Academic literature on the topic 'Biodegradable materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biodegradable materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biodegradable materials"
Contreras Ramírez, Jesús Miguel, Dimas Alejandro Medina, and Meribary Monsalve. "Poliésteres como Biomateriales. Una Revisión." Revista Bases de la Ciencia. e-ISSN 2588-0764 6, no. 2 (August 30, 2021): 113. http://dx.doi.org/10.33936/rev_bas_de_la_ciencia.v6i2.3156.
Full textGodavitarne, Charles, Alastair Robertson, Jonathan Peters, and Benedict Rogers. "Biodegradable materials." Orthopaedics and Trauma 31, no. 5 (October 2017): 316–20. http://dx.doi.org/10.1016/j.mporth.2017.07.011.
Full textBarber, F. Alan. "Biodegradable Materials." Sports Medicine and Arthroscopy Review 23, no. 3 (September 2015): 112–17. http://dx.doi.org/10.1097/jsa.0000000000000062.
Full textSchaschke, Carl, and Jean-Luc Audic. "Editorial: Biodegradable Materials." International Journal of Molecular Sciences 15, no. 11 (November 21, 2014): 21468–75. http://dx.doi.org/10.3390/ijms151121468.
Full textOhya, Yuichi, and Koji Nagahama. "Biodegradable polymeric materials." Drug Delivery System 23, no. 6 (2008): 618–26. http://dx.doi.org/10.2745/dds.23.618.
Full textChiellini, Emo, and Roberto Solaro. "Biodegradable Polymeric Materials." Advanced Materials 8, no. 4 (April 1996): 305–13. http://dx.doi.org/10.1002/adma.19960080406.
Full textTRZNADEL, MAREK. "Biodegradable polymer materials." Polimery 40, no. 09 (September 1995): 485–92. http://dx.doi.org/10.14314/polimery.1995.485.
Full textGarcía-Estrada, Paulina, Miguel A. García-Bon, Edgar J. López-Naranjo, Dulce N. Basaldúa-Pérez, Arturo Santos, and Jose Navarro-Partida. "Polymeric Implants for the Treatment of Intraocular Eye Diseases: Trends in Biodegradable and Non-Biodegradable Materials." Pharmaceutics 13, no. 5 (May 12, 2021): 701. http://dx.doi.org/10.3390/pharmaceutics13050701.
Full textŠárka, E., Z. Kruliš, J. Kotek, L. Růžek, A. Korbářová, Z. Bubník, and M. Růžková. "Application of wheat B-starch in biodegradable plastic materials." Czech Journal of Food Sciences 29, No. 3 (May 13, 2011): 232–42. http://dx.doi.org/10.17221/292/2010-cjfs.
Full textPopov, A. A., A. K. Zykova, and E. E. Mastalygina. "Biodegradable Composite Materials (Review)." Russian Journal of Physical Chemistry B 14, no. 3 (May 2020): 533–40. http://dx.doi.org/10.1134/s1990793120030239.
Full textDissertations / Theses on the topic "Biodegradable materials"
Tolentino, Chivite Ainhoa. "Ionic complexes of biodegradable polyelectrolytes." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/144662.
Full textMylonakis, Andreas Wei Yen. ""Biodegradable polymer adhesives, hybrids and anomaterials" /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2911.
Full textGioffré, Michela <1984>. "Biodegradable systems for the development of functional materials." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5418/.
Full textKim, Jina 1984. "Lamination of a biodegradable polymeric microchip." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35137.
Full textIncludes bibliographical references (leaf 22).
This work builds on the initial design of a polymer microchip for controlled-release drug delivery. Currently, the microchip employs a nonbiodegradable sealant layer, and the new design aims to fabricate it only of biodegradable parts. Experiments were conducted to evaluate two potential designs that are fabricated via lamination, and a final design was proposed based on the results. Design 1 sought to replace the sealant directly with a PLA backing layer, but the laminated backing layer was found to leak in 14C-dextran release experiments. Design 2 used a laminated film instead of the original injected membrane. The laminated film was optimized to a 200- [mu]m thick poly(D,L-lactic-co-glycolic acid) 2A membrane, and the film-laminated microchip was shown to release 14C-dextran within a 40-day period. The final proposed design was based on Design 2, which demonstrated more potential as a future means of drug delivery.
by Jina Kim.
S.B.
Kenar, Halime. "3d Patterned Cardiac Tissue Construct Formation Using Biodegradable Materials." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12610315/index.pdf.
