The amplicon sequencing of the 16S rRNA gene revealed the dominance of Proteobacteria, Bacteroidetes, and Actinobacteria. Within the cyanobacteria, filamentous forms from the orders Synechococcales and Oscillatoriales prevailed. Furthermore, fungi in the biocrusts were dominated by Ascomycota, while the majority of reads obtained from sequencing of the 18S rRNA gene belonged to Archaeplastida. In addition, microbial photoautotrophs isolated from the biocrusts were assigned to the cyanobacterial genera Phormidesmis, Microcoleus, Wilmottia, and Oscillatoria and to two microalgal phyla Chlorophyta and Charophyta. In general, the taxonomic diversity of microorganisms in the biocrusts increased following the elevation gradient and community composition differed among the sites, suggesting that microclimatic and soil parameters might shape biocrust microbiota.
APA, Harvard, Vancouver, ISO, and other styles
24

Seitz, Steffen, Martin Nebel, Philipp Goebes, Kathrin Käppeler, Karsten Schmidt, Xuezheng Shi, Zhengshan Song, Carla L. Webber, Bettina Weber, and Thomas Scholten. "Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest." Biogeosciences 14, no. 24 (December 22, 2017): 5775–88. http://dx.doi.org/10.5194/bg-14-5775-2017.

Full text
Abstract:
Abstract. This study investigated the development of biological soil crusts (biocrusts) in an early successional subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in southeast China (biodiversity and ecosystem functioning (BEF) China), the effect of these biocrusts on sediment delivery and runoff was assessed within micro-scale runoff plots under natural rainfall, and biocrust cover was surveyed over a 5-year period. Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only 3 years. Biocrust cover was still increasing after 6 years of tree growth. Within later-stage crusts, 25 bryophyte species were determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that bryophyte-dominated biocrusts strongly decreased soil erosion, being more effective than abiotic soil surface cover. Hence, their significant role in mitigating sediment delivery and runoff generation in mesic forest environments and their ability to quickly colonise soil surfaces after disturbance are of particular interest for soil erosion control in early-stage forest plantations.
APA, Harvard, Vancouver, ISO, and other styles
25

Román, José Raúl, Emilio Rodríguez-Caballero, Borja Rodríguez-Lozano, Beatriz Roncero-Ramos, Sonia Chamizo, Pilar Águila-Carricondo, and Yolanda Cantón. "Spectral Response Analysis: An Indirect and Non-Destructive Methodology for the Chlorophyll Quantification of Biocrusts." Remote Sensing 11, no. 11 (June 5, 2019): 1350. http://dx.doi.org/10.3390/rs11111350.

Full text
Abstract:
Chlorophyll a concentration (Chla) is a well-proven proxy of biocrust development, photosynthetic organisms’ status, and recovery monitoring after environmental disturbances. However, laboratory methods for the analysis of chlorophyll require destructive sampling and are expensive and time consuming. Indirect estimation of chlorophyll a by means of soil surface reflectance analysis has been demonstrated to be an accurate, cheap, and quick alternative for chlorophyll retrieval information, especially in plants. However, its application to biocrusts has yet to be harnessed. In this study we evaluated the potential of soil surface reflectance measurements for non-destructive Chla quantification over a range of biocrust types and soils. Our results revealed that from the different spectral transformation methods and techniques, the first derivative of the reflectance and the continuum removal were the most accurate for Chla retrieval. Normalized difference values in the red-edge region and common broadband indexes (e.g., normalized difference vegetation index (NDVI)) were also sensitive to changes in Chla. However, such approaches should be carefully adapted to each specific biocrust type. On the other hand, the combination of spectral measurements with non-linear random forest (RF) models provided very good fits (R2 > 0.94) with a mean root mean square error (RMSE) of about 6.5 µg/g soil, and alleviated the need for a specific calibration for each crust type, opening a wide range of opportunities to advance our knowledge of biocrust responses to ongoing global change and degradation processes from anthropogenic disturbance.
APA, Harvard, Vancouver, ISO, and other styles
26

Aanderud, Zachary T., Trevor B. Smart, Nan Wu, Alexander S. Taylor, Yuanming Zhang, and Jayne Belnap. "Fungal loop transfer of nitrogen depends on biocrust constituents and nitrogen form." Biogeosciences 15, no. 12 (June 22, 2018): 3831–40. http://dx.doi.org/10.5194/bg-15-3831-2018.

Full text
Abstract:
Abstract. Besides performing multiple ecosystem services individually and collectively, biocrust constituents may also create biological networks connecting spatially and temporally distinct processes. In the fungal loop hypothesis rainfall variability allows fungi to act as conduits and reservoirs, translocating resources between soils and host plants. To evaluate the extent to which biocrust species composition and nitrogen (N) form influence loops, we created a minor, localized rainfall event containing 15NH4+ and 15NO3-. We then measured the resulting δ15N in the surrounding dry cyanobacteria- and lichen-dominated crusts and grass, Achnatherum hymenoides, after 24 h. We also estimated the biomass of fungal constituents using quantitative PCR and characterized fungal communities by sequencing the 18S rRNA gene. We found evidence for the initiation of fungal loops in cyanobacteria-dominated crusts where 15N, from 15NH4+, moved 40 mm h−1 in biocrust soils with the δ15N of crusts decreasing as the radial distance from the water addition increased (linear mixed effects model (LMEM)): R2=0.67, F2,12=11, P=0.002). In cyanobacteria crusts, δ15N, from 15NH4+, was diluted as Ascomycota biomass increased (LMEM: R2=0.63, F2,8=6.8, P=0.02), Ascomycota accounted for 82 % (±2.8) of all fungal sequences, and one order, Pleosporales, comprised 66 % (±6.9) of Ascomycota. The seeming lack of loops in moss-dominated crusts may stem from the relatively large moss biomass effectively absorbing and holding N from our minor wet deposition event. The substantial movement of 15NH4+ may indicate a fungal preference for the reduced N form during amino acid transformation and translocation. We found a marginally significant enrichment of δ15N in A. hymenoides leaves but only in cyanobacteria biocrusts translocating 15N, offering evidence of links between biocrust constituents and higher plants. Our results suggest that minor rainfall events may initiate fungal loops potentially allowing constituents, like dark septate Pleosporales, to rapidly translocate N from NH4+ over NO3- through biocrust networks.
APA, Harvard, Vancouver, ISO, and other styles
27

Darrouzet-Nardi, Anthony, Sasha C. Reed, Edmund E. Grote, and Jayne Belnap. "Patterns of longer-term climate change effects on CO<sub>2</sub> efflux from biocrusted soils differ from those observed in the short term." Biogeosciences 15, no. 14 (July 26, 2018): 4561–73. http://dx.doi.org/10.5194/bg-15-4561-2018.