Full texts Jelly) aligned parallel to each other, and biodegradable macroporous tubings to supply growth media into the structure. Poly(glycerol sebacate) (PGS) prepolimer was synthesized and blended with P(L-D,L)LA and/or PHBV, to produce aligned microfiber (dia 1.16 - 1.37 &
#956
m) mats and macroporous tubings. Hydrophilicity and softness of the polymer blends were found to be improved as a result of PGS introduction. The Wharton&rsquo
s Jelly (WJ) MSCs were characterized by determination of their cell surface antigens with flow cytometry and by differentiating them into cells of mesodermal lineage (osteoblasts, adipocytes, chondrocytes). Cardiomyogenic differentiation potential of WJ MSCs in presence of differentiation factors was studied with RT-PCR and immunocytochemistry. WJ MSCs expressed cardiomyogenic transcription factors even in their undifferentiated state. Expression of a ventricular sarcomeric protein was observed upon differentiation. The electrospun, aligned microfibrous mats of PHBV-P(L-D,L)LA-PGS blends allowed penetration of WJ MSCs and improved cell proliferation. To obtain the 3D myocardial graft, the WJ MSCs were seeded on the mats, which were then wrapped around macroporous tubings. The 3D construct (4 mm x 3.5 cm x 2 mm) was incubated in a bioreactor and maintained the uniform distribution of aligned cells for 2 weeks. The positive effect of nutrient flow within the 3D structure was significant. This study represents an important step towards obtaining a thick, autologous myocardial patch, with structure similar to native tissue and capability to grow, for ventricular restoration.
Barragán, Dan Jarry. "Biodegradability in soil determination and fate of some emerging biodegradable materials for agricultural mulching." Doctoral thesis, Universitat de Lleida, 2012. http://hdl.handle.net/10803/107948.
Full textEl propòsit d'aquesta tesi doctoral ha estat valorar el potencial de biodegradabilitat i efectes ecotòxics de diferents plàstics biodegradables per a ús agrícola sota condicions controlades al laboratori. En l'estudi es van triar set films plàstics biodegradables de diferent composició química, tant comercial com encara en fase experimental: Mater-Bi® (midó de blat de moro), Bio-Flex® (àcid polilàctic), Biofilm® (farina de cereals), Bioplast® (midó de patates), MirelTM (polihidroxialcanoatos), Ecovio® i Bionelle®, a més d'una làmina de paper (Mimgreen®). Es van realitzar dos experiments. El primer concistía en realitzar un estudi gravimètric per mesurar el grau de degradació dels plàstics mitjançant la pèrdua de pes, a més es va dur a terme un anàlisi espectroscòpic FTIR, que va permetre discernir els canvis en els entorns moleculars que faciliten o dificulten el procés de biodegradació dels materials. El segon experiment va consistir a valorar la biodegradabilitat dels materials mitjançant el disseny i construcció d'un sistema respiromètric, que va permetre mesurar amb major sensibilitat el grau de biodegradació dels materials seleccionats sota condicions de laboratori en sòl. Addicionalment es va comparar la biodegradabilitat dels materials provats amb restes d'un cultiu típic d'ús de encoixinat com és el cas del tomàquet (Lycopersicum esculentum). Finalment, es van investigar els efectes ecotòxics dels films biodegradables sobre plantes de Zea mays, cucs Eisenia fetida i l'activitat microbial del sòl, els assaigs van ser realitzats a partir de les normatives o mètodes estandarditzats vigents el que va permetre comprovar els avantatges ecològics d'aquests materials.
El propósito de la presente Tesis Doctoral ha sido valorar el potencial de biodegradabilidad y efectos ecotóxicos de diferentes plásticos biodegradables para uso agrícola bajo condiciones controladas de laboratorio en suelo. En el estudio se eligieron siete films plásticos biodegradables de diferente composición química tanto comercial como aún en fase experimental: Mater-Bi® (almidón de maíz), Bio-Flex®(ácido poliláctico), Biofilm® (harina de cereales), Bioplast® (almidón de patatas), MirelTM(polihidroxialcanoatos), Ecovio® y Bionelle®; además de una lámina para acolchado con el nombre de papel Mimgreen®. Como primer paso diferentes ensayos fueron realizados entre ellos uno gravimétrico para medir la pérdida de peso de los materiales y otro mediante análisis espectroscópico FTIR, lo que permitió discernir los cambios en los entornos moleculares que facilitan o dificultan el proceso de biodegradación de los materiales. El segundo experimento consistió en valorar la biodegradabilidad de los materiales mediante el diseño y construcción de un sistema respirométrico que permitió medir con mayor sensibilidad el grado de biodegradación de los materiales seleccionados bajo condiciones de laboratorio en suelo. Adicionalmente se comparó la biodegradabilidad de los materiales probados con restos de un cultivo típico de uso de acolchado como es el caso del tomate (Lycopersicum esculentum). Finalmente, se investigaron los efectos ecotóxicos de los films biodegradables sobre plantas de Zea mays, lombrices Eisenia fetida y la actividad microbial del suelo; los ensayos fueron realizados a partir de las normativas o métodos estandarizados vigentes lo que permitió comprobar las ventajas ecológicas de estos materiales.
Lin, Angela Sheue-Ping. "Biodegradable implants produced using fiber coating technologies." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/15927.
Full textLeadley, Robert Stuart. "The surface characterisation of novel biomedical materials." Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259860.
Full textManzanedo, Diana. "Biorubber (PGS) : evaluation of a novel biodegradable elastomer." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37687.
Full textIncludes bibliographical references (p. 49-51).
Poly(glycerol sebacate) (PGS), or biorubber, is a tough, biodegradable elastomer made from biocompatible monomers. The material was designed, synthesized and characterized in the Department of Chemical Engineering at MIT. Its main features are good mechanical properties, rubberlike elasticity and surface erosion biodegradation. PGS was proved to have similar in vitro and in vivo biocompatibility to PLGA, poly(L-lactic-co-glycolic acid), a widely used biodegradable polymer. PGS has been tested for use as nerve guide material and to fabricate artificial capillary networks for tissue engineering applications, both yielding promising results. Currently, the PGS research group continues to develop the material and to seek applications to maximize market potential and impact in the medical field, i.e. stenting (cardiovascular and non-vascular) and tissue engineering (cardiovascular and musculoskeletal). These markets were estimated at $5 billion dollars [1] and potentially over $10 billion dollars [2], respectively in the U.S. for 2004. Another promising field involves drug delivery, particularly in combination devices like drug-eluting stents. The potential non-medical applications are biodegradable rubbish bags, the absorbent material used in sanitary napkins or diapers, and even fishing lure or chewing gum.
(cont.) MIT submitted a patent application for PGS titled "Biodegradable Polymer": US2003/0118692 Al. The patent strongly presents the quality of the technology, protects methods for synthesizing the material and supports several products made from or with it; thus rendering large market potential for PGS. A patent search compares the PGS patent to intellectual property for other competing biodegradable elastomers; mainly to polymers developed by Ameer et al. in Northwestern University, using citric acid (PDC and POC) and similar to PGS in mechanical properties, elasticity and degradation mechanism. The recommended business model is to pursue development through NIH grants within MIT collaborating with Northwestern University. A joint venture for both materials can lead to founding a medical device start-up funded by SBIR grants or the Deshpande Center at MIT. After pre-clinical trials, the company may be offered for sale to larger players, i.e. Johnson & Johnson or Boston Scientific for stenting; and Genzyme, Advanced Tissue Science, or other upcoming companies focused on tissue engineering.
by Diana Manzanedo.
M.Eng.
Tiasha, Tarannum R. "Biodegradable Magnesium Implants for Medical Applications." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1491562059856412.
Full textBooks on the topic "Biodegradable materials"
Whang, Kyumin. Biodegradable materials module. Evanston, IL: Materials World Modules, 1997.
Find full textKalia, Susheel. Biodegradable green composites. Hoboken, New Jersey: John Wiley & Sons Inc., 2016.
Find full textBiodegradable materials: Production, properties, and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textservice), SpringerLink (Online, ed. Biodegradable Metals: From Concept to Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textTsuji, Hideto. Degradation of poly (lactide)- based biodegradable materials. New York: Nova Science Publishers, 2008.
Find full textCalandrelli, Luigi. Biodegradable composites for bone regeneration. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textSultana, Naznin. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textFelton, Gary P. Biodegradable polymers: Processing, degradation, and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textAbdullah, Zainab Waheed, and Yu Dong. Polyvinyl Alcohol/Halloysite Nanotube Bionanocomposites as Biodegradable Packaging Materials. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7356-9.
Full textCalandrelli, Luigi. Biodegradable composites for bone regeneration. New York: Nova Science Publishers, 2010.
Find full textBook chapters on the topic "Biodegradable materials"
Schroeter, Michael, Britt Wildemann, and Andreas Lendlein. "Biodegradable Materials." In Regenerative Medicine, 529–56. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5690-8_21.
Full textOhya, Yuichi. "Biodegradable Materials." In Encyclopedia of Polymeric Nanomaterials, 139–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_232.
Full textOhya, Yuichi. "Biodegradable Materials." In Encyclopedia of Polymeric Nanomaterials, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_232-1.
Full textSchroeter, Michael, Britt Wildemann, and Andreas Lendlein. "Biodegradable Materials." In Regenerative Medicine, 469–92. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9075-1_20.