Full text
Abstract:
Abstract. Biological soil crusts (biocrusts) are predicted to be sensitive to the increased temperature and altered precipitation associated with climate change. We assessed the effects of these factors on soil carbon dioxide (CO2) balance in biocrusted soils using a sequence of manipulations over a 9-year period. We warmed biocrusted soils by 2 and, later, by 4 ∘C to better capture updated forecasts of future temperature at a site on the Colorado Plateau, USA. We also watered soils to alter monsoon-season precipitation amount and frequency and had plots that received both warming and altered precipitation treatments. Within treatment plots, we used 20 automated flux chambers to monitor net soil exchange (NSE) of CO2 hourly, first in 2006–2007 and then again in 2013–2014, for a total of 39 months. Net CO2 efflux from biocrusted soils in the warming treatment increased a year after the experiment began (2006–2007). However, after 9 years and even greater warming (4 ∘C), results were more mixed, with a reversal of the increase in 2013 (i.e., controls showed higher net CO2 efflux than treatment plots) and with similarly high rates in all treatments during 2014, a wet year. Over the longer term, we saw evidence of reduced photosynthetic capacity of the biocrusts in response to both the temperature and altered precipitation treatments. Patterns in biocrusted soil CO2 exchange under experimentally altered climate suggest that (1) warming stimulation of CO2 efflux was diminished later in the experiment, even in the face of greater warming; and (2) treatment effects on CO2 flux patterns were likely driven by changes in biocrust species composition and by changes in root respiration due to vascular plant responses.
APA, Harvard, Vancouver, ISO, and other styles
28

Roncero-Ramos, Beatriz, M. Ángeles Muñoz-Martín, Sonia Chamizo, Lara Fernández-Valbuena, Diego Mendoza, Elvira Perona, Yolanda Cantón, and Pilar Mateo. "Polyphasic evaluation of key cyanobacteria in biocrusts from the most arid region in Europe." PeerJ 7 (January 3, 2019): e6169. http://dx.doi.org/10.7717/peerj.6169.

Full text
Abstract:
Cyanobacteria are key microbes in topsoil communities that have important roles in preventing soil erosion, carbon and nitrogen fixation, and influencing soil hydrology. However, little is known regarding the identity and distribution of the microbial components in the photosynthetic assemblages that form a cohesive biological soil crust (biocrust) in drylands of Europe. In this study, we investigated the cyanobacterial species colonizing biocrusts in three representative dryland ecosystems from the most arid region in Europe (SE Spain) that are characterized by different soil conditions. Isolated cyanobacterial cultures were identified by a polyphasic approach, including 16S rRNA gene sequencing, phylogenetic relationship determination, and morphological and ecological habitat assessments. Three well-differentiated groups were identified: heterocystous-cyanobacteria (Nostoc commune,Nostoc calcicola,Tolypothrix distortaandScytonema hyalinum), which play an important role in N and C cycling in soil; nonheterocystous bundle-forming cyanobacteria (Microcoleus steenstrupii,Trichocoleus desertorum, andSchizothrixcf. calcicola); and narrow filamentous cyanobacteria (Leptolyngbya frigidaandOculatella kazantipica), all of which are essential genera for initial biocrust formation. The results of this study contribute to our understanding of cyanobacterial species composition in biocrusts from important and understudied European habitats, such as the Mediterranean Basin, a hotspot of biodiversity, where these species are keystone pioneer organisms.
APA, Harvard, Vancouver, ISO, and other styles
29

Cantón, Yolanda, Jose Raúl Román, Sonia Chamizo, Emilio Rodríguez-Caballero, and María José Moro. "Dynamics of organic carbon losses by water erosion after biocrust removal." Journal of Hydrology and Hydromechanics 62, no. 4 (December 1, 2014): 258–68. http://dx.doi.org/10.2478/johh-2014-0033.

Full text
Abstract:
Abstract In arid and semiarid ecosystems, plant interspaces are frequently covered by communities of cyanobacteria, algae, lichens and mosses, known as biocrusts. These crusts often act as runoff sources and are involved in soil stabilization and fertility, as they prevent erosion by water and wind, fix atmospheric C and N and contribute large amounts of C to soil. Their contribution to the C balance as photosynthetically active surfaces in arid and semiarid regions is receiving growing attention. However, very few studies have explicitly evaluated their contribution to organic carbon (OC) lost from runoff and erosion, which is necessary to ascertain the role of biocrusts in the ecosystem C balance. Furthermore, biocrusts are not resilient to physical disturbances, which generally cause the loss of the biocrust and thus, an increase in runoff and erosion, dust emissions, and sediment and nutrient losses. The aim of this study was to find out the influence of biocrusts and their removal on dissolved and sediment organic carbon losses. One-hour extreme rainfall simulations (50 mm h-1) were performed on small plots set up on physical soil crusts and three types of biocrusts, representing a development gradient, and also on plots where these crusts were removed from. Runoff and erosion rates, dissolved organic carbon (DOC) and organic carbon bonded to sediments (SdOC) were measured during the simulated rain. Our results showed different SdOC and DOC for the different biocrusts and also that the presence of biocrusts substantially decreased total organic carbon (TOC) (average 1.80±1.86 g m-2) compared to physical soil crusts (7.83±3.27 g m-2). Within biocrusts, TOC losses decreased as biocrusts developed, and erosion rates were lower. Thus, erosion drove TOC losses while no significant direct relationships were found between TOC losses and runoff. In both physical crusts and biocrusts, DOC and SdOC concentrations were higher during the first minutes after runoff began and decreased over time as nutrient-enriched fine particles were washed away by runoff water. Crust removal caused a strong increase in water erosion and TOC losses. The strongest impacts on TOC losses after crust removal occurred on the lichen plots, due to the increased erosion when they were removed. DOC concentration was higher in biocrust-removed soils than in intact biocrusts, probably because OC is more strongly retained by BSC structures, but easily blown away in soils devoid of them. However, SdOC concentration was higher in intact than removed biocrusts associated with greater OC content in the top crust than in the soil once the crust is scraped off. Consequently, the loss of biocrusts leads to OC impoverishment of nutrient-limited interplant spaces in arid and semiarid areas and the reduction of soil OC heterogeneity, essential for vegetation productivity and functioning of this type of ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
30

Lázaro, Roberto, Adolfo Calvo-Cases, Eva Arnau-Rosalén, Consuelo Rubio, David Fuentes, and Clément López-Canfín. "Defining minimum runoff length allows for discriminating biocrusts and rainfall events." Journal of Hydrology and Hydromechanics 69, no. 4 (November 15, 2021): 387–99. http://dx.doi.org/10.2478/johh-2021-0029.

Full text
Abstract:
Abstract The runoff coefficient (RC) is widely used despite requiring to know the effective contributing area, which cannot be known a priori. In a previous work, we defined runoff length (RL), which is difficult to measure. This work aimed to define the minimum RL (mRL), a quantitative and easy proxy of RL, for use in a pilot study on biocrusts in the Tabernas Desert, Spain. We show that RC decreases according to a hyperbola when the contributing area increases, the independent variable being the length of the effective contributing area and its coefficient involving the effects of rainfall and surface features and antecedent conditions. We defined the mRL as the length of the effective contributing area making RC = 1, which is calculated regardless of the area. We studied mRL from three biocrust types and 1411 events clustered in seven categories. The mRL increased with rain volume and intensity, catchment area and slope, whereas plant cover and biocrust succession (with one exception) had a negative effect. Depending on the plot, mRL reached up 3.3–4.0 m on cyanobacterial biocrust, 2.2–7.5 m on the most widespread lichens, and 1.0–1.5 m on late-successional lichens. We discuss the relationships of mRL with other runoff-related parameters.
APA, Harvard, Vancouver, ISO, and other styles
31

Riveras-Muñoz, Nicolás, Steffen Seitz, Kristina Witzgall, Victoria Rodríguez, Peter Kühn, Carsten W. Mueller, Rómulo Oses, Oscar Seguel, Dirk Wagner, and Thomas Scholten. "Biocrust-linked changes in soil aggregate stability along a climatic gradient in the Chilean Coastal Range." SOIL 8, no. 2 (December 7, 2022): 717–31. http://dx.doi.org/10.5194/soil-8-717-2022.

Full text
Abstract:
Abstract. Biological soil crusts (biocrusts) composed of cyanobacteria, bacteria, algae, fungi, lichens, and bryophytes stabilize the soil surface. This effect has mainly been studied in arid climates, where biocrusts constitute the main biological agent to stabilize and connect soil aggregates. Besides, biocrusts are an integral part of the soil surface under Mediterranean and humid climate conditions, mainly covering open spaces in forests and on denuded lands. They often develop after vegetation disturbances, when their ability to compete with vascular plants increases, acting as pioneer communities and affecting the stability of soil aggregates. To better understand how biocrusts mediate changes in soil aggregate stability under different climate conditions, we analyzed soil aggregate samples collected under biocrust communities from four national parks in Chile along a large climatic gradient ranging from (north to south) arid (Pan de Azúcar, PA), semi-arid (Santa Gracia, SG), Mediterranean (La Campana, LC) to humid (Nahuelbuta, NA). Biocrust communities showed a stabilizing effect on the soil aggregates in dry fractions for the three northern sites and the wet aggregates for the southernmost site. Here, permanent vascular plants and higher contents of organic carbon and nitrogen in the soil control aggregate stability more than biocrusts, which are in intense competition with higher plant communities. Moreover, we found an increase in stability for aggregate size classes < 2.0 and 9.5–30.0 mm. The geometric mean diameter of the soil aggregates showed a clear effect due to the climatic gradient, indicating that the aggregate stability presents a log-normal instead of a normal distribution, with a trend of low change between aggregate size fractions. Based on our results, we assume that biocrusts affect the soil structure in all climates. Their role in aggregate stability is masked under humid conditions by higher vegetation and organic matter contents in the topsoil.
APA, Harvard, Vancouver, ISO, and other styles
32

Jia, Rongliang, Yun Zhao, Yanhong Gao, Rong Hui, Haotian Yang, Zenru Wang, and Yixuan Li. "Antagonistic effects of drought and sand burial enable the survival of the biocrust moss <i>Bryum argenteum</i> in an arid sandy desert." Biogeosciences 15, no. 4 (February 23, 2018): 1161–72. http://dx.doi.org/10.5194/bg-15-1161-2018.

Full text
Abstract:
Abstract. Biocrust moss is an essential soil surface bio-cover. It can represent the latest succession stage among the diverse range of surface-dwelling cryptogams (e.g., cyanobacteria, green algae, and lichen, which are also referred to as biocrusts), and it can make a major contribution to soil stability and fertility in many arid sandy desert ecosystems. The soil surface represents a very large ecological niche that is poikilohydric in nature. Biocrust moss is therefore highly susceptible to drought and sand burial, which are two ubiquitous stressors in arid sandy deserts. However, little information is available regarding the mechanism by which biocrust moss can survive and flourish in these habitats when stressed simultaneously by the two stressors. The combined effects of drought and sand burial were evaluated in a field experiment using the predominant biocrust moss, Bryum argenteum Hedw., in the Tengger Desert, China. Drought was simulated by applying distilled water in three artificial rainfall regimes at 8-day intervals in spring and autumn: 4 and 6 mm (average rainfall, control), 2 and 3 mm (double drought), and 1 and 1.5 mm (4-fold drought), respectively. The effect of sand burial was determined by applying six treatments, i.e., sand depths of 0 (control), 0.5, 1, 2, 4, and 10 mm. The four parameters of chlorophyll a content, PSII photochemical efficiency, regeneration potential, and shoot upgrowth were evaluated in the moss. It was found that the combined effects of drought and sand burial did not exacerbate the single negative effects of the four parameters tested. Drought significantly ameliorated the negative effects of deep-sand burial on the retention of chlorophyll a content, PSII photochemical efficiency, and the regeneration potential of B. argenteum. Sand burial diminished and even reversed the negative effects of drought on the maintenance of chlorophyll a content, PSII photochemical efficiency, and regeneration potential. Although drought and sand burial imposed an additive negative effect on shoot upgrowth, which suggested a trade-off between growth ability and stress tolerance, their mutually antagonistic effect on the physiological vigor of B. argenteum provided an opportunity for the biocrust moss to overcome the two co-occurring stressors. In addition to providing a strong stress tolerance, drought and sand burial may provide an important mechanism for the biodiversity maintenance of biocrust mosses in arid sandy ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
33

Panigada, Cinzia, Giulia Tagliabue, Eli Zaady, Offer Rozenstein, Roberto Garzonio, Biagio Di Mauro, Mattia De Amicis, et al. "A new approach for biocrust and vegetation monitoring in drylands using multi-temporal Sentinel-2 images." Progress in Physical Geography: Earth and Environment 43, no. 4 (April 14, 2019): 496–520. http://dx.doi.org/10.1177/0309133319841903.