Full textSchroeter, Michael, Britt Wildemann, and Andreas Lendlein. "Biodegradable Polymeric Materials." In Regenerative Medicine - from Protocol to Patient, 65–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28274-9_4.
Full textHermawan, Hendra. "Metallic Biodegradable Coronary Stent: Materials Development." In Biodegradable Metals, 39–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31170-3_4.
Full textWitte, Frank, and Amir Eliezer. "Biodegradable Metals." In Degradation of Implant Materials, 93–109. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3942-4_5.
Full textGarcía, N. L., L. Famá, N. B. D’Accorso, and S. Goyanes. "Biodegradable Starch Nanocomposites." In Advanced Structured Materials, 17–77. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2470-9_2.
Full textPradny, Martin, Miroslav Vetrik, Martin Hruby, and Jiri Michalek. "Biodegradable Porous Hydrogels." In Advanced Healthcare Materials, 269–93. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118774205.ch8.
Full textGeorgios, Koronis, Arlindo Silva, and Samuel Furtado. "Applications of Green Composite Materials." In Biodegradable Green Composites, 312–37. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118911068.ch10.
Full textConference papers on the topic "Biodegradable materials"
García-González, J., P. Lemos, A. Pereira, J. Pozo, M. Guerra-Romero, A. Juan-Valdés, and P. Faria. "Biodegradable Polymers on Cementitious Materials." In XV International Conference on Durability of Building Materials and Components. CIMNE, 2020. http://dx.doi.org/10.23967/dbmc.2020.017.
Full textDassanayaka, Dumindu, Dilshan Hedigalla, and Ujithe Gunasekera. "Biodegradable Composite for Temporary Partitioning Materials." In 2020 Moratuwa Engineering Research Conference (MERCon). IEEE, 2020. http://dx.doi.org/10.1109/mercon50084.2020.9185232.
Full textBrinker, Katelyn R., Devdatt Chattopadhyay, Logan M. Wilcox, and Kristen M. Donnell. "Microwave Materials Characterization of Biodegradable Glass." In 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2020. http://dx.doi.org/10.1109/i2mtc43012.2020.9129250.
Full textHashitani, T., E. Yano, Y. Ando, and Y. Kanazawa. "Biodegradable plastics for LSI shipping materials." In Proceedings First International Symposium on Environmentally Conscious Design and Inverse Manufacturing. IEEE, 1999. http://dx.doi.org/10.1109/ecodim.1999.747615.
Full textShang, Guojun. "Research Progress of Biodegradable Medical Materials." In 2016 7th International Conference on Mechatronics, Control and Materials (ICMCM 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmcm-16.2016.25.
Full textSartore, Luciana, Evelia Schettini, Stefano Pandini, Fabio Bignotti, Giuliano Vox, and Alberto D’Amore. "Biodegradable containers from green waste materials." In VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4949675.
Full textKozuka, Taro, Masaru Takeuchi, Akiyuki Hasegawa, Akihiko Ichikawa, and Toshio Fukuda. "Studing Making micro structure with Biodegradable materials." In 2018 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2018. http://dx.doi.org/10.1109/mhs.2018.8887033.
Full textUnda, Kassan, Ali Mohammadkhah, Kwang-Man Lee, Delbert E. Day, Matthew J. O'Keefe, and Chang-Soo Kim. "Sensor substrates based on biodegradable glass materials." In 2016 IEEE SENSORS. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808408.
Full textCozar, Onuc, Nicolae Cioica, Constantin Coţa, Elena Mihaela Nagy, and Radu Fechete. "Plasticizers effect on native biodegradable package materials." In HIGH ENERGY GAMMA-RAY ASTRONOMY: 6th International Meeting on High Energy Gamma-Ray Astronomy. Author(s), 2017. http://dx.doi.org/10.1063/1.4972386.
Full textKhadyko, Igor. "ENZYMATIC DETERMINATION OF STARCH IN BIODEGRADABLE PACKAGING MATERIALS." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/61/s25.088.
Full textReports on the topic "Biodegradable materials"
van der Zee, Maarten. Biodegradability of biodegradable mulch film : A review of the scientific literature on the biodegradability of materials used for biodegradable mulch film. Wageningen: Wageningen Food & Biobased Research, 2021. http://dx.doi.org/10.18174/544211.
Full textSaadeh, Shadi, and Pritam Katawał. Performance Testing of Hot Mix Asphalt Modified with Recycled Waste Plastic. Mineta Transportation Institute, July 2021. http://dx.doi.org/10.31979/mti.2021.2045.
Full textShort, Samuel, Bernhard Strauss, and Pantea Lotfian. Emerging technologies that will impact on the UK Food System. Food Standards Agency, June 2021. http://dx.doi.org/10.46756/sci.fsa.srf852.
Full text