Full text
Abstract:
Drylands, one of the planet’s largest terrestrial biomes, are suggested to be greatly threatened by climate change. Drylands are usually sparsely vegetated, and biological soil crusts (biocrusts) – that is, soil surface communities of cyanobacteria, mosses and/or lichens – can cover up to 70% of dryland cover. As they control key ecosystem processes, monitoring their spatial and temporal distribution can provide highly valuable information. In this study, we examine the potential of European Space Agency’s (ESA) Sentinel-2 (S2) data to characterize the spatial and temporal development of biocrust and vascular plant greening along a rainfall gradient of the Negev Desert (Israel). First, the chlorophyll a absorption feature in the red region (CRred) was identified as the index mostly sensitive to changes in biocrust greening but minimally affected by changes in soil moisture. This index was then computed on the S2 images and enabled monitoring the phenological dynamics of different dryland vegetation components from August 2015 to August 2017. The analysis of multi-temporal S2 images allowed us to successfully track the biocrust greening within 15 days from the first seasonal rain events in the north of Negev, and to identify the maximum development of annual vascular plants and greening of perennial ones. These results show potential for monitoring arid and semi-arid environments using the newly available S2 images, allowing new insights into dryland vegetation dynamics.
APA, Harvard, Vancouver, ISO, and other styles
34

Mugnai, Gianmarco, Federico Rossi, Cristina Mascalchi, Stefano Ventura, and Roberto De Philippis. "High Arctic biocrusts: characterization of the exopolysaccharidic matrix." Polar Biology 43, no. 11 (September 23, 2020): 1805–15. http://dx.doi.org/10.1007/s00300-020-02746-8.

Full text
Abstract:
Abstract Biocrusts can be found in a wide array of habitats, where they provide important ecosystem services. These microbial associations are particularly important in High Arctic environments, where biocrust colonize the newly exposed barren soil after glacier retreat and significantly contribute to soil stabilization and nutrient cycling. Starting from incipient, structurally simple biolayers, they develop in complexity, increasing from the glacier terminus. Starting from a simple community structure, mainly constituted by cyanobacteria, heterotrophic bacteria and fungi immersed in a self-secreted extracellular polymeric matrix (cyanobacterial crusts), they later may recruit mosses and lichens (moss crusts and lichen crusts, respectively). The extracellular polymeric matrix protects the biocrust community from abiotic constraints, notably drought and freezing stress, from external physical harming factors, and from predation. The physicochemical characteristics of the extracellular matrix are related to several of its properties, such as its soil-stabilizing effect and water retention. We analysed the chemical (monosaccharidic composition) and macromolecular (molecular weight distribution) properties of the extracellular polymeric matrix of biocrusts with different morphologies collected in northwestern Spitsbergen, Norway. The uronic acid content and molecular weight (MW) distribution of the extracellular polysaccharidic matrices (EPMs) appeared in accordance with the developmental stages of the biocrusts. The MW distribution also showed significant differences between the samples, possibly reflecting differences in microbial enzymatic activities leading to the degradation of high-MW polymers into smaller compounds. The MW distribution profiles presented some important differences, reflecting differences in environmental conditions and, probably, the seasonal variance in microbial community composition that is known to characterize the environment examined in the present study.
APA, Harvard, Vancouver, ISO, and other styles
35

Song, Yongsheng, Renlu Liu, Liren Yang, Xiaoyu Xiao, and Genhe He. "Effects of Moss-Dominated Biocrusts on Soil Microbial Community Structure in an Ionic Rare Earth Tailings Area of Southern China." Toxics 10, no. 12 (December 13, 2022): 782. http://dx.doi.org/10.3390/toxics10120782.

Full text
Abstract:
Moss-dominated biocrusts are widespread in degraded mining ecosystems and play an important role in soil development and ecosystem primary succession. In this work, the soil microbial community structure under moss-dominated biocrusts in ionic rare earth tailings was investigated to reveal the relationship between different types of moss and taxonomy/function of microbiomes. The results showed that microbial community structure was significantly influenced by four moss species (Claopodium rugulosifolium, Orthotrichum courtoisii, Polytrichum formosum, and Taxiphyllum giraldii). The microbial assembly was more prominent in Claopodium rugulosifolium soil than in the other moss soils, which covers 482 bacterial genera (including 130 specific genera) and 338 fungal genera (including 72 specific genera), and the specific genus is 40% to 1300% higher than that of the other three mosses. Although only 141 and 140 operational taxonomic units (OTUs) rooted in bacterial and fungal clusters, respectively, were shared by all four mosses grown in ionic rare earth tailings, this core microbiome could represent a large fraction (28.2% and 38.7%, respectively) of all sequence reads. The bacterial population and representation are the most abundant, which mainly includes Sphingomonas, Clostridium_sensu_stricto_1, and unclassified filamentous bacteria and chloroplasts, while the fungi population is relatively singular. The results also show that biocrust dominated by moss has a positive effect on soil microbe activity and soil nutrient conditions. Overall, these findings emphasize the importance of developing moss-dominated biocrusts as hotspots of ecosystem functioning and precious microbial genetic resources in degraded rare-earth mining areas and promoting a better understanding of biocrust ecology in humid climates under global change scenarios.
APA, Harvard, Vancouver, ISO, and other styles
36

Baldauf, Selina, Mónica Ladrón de Guevara, Fernando T. Maestre, and Britta Tietjen. "Soil moisture dynamics under two rainfall frequency treatments drive early spring CO2 gas exchange of lichen-dominated biocrusts in central Spain." PeerJ 6 (November 16, 2018): e5904. http://dx.doi.org/10.7717/peerj.5904.

Full text
Abstract:
Background Biocrusts, communities dominated by mosses, lichens, cyanobacteria, and other microorganisms, largely affect the carbon cycle of drylands. As poikilohydric organisms, their activity time is often limited to short hydration events. The photosynthetic and respiratory response of biocrusts to hydration events is not only determined by the overall amount of available water, but also by the frequency and size of individual rainfall pulses. Methods We experimentally assessed the carbon exchange of a biocrust community dominated by the lichen Diploschistes diacapsis in central Spain. We compared the effect of two simulated precipitation patterns providing the same overall amount of water, but with different pulse sizes and frequency (high frequency: five mm/day vs. low frequency: 15 mm/3 days), on net/gross photosynthesis and dark respiration. Results Radiation and soil temperature, together with the watering treatment, affected the rates of net and gross photosynthesis, as well as dark respiration. On average, the low frequency treatment showed a 46% ± 3% (mean ± 1 SE) lower rate of net photosynthesis, a 13% ± 7% lower rate of dark respiration, and a 24% ± 8% lower rate of gross photosynthesis. However, on the days when samples of both treatments were watered, no differences between their carbon fluxes were observed. The carbon flux response of D. diacapsis was modulated by the environmental conditions and was particularly dependent on the antecedent soil moisture. Discussion In line with other studies, we found a synergetic effect of individual pulse size, frequency, environmental conditions, and antecedent moisture on the carbon exchange fluxes of biocrusts. However, most studies on this subject were conducted in summer and they obtained results different from ours, so we conclude that there is a need for long-term experiments of manipulated precipitation impacts on the carbon exchange of biocrusts. This will enable a more complete assessment of the impacts of climate change-induced alterations in precipitation patterns on biocrust communities.
APA, Harvard, Vancouver, ISO, and other styles
37

Kidron, Giora J. "Linking surface and subsurface properties of biocrusted and non-biocrusted habitats of fine-grained fluvial sediments (playas) from the Negev Desert." Journal of Hydrology and Hydromechanics 64, no. 2 (June 1, 2016): 141–49. http://dx.doi.org/10.1515/johh-2016-0006.

Full text
Abstract:
AbstractWith biocrusts playing a cardinal role in C and N fixation in arid zones, information regarding the factors that determine their limits of growth is of uttermost importance for the study of ecosystem structure and function. This is also the case in the western Negev dunefields, where although abundant on the sandy surfaces, biocrusts are scarce on fine-grained (mainly loessial) sediments, termed playas. In the Nizzana research site (NRS), visibly distinct surfaces, with and without biocrusts were noted within a single playa. In an attempt to characterize these distinct surfaces, a set of random measurements were carried out, which included measurements of crack density, microrelief and chlorophyll content of the upper 0–1 cm. Following a cluster analysis, four distinct types of surfaces (hereafter habitats) were defined, one with substantial amount of chlorophyll content which can be regarded as biocrust (P4), and three non-crusted surfaces (P1–P3). Within each type, two 50 cm-deep pits were dug and the pH, electrical conductivity (EC) and fine (silt and clay) content (FC) of samples collected at 1–5, 5–10, 10–20, 20–30, 30–40 and 40–50 cm-depth were analyzed. In addition, periodical moisture measurements were carried out (in pairs) to a depth of 0–20 cm at each surface type during 2013/14. All non-crusted habitats (P1–P3) were characterized by loessial subsurface sediments. Conversely, P4 was either characterized by loessial subsurface sediments (and in this case it was characterized by a slightly concave surface) or having a sandy subsurface (at ~5–10 cm depth). While the non-crusted surfaces exhibited low moisture content, P4 exhibited deeper and higher moisture content explained either by the more sandy sediments or by lower water loss through runoff. The findings point to the close link between surface and subsurface properties and indicate that water availability may explain biocrust establishment and growth also at the loessial playa surfaces. Biocrusts may thus serve as bioindicators for habitats with high moisture content.
APA, Harvard, Vancouver, ISO, and other styles
38

Giraldo-Silva, Ana, Vanessa M. C. Fernandes, Julie Bethany, and Ferran Garcia-Pichel. "Niche Partitioning with Temperature among Heterocystous Cyanobacteria (Scytonema spp., Nostoc spp., and Tolypothrix spp.) from Biological Soil Crusts." Microorganisms 8, no. 3 (March 12, 2020): 396. http://dx.doi.org/10.3390/microorganisms8030396.

Full text
Abstract:
Heterocystous cyanobacteria of biocrusts are key players for biological fixation in drylands, where nitrogen is only second to water as a limiting resource. We studied the niche partitioning among the three most common biocrust heterocystous cyanobacteria sts using enrichment cultivation and the determination of growth responses to temperature in 30 representative isolates. Isolates of Scytonema spp. were most thermotolerant, typically growing up to 40 °C, whereas only those of Tolypothrix spp. grew at 4 °C. Nostoc spp. strains responded well at intermediate temperatures. We could trace the heat sensitivity in Nostoc spp. and Tolypothrix spp. to N2-fixation itself, because the upper temperature for growth increased under nitrogen replete conditions. This may involve an inability to develop heterocysts (specialized N2-fixing cells) at high temperatures. We then used a meta-analysis of biocrust molecular surveys spanning four continents to test the relevance of this apparent niche partitioning in nature. Indeed, the geographic distribution of the three types was clearly constrained by the mean local temperature, particularly during the growth season. This allows us to predict a potential shift in dominance in many locales as a result of global warming, to the benefit of Scytonema spp. populations.
APA, Harvard, Vancouver, ISO, and other styles
39

Rutman-Halili, Irit, Tehila Zvulun, Natali Elgabsi, Revaya Cohen, and Shlomo Sarig. "The Short and Long-term Effects on Soil Stability of Active Sand Dunes from Filter Cake Powder Administered by Dispersal and Spraying Methods." Journal of Solid Waste Technology and Management 48, no. 2 (May 1, 2022): 309–12. http://dx.doi.org/10.5276/jswtm/2022.309.

Full text
Abstract:
Active sand dunes (ASD) may cause significant damage to field crops and livelihood, and therefore, it is necessary to find a treatment that would enhance ADS soil stability. Biological soil crusts (biocrusts) contain microorganisms on the soil surface. Metabolic polysaccharides secreted by biocrust cyanobacteria glue the soil particles into aggregates, thereby stabilizing the soil surface.<br/> Filter cake powder (FCP) is a waste by-product in the final stages of the production of sugar from sugarcane, and its disposal causes significant environmental pollution. FCP contains high concentrations of polysaccharides, and has recently been shown to be a soil stability enhancing agent in ASD. It has been reported that adding FCP to the ASD soil surface by dispersal significantly increases the level of penetration resistance of soil biocrust (PRSB) nine weeks after a single treatment.<br/> However, it was not known whether a similar effect could be obtained by administering the FCP in liquid form by means of spraying. It has now been found that spraying a water solution of FCP onto the ASD soil surface significantly increased the level of penetration resistance of soil biocrust (PRSB) three weeks after a single treatment.<br/> These results suggest that FCP spraying can be used as a short-term soil stability-enhancing agent for ASD, while administration by dispersal might be more efficient over the long term.<br/> Finally, an additional benefit of using FCP as a soil stabilizer, either by dispersal, or by spraying, is the reduction in environmental pollution that would otherwise result from the disposal of FCP solid waste.
APA, Harvard, Vancouver, ISO, and other styles
40

Büdel, Burkhard, Wendy J. Williams, and Hans Reichenberger. "Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf Savannah, Queensland, Australia." Biogeosciences 15, no. 2 (January 26, 2018): 491–505. http://dx.doi.org/10.5194/bg-15-491-2018.

Full text
Abstract:
Abstract. Biological soil crusts (biocrusts) are a common element of the Queensland (Australia) dry savannah ecosystem and are composed of cyanobacteria, algae, lichens, bryophytes, fungi and heterotrophic bacteria. Here we report how the CO2 gas exchange of the cyanobacteria-dominated biocrust type from Boodjamulla National Park in the north Queensland Gulf Savannah responds to the pronounced climatic seasonality and on their quality as a carbon sink using a semi-automatic cuvette system. The dominant cyanobacteria are the filamentous species Symplocastrum purpurascens together with Scytonema sp. Metabolic activity was recorded between 1 July 2010 and 30 June 2011, during which CO2 exchange was only evident from November 2010 until mid-April 2011, representative of 23.6 % of the 1-year recording period. In November at the onset of the wet season, the first month (November) and the last month (April) of activity had pronounced respiratory loss of CO2. The metabolic active period accounted for 25 % of the wet season and of that period 48.6 % was net photosynthesis (NP) and 51.4 % dark respiration (DR). During the time of NP, net photosynthetic uptake of CO2 during daylight hours was reduced by 32.6 % due to water supersaturation. In total, the biocrust fixed 229.09 mmol CO2 m−2 yr−1, corresponding to an annual carbon gain of 2.75 g m−2 yr−1. Due to malfunction of the automatic cuvette system, data from September and October 2010 together with some days in November and December 2010 could not be analysed for NP and DR. Based on climatic and gas exchange data from November 2010, an estimated loss of 88 mmol CO2 m−2 was found for the 2 months, resulting in corrected annual rates of 143.1 mmol CO2 m−2 yr−1, equivalent to a carbon gain of 1.7 g m−2 yr−1. The bulk of the net photosynthetic activity occurred above a relative humidity of 42 %, indicating a suitable climatic combination of temperature, water availability and light intensity well above 200 µmol photons m−2 s−1 photosynthetic active radiation. The Boodjamulla biocrust exhibited high seasonal variability in CO2 gas exchange pattern, clearly divided into metabolically inactive winter months and active summer months. The metabolic active period commences with a period (of up to 3 months) of carbon loss, likely due to reestablishment of the crust structure and restoration of NP prior to about a 4-month period of net carbon gain. In the Gulf Savannah biocrust system, seasonality over the year investigated showed that only a minority of the year is actually suitable for biocrust growth and thus has a small window for potential contribution to soil organic matter.
APA, Harvard, Vancouver, ISO, and other styles
41

Muselli, Marc, and Daniel Beysens. "Mapping past, present and future dew and rain water resources for biocrust evolution in southern Africa." Journal of Hydrology and Hydromechanics 69, no. 4 (November 15, 2021): 400–420. http://dx.doi.org/10.2478/johh-2021-0030.

Full text
Abstract:
Abstract Biocrust sustainability relies on dew and rain availability. A study of dew and rain resources in amplitude and frequency and their evolution is presented from year 2001 to 2020 in southern Africa (Namibia, Botswana, South Africa) where many biocrust sites have been identified. The evaluation of dew is made from a classical energy balance model using meteorological data collected in 18 stations, where are also collected rain data. One observes a strong correlation between the frequency of dew and rain and the corresponding amplitudes. There is a general tendency to see a decrease in dew yield and dew frequency with increasing distance from the oceans, located west, east and south, due to decreasing RH, with a relative minimum in the desert of Kalahari (Namibia). Rain amplitude and frequency decreases when going to west and north. Short-term dew/rain correlation shows that largest dew yields clearly occur during about three days after rainfall, particularly in the sites where humidity is less. The evolution in the period corresponds to a decrease of rain precipitations and frequency, chiefly after 2010, an effect which has been cyclic since now. The effect is more noticeable towards north. An increase of dew yield and frequency is observed, mainly in north and south-east. It results in an increase of the dew contribution with respect to rain, especially after 2010. As no drastic changes in the distribution of biomass of biocrusts have been reported in this period, it is likely that dew should compensate for the decrease in rain precipitation. Since the growth of biocrust is related to dew and rain amplitude and frequency, future evolution should be characterized by either the rain cycle or, due to global change, an acceleration of the present tendency, with more dew and less rainfalls.
APA, Harvard, Vancouver, ISO, and other styles
42

Rutman-Halili, Irit, Tehila Zvulun, Natali Elgabsi, Revaya Cohen, Shlomo Sarig, and Jiftach Ben-Asher. "Use of Filter Cake Powder for Enhancing Soil Stability of Active Sand Dunes." Journal of Solid Waste Technology and Management 46, no. 3 (August 1, 2020): 252–57. http://dx.doi.org/10.5276/jswtm/2020.252.

Full text
Abstract:
Filter cake powder (FCP) is a residual material and the main solid waste of sugar production from sugarcane. This material contains high concentrations of polysaccharides and fats. FCP has previously been shown to act as a soil improver. Active sand dunes (ASD) in arid and semiarid regions, cover agriculture fields, and cause significant damage to field crops and livelihood. Therefore, it is necessary to find a treatment which would improve ADS soil stability. Biological soil crusts (biocrusts) are communities of living organisms on the soil surface in arid and semi-arid ecosystems. It was clearly shown that metabolic polysaccharides secreted by biocrust cyanobacteria, glue the soil particles to aggregates which form the crust layer, thereby stabilizing the soil surface. The aim of this study was to investigate the effect of FCP on ASD stability. We hypothesized that the addition of FCP to the ASD surface would enhance soil polysaccharide content, and that this would lead to soil stabilization improvement. The degree of soil stability was determined using penetration resistance soil biocrust (PRSB) measurements. It was found that FCP treatment increased PRSB significantly when compared with control. These results suggest that FCP can be used as a soil stability enhancing agent in ASD.
APA, Harvard, Vancouver, ISO, and other styles
43

Yadav, Priya, Rahul Prasad Singh, Abeer Hashem, Elsayed Fathi Abd_Allah, Gustavo Santoyo, Ajay Kumar, and Rajan Kumar Gupta. "Enhancing Biocrust Development and Plant Growth through Inoculation of Desiccation-Tolerant Cyanobacteria in Different Textured Soils." Microorganisms 11, no. 10 (October 7, 2023): 2507. http://dx.doi.org/10.3390/microorganisms11102507.

Full text
Abstract:
In recent years, there has been a burgeoning interest in the utilization of cyanobacteria for the purpose of land rehabilitation via enhancements in soil fertility, prevent erosion, and counter desertification. This study evaluated the ability of Nostoc calcicola BOT1, Scytonema sp. BOT2, and their consortia to form biocrusts on the substrate of coarse sand, fine sand, and loamy soil. A nutrient- and water-deficient substrate was inoculated with cyanobacteria to facilitate biocrust formation and evaluate their impact on agriculture. Cyanobacteria inoculation resulted in significant improvements in soil fertility, especially in coarse and fine sand, which initially had the lowest fertility. The findings of this investigation underscore that the consortium of cyanobacteria exhibited greater efficacy than individual strains in enhancing soil fertility and stimulating plant growth. The loamy soil treated with the consortium had the highest plant growth across all soil types, in contrast to the individual strains. The consortium of cyanobacteria showed promising results in promoting biocrust formation and fostering rice seedling growth in fine sand. This study provides empirical evidence supporting the potential utility of cyanobacterial consortia as a valuable tool for the rehabilitation of degraded land. Furthermore, the results indicate that cyanobacterial species can persist in soil environments even following prolonged periods of desiccation.
APA, Harvard, Vancouver, ISO, and other styles
44

Dai, Licong, Ruiyu Fu, Xiaowei Guo, Yangong Du, Guangmin Cao, Huakun Zhou, and Zhongmin Hu. "Biocrust-reduced soil water retention and soil infiltration in an alpine Kobresia meadow." Hydrology and Earth System Sciences 27, no. 23 (December 1, 2023): 4247–56. http://dx.doi.org/10.5194/hess-27-4247-2023.

Full text
Abstract:
Abstract. Biocrust is a key component of ecosystems and plays a vital role in altering hydrological processes in terrestrial ecosystems. The impacts of biocrust on hydrological processes in arid and semi-arid ecosystems have been widely documented. However, the effects and mechanisms of biocrust on soil hydrological processes in alpine ecosystems are still poorly understood. In this study, we selected two meadow types from the northern Qinghai–Tibet Plateau: normal Kobresia meadow (NM) and biocrust meadow (BM). Both the soil hydrological and physicochemical properties were examined. We found that, in the 0–30 cm soil layer, soil water retention and soil water content in NM were higher than those in BM, whereas the 30–40 cm layer's soil water retention and soil water content in NM were lower than those in BM. The topsoil infiltration rate in BM was lower than that in NM. Furthermore, the physicochemical properties were different between NM and BM. The 0–10 cm soil layer's clay content in BM was 9 % higher than that in NM, whereas the 0–30 cm layer's soil capillary porosity in NM was higher than that in BM. In addition, the 0–20 cm layer's soil total nitrogen (TN) and soil organic matter (SOM) in NM were higher than those in BM, implying that the presence of biocrust may not favor the formation of soil nutrients owing to its lower soil microbial biomass carbon and microbial biomass nitrogen. Overall, soil water retention was determined by SOM by altering the soil capillary porosity and bulk density. Our findings suggest that the establishment of cyanobacteria crust biocrust may not improve soil water retention and infiltration, and the soil in cyanobacteria crust meadows could be more vulnerable to runoff generation and consequent soil erosion. These results provide a systematic and comprehensive understanding of the effects of biocrust on the soil hydrology of alpine ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
45

Sepehr, Adel, Atoosa Gholamhosseinian, and Iraj Emadodin. "The effects of biocrusts on soil parameters in a semi-arid pediment at north-eastern Iran." Revista de Geomorfologie 22, no. 1 (December 13, 2020): 5–19. http://dx.doi.org/10.21094/rg.2020.094.

Full text
Abstract:
The biocrusts are organized by soil-surface communities of biota that live within or on the very top of soil surface and play an important role in soil conservation. They include lichens, mosses, fungi, cyanobacteria, eukaryotic algae, and other heterotrophic bacteria. The interaction between biocrusts and soil is very important and good awareness from that help to better manage soil specially in arid and semi-arid areas. The linkage between cyanobacteria species and soil physicochemical parameters and mineralogy in two geomorphic zones in the northeastern Iran was studied. Samples were collected in summer along a linear transect by using 50 x 50 cm quadrates for each study zone. Individual mineral soil particles were analyzed by a scanning electron microscopy (SEM). The amounts of Na, K, Ca, and Mg contents as well as EC and SOC altered significantly between two study zones. Biocrusts increased levels of organic carbon, pH, calcium carbonate, exchangeable sodium and potassium percentages. The main soil properties of SOC, CaCO3 and amount of clay changed among biocrust sand bare soils.
APA, Harvard, Vancouver, ISO, and other styles
46

Sommer, Veronika, Tatiana Mikhailyuk, Karin Glaser, and Ulf Karsten. "Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach." Microorganisms 8, no. 11 (October 27, 2020): 1667. http://dx.doi.org/10.3390/microorganisms8111667.

Full text
Abstract:
Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community “biocrust” comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. The majority of taxa found were common in saline habitats, whereas some were more likely to occur in nonsaline environments. Consequently, biocrusts in saline environments of potash tailing piles contain unique microalgae and cyanobacteria that will possibly reveal several new taxa in more detailed future studies and, hence, provide new data on the biodiversity, as well as new candidates for applied research.
APA, Harvard, Vancouver, ISO, and other styles
47

Williams, Wendy J., Susanne Schmidt, Eli Zaady, Bruce Alchin, Than Myint Swe, Stephen Williams, Madeline Dooley, et al. "Resting Subtropical Grasslands from Grazing in the Wet Season Boosts Biocrust Hotspots to Improve Soil Health." Agronomy 12, no. 1 (December 28, 2021): 62. http://dx.doi.org/10.3390/agronomy12010062.

Full text
Abstract:
Effective grazing management in Australia’s semi-arid rangelands requires monitoring landscape conditions and identifying sustainable and productive practice through understanding the interactions of environmental factors and management of soil health. Challenges include extreme rainfall variability, intensifying drought, and inherently nutrient-poor soils. We investigated the impacts of grazing strategies on landscape function—specifically soil health—as the foundation for productive pastures, integrating the heterogenous nature of grass tussocks and the interspaces that naturally exist in between them. At Wambiana—a long-term research site in north-eastern Australia—we studied two soil types, two stocking rates (high, moderate), and resting land from grazing during wet seasons (rotational spelling). Rotational spelling had the highest biocrust (living soil cover), in interspaces and under grass tussocks. Biocrusts were dominated by cyanobacteria that binds soil particles, reduces erosion, sequesters carbon, fixes nitrogen, and improves soil fertility. Rotational spelling with a moderate stocking rate emerged as best practice at these sites, with adjustment of stocking rates in line with rainfall and soil type recommended. In drought-prone environments, monitoring the presence and integrity of biocrusts connects landscape function and soil health. Biocrusts that protect and enrich the soil will support long-term ecosystem integrity and economic profitability of cattle production in rangelands.
APA, Harvard, Vancouver, ISO, and other styles
48

Garibotti, Irene A., Marina Gonzalez Polo, and Patricia Satti. "Compost promotes biocrust and plant growth in greenhouse cocultures for dryland restoration." Restoration Ecology, September 19, 2023. http://dx.doi.org/10.1111/rec.14020.

Full text
Abstract:
Biocrusts and plants are the main ground cover and provide multiple ecosystem functions in arid and semiarid areas. As land degradation worsens and waste management is ever more pressing, the use of composted waste appears as a sustainable restoration practice to enhance vegetation reestablishment, but its effects on biocrusts still remain largely understudied. Moreover, developing appropriate methods for the co‐introduction of plants and biocrusts can be an emerging approach to reconstruct the biocrust/plant interaction and their associated functions. We evaluated the effect of different compost types on biocrust and plant cocultivations. We performed a greenhouse mesocosm experiment using urban organic solid waste and sewage sludge composts to grow a moss‐dominated biocrust and seedlings of two pioneer shrubs (Senecio filaginoides and Acaena splendens) in the Patagonian steppe. Both compost types successfully enhanced biocrust cover and chlorophyll a development, with cultured biocrusts being compositionally similar to the natural inoculum. Only the addition of composted sewage sludge enhanced seedling growth, and biocrusts had significant but opposite effects (positive/negative) on the two plant species we used for experimentation. This difference in the biocrust/plant interaction outcome was likely mediated by the significant influence of biocrusts on the relative availability of ammonium and nitrate and possible plant species‐specific preferences for different inorganic nitrogen forms. We conclude that the application of sewage sludge compost effectively improves the success of biocrust and plant cocultures, but species‐specific differences in the performance of seedlings growing in biocrusted soils impose limits on attempts to promote biocrust and plant joint restoration.
APA, Harvard, Vancouver, ISO, and other styles
49

Richardson, Andrew D., Gary V. Kong, Katrina M. Taylor, James M. Le Moine, Matthew A. Bowker, Jarrett J. Barber, David Basler, et al. "Soil-atmosphere fluxes of CO2, CH4, and N2O across an experimentally-grown, successional gradient of biocrust community types." Frontiers in Microbiology 13 (September 26, 2022). http://dx.doi.org/10.3389/fmicb.2022.979825.

Full text
Abstract:
Biological soil crusts (biocrusts) are critical components of dryland and other ecosystems worldwide, and are increasingly recognized as novel model ecosystems from which more general principles of ecology can be elucidated. Biocrusts are often diverse communities, comprised of both eukaryotic and prokaryotic organisms with a range of metabolic lifestyles that enable the fixation of atmospheric carbon and nitrogen. However, how the function of these biocrust communities varies with succession is incompletely characterized, especially in comparison to more familiar terrestrial ecosystem types such as forests. We conducted a greenhouse experiment to investigate how community composition and soil-atmosphere trace gas fluxes of CO2, CH4, and N2O varied from early-successional light cyanobacterial biocrusts to mid-successional dark cyanobacteria biocrusts and late-successional moss-lichen biocrusts and as biocrusts of each successional stage matured. Cover type richness increased as biocrusts developed, and richness was generally highest in the late-successional moss-lichen biocrusts. Microbial community composition varied in relation to successional stage, but microbial diversity did not differ significantly among stages. Net photosynthetic uptake of CO2 by each biocrust type also increased as biocrusts developed but tended to be moderately greater (by up to ≈25%) for the mid-successional dark cyanobacteria biocrusts than the light cyanobacterial biocrusts or the moss-lichen biocrusts. Rates of soil C accumulation were highest for the dark cyanobacteria biocrusts and light cyanobacteria biocrusts, and lowest for the moss-lichen biocrusts and bare soil controls. Biocrust CH4 and N2O fluxes were not consistently distinguishable from the same fluxes measured from bare soil controls; the measured rates were also substantially lower than have been reported in previous biocrust studies. Our experiment, which uniquely used greenhouse-grown biocrusts to manipulate community composition and accelerate biocrust development, shows how biocrust function varies along a dynamic gradient of biocrust successional stages.
APA, Harvard, Vancouver, ISO, and other styles
50

Nelson, Corey, and Ferran Garcia-Pichel. "Beneficial cyanosphere heterotrophs accelerate establishment of cyanobacterial biocrust." Applied and Environmental Microbiology, August 11, 2021. http://dx.doi.org/10.1128/aem.01236-21.

Full text
Abstract:
Biological soil crusts (biocrusts) are communities of microbes that inhabit the surface of arid soils and provide essential services to dryland ecosystems. While resistant to extreme environmental conditions, biocrusts are susceptible to anthropogenic disturbances that can deprive ecosystems of these valuable services for decades. Until recently, culture-based efforts to produce inoculum for cyanobacterial biocrust restoration in the Southwestern US focused on producing and inoculating the most abundant primary producers and biocrust pioneers, Microcoleus vaginatus and members of the family Coleofasciculaceae (aka “ Microcoleus streenstrupii complex”). The discovery that a unique microbial community characterized by diazotrophs is intimately associated with M. vaginatus , known as the “cyanosphere”, suggests a symbiotic division of labor in which nutrients are traded between phototrophs and heterotrophs. To probe the potential use of such cyanosphere members in the restoration of biocrusts, we performed co-inoculations of soil substrates with cyanosphere constituents. This resulted in more rapid cyanobacterial growth over inoculations with the cyanobacterium alone. Additionally, we found that the mere addition of beneficial heterotrophs enhanced the formation of a cohesive biocrust without the need of additional phototrophic biomass within native soils that contain trace amounts of biocrust cyanobacteria. Our findings support the hitherto unknown role of beneficial heterotrophic bacteria in the establishment and growth of biocrusts and allow us to make recommendations concerning biocrust restoration efforts based on the presence of remnant biocrust communities in disturbed areas. Future biocrust restoration efforts should consider cyanobacteria and their beneficial heterotrophic community as inoculants. Importance The advancement of biocrust restoration methodologies for cyanobacterial biocrusts has been largely achieved through trial and error. Successes and failures could not always be traced back to particular factors. The investigation and application of foundational microbial interactions existing within biocrust communities is a crucial step toward informed and repeatable biocrust restoration methodologies.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography