Academic literature on the topic 'Biodegradable plastics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biodegradable plastics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biodegradable plastics"
Glukhikh, Viktor, Pavel Buryndin, Artyem Artyemov, Andrei Savinovskih, Pavel Krivonogov, and Anna Krivonogova. "Plastics: physical-and-mechanical properties and biodegradable potential." Foods and Raw Materials 8, no. 1 (February 26, 2020): 149–54. http://dx.doi.org/10.21603/2308-4057-2020-1-149-154.
Full textMohd Amin, Ainatul Mardhiah, Suhaila Mohd Sauid, and Ku Halim Ku Hamid. "Polymer-Starch Blend Biodegradable Plastics: An Overview." Advanced Materials Research 1113 (July 2015): 93–98. http://dx.doi.org/10.4028/www.scientific.net/amr.1113.93.
Full textStasiškienė, Žaneta, Jelena Barbir, Lina Draudvilienė, Zhi Kai Chong, Kerstin Kuchta, Viktoria Voronova, and Walter Leal Filho. "Challenges and Strategies for Bio-Based and Biodegradable Plastic Waste Management in Europe." Sustainability 14, no. 24 (December 9, 2022): 16476. http://dx.doi.org/10.3390/su142416476.
Full textHUZAISHAM, NUR ATHIRAH. "APPLICATION OF WASTE BANANA PEELS AS BIODEGRADABLE PLASTIC." Science Proceedings Series 1, no. 2 (April 24, 2019): 128–30. http://dx.doi.org/10.31580/sps.v1i2.786.
Full textNISHIYAMA, Masashi. "Biodegradable plastics." Journal of the Japan Society for Precision Engineering 56, no. 4 (1990): 639–42. http://dx.doi.org/10.2493/jjspe.56.639.
Full textMiyata, Yoshiaki. "Biodegradable Plastics." Journal of the agricultural chemical society of Japan 68, no. 9 (1994): 1318–20. http://dx.doi.org/10.1271/nogeikagaku1924.68.1318.
Full textTakiyama, Eiichiro. "Biodegradable Plastics." Kobunshi 42, no. 3 (1993): 251. http://dx.doi.org/10.1295/kobunshi.42.251.
Full textYAMASHITA, Makoto. "Biodegradable plastics." Journal of Environmental Conservation Engineering 20, no. 12 (1991): 765–69. http://dx.doi.org/10.5956/jriet.20.765.
Full textYAMASHITA, IWAO. "Biodegradable plastics." NIPPON GOMU KYOKAISHI 64, no. 1 (1991): 16–24. http://dx.doi.org/10.2324/gomu.64.16.
Full textSteinbüchel, Alexander. "Biodegradable plastics." Current Opinion in Biotechnology 3, no. 3 (June 1992): 291–97. http://dx.doi.org/10.1016/0958-1669(92)90107-t.
Full textDissertations / Theses on the topic "Biodegradable plastics"
Lam, Ho-ching Dennis, and 林浩正. "Biodegradable plastics : feasible in Hong Kong?" Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/194554.
Full textpublished_or_final_version
Environmental Management
Master
Master of Science in Environmental Management
Isay, Alina, Vita Martynenko, Valeriya Kim, Nataliya Lepuha, and Victoria Vostrikova. "Biodegradable polymers for production of plastics." Thesis, Молодь у глобалізованому світі: академічні аспекти англомовних фахових досліджень (англ. мовою) / Укл., ред. А.І.Раду: збірник мат. конф. - Львів: ПП "Марусич", 2011. - 147 с, 2011. http://er.nau.edu.ua/handle/NAU/20867.
Full textPickens, Mark Everett Vaidyanathan Vijay Varadarajan. "Design and validation of an automated multiunit composting system." [Denton, Tex.] : University of North Texas, 2009. http://digital.library.unt.edu/ark:/67531/metadc12184.
Full textHarrison, Susan Therese Largier. "The extraction and purification of poly-#beta#-hydroxybutyrate from Alcaligenes eutrophus." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292753.
Full textKonduru, Srinivasa Raju. "Biodegradable and composting plastic. Properties and environmental impacts." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textBurns, Mara Georgieva. "Mechanical properties and compostability of injection-moulded biodegradable compositions." Diss., Pretoria : [s.n.], 2008. http://upetd.up.ac.za/thesis/available/etd-01192009-093817/.
Full textPunrattanasin, Warangkana. "The Utilization of Activated Sludge Polyhydroxyalkanoates for the Production of Biodegradable Plastics." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/27107.
Full textPh. D.
Serrano-Ruiz, Hadaly. "Effect of compounds from agricultural biodegradable plastics on the environment and on plant development." Doctoral thesis, Universitat de Lleida, 2021. http://hdl.handle.net/10803/673124.
Full textLos acolchados plásticos agrícolas son una pieza fundamental del sistema agrícola, contribuyendo a hacer frente a la demanda de alimentación de la creciente población mundial. Su uso incrementa la producción, precocidad y calidad de las cosechas, reduce el consumo de agua y la aplicación de pesticidas y previene el desarrollo de malas hierbas. Los acolchados son mayoritariamente de polietileno (PE), no biodegradables, y aunque se deben retirar tras la cosecha, muchos fragmentos permanecen en el campo y se van acumulando, disminuyendo la calidad del suelo y de las cosechas. Los acolchados de plástico biodegradable (BDM) se han presentado como una alternativa sostenible que evita este acúmulo; tras la cosecha serán biodegradados por los microorganismos del suelo en el que se integran. Sin embargo, ello implica el aporte al suelo de los diversos compuestos (polímeros y aditivos) presentes en los fragmentos, pero apenas se han estudiado sus efectos en las plantas cultivadas y en los organismos del suelo. El objetivo de esta tesis es evaluar el efecto que tienen ocho BDM de diferente formulación y sus componentes en el microbioma del suelo agrícola y en plantas cultivadas. Para ello se eligieron dos especies comúnmente cultivadas con acolchados que están entre los principales productos hortícolas a nivel mundial, lechuga (Lactuca sativa L.) y tomate (Lycopersicon esculetum Mill.). Como control se incluyó un acolchado de PE. En primer lugar, se evaluó si los BDM pueden liberar compuestos por contacto con un medio acuoso antes de iniciar su biodegradación, y si los compuestos liberados pueden afectar al desarrollo de las plantas. Se encontró que todos los BDM ensayados liberaron una diversidad de compuestos, que en varios casos (Bioplast SP4 y SP6, Mirel y Biofilm) afectaron negativamente a la germinación, la morfología de las raíces o el desarrollo y fisiología de ambas especies, mientras que los de otros BDM causaron efectos menores (Ecovio, Mater-Bi) o no significativos (Bioflex). A continuación, se identificaron los compuestos liberados, que resultaron ser diversos, tanto componentes de su estructura polimérica (1,4-butanediol, ácido láctico, ácido tereftálico, etc.) como aditivos (ácidos grasos, glicerol, etc.). De entre los identificados se cuantificó principalmente los que anteriormente habían mostrado afectar al desarrollo de plantas de tomate y de lechuga (1,4-butanediol, ácido láctico y ácido adípico). Las concentraciones en que se encontraron resultaron ser sustancialmente menores que las responsables de causar efectos en las plantas, lo que no permite establecer una relación directa entre su liberación de los BDM y los efectos que puedan tener en las plantas. En tercer lugar, se estudió el efecto del acúmulo de fragmentos de BDM en el suelo sobre la germinación y desarrollo de plantas de tomate y de lechuga. La presencia de fragmentos de la mayoría de los BDM no afectó a la germinación pero si redujo el crecimiento y el nivel de clorofila en tomate y especialmente en lechuga. En general, los efectos identificados fueron consistentes con los de los compuestos liberados de los BDM encontrados anteriormente, y los fragmentos de PE no causaron efectos. En conjunto, los resultados sugieren que la composición química del BDM tiene un papel relevante en su interacción con el sistema radical de las plantas, y que las consecuencias de la presencia de fragmentos de BDM en el suelo se relaciona con esta composición, probablemente debido a que liberan componentes, más que a su presencia física. Finalmente, se estudió el impacto del acumulo en el suelo de fragmentos de BDM en la estructura y funciones de las comunidades microbianas del suelo agrícola. Tras tres meses de incubación, este acúmulo tuvo un bajo impacto en la diversidad y estructura de las comunidades microbianas del suelo. Sin embargo, algunos materiales provocaron cambios significativos en la abundancia y diversidad de determinados grupos bacterianos (Mater-Bi), fúngicos (papel MIMGreen) y protistas (Ecovio). Aunque la actividad microbiana total no se vio alterada, la actividad quitinasa, implicada en el ciclo del nitrógeno, disminuyó significativamente por la presencia tanto de BDM como de PE. Los resultados obtenidos en esta tesis doctoral aportan nuevo conocimiento sobre los potenciales efectos de los BDM en las plantas cultivadas y los microorganismos del suelo. Principalmente evidencian que los BDM (1) liberan con facilidad diversos compuestos mucho antes de que se inicie su biodegradación, tras el contacto con el agua, (2) la solución que contiene los compuestos liberados, en función de su composición, puede tener efectos sobre las plantas, (3) que el acúmulo de fragmentos de BDM en el suelo presenta capacidad de afectar al desarrollo de las plantas y de modificar la abundancia y diversidad de los microorganismos del suelo en función de la composición del BDM. Todo ello resulta relevante para el diseño y desarrollo de acolchados plásticos biodegradables que tengan un bajo impacto sobre las plantas cultivadas y sobre el medio ambiente.
Agricultural plastic mulches are an essential part of the agricultural system, contributing to face the food demand for the growing world population. Its use increases crop production, earliness and quality, reduces water consumption and pesticide delivery and prevents weed development. Mulches are mostly made of polyethylene (PE), non-biodegradable. Although they must be removed after harvesting, many fragments remain and accumulate in the field, reducing soil and crop quality. Biodegradable plastic mulches (BDM) have been fostered as a sustainable alternative preventing this accumulation. After harvest they will be biodegraded by the soil microorganisms in which they are integrated. However, this entails the various compounds (polymers and additives) present in the fragments are supplied to the soil, but their effects on cultivated plants and on soil organisms have hardly been studied. The objective of this PhD thesis is to evaluate the effect of eight BDM of different formulation, and their components, on the agricultural soil microbiome and on plants. For this purpose two plant species commonly cultivated with mulches which are among the main horticultural products were targeted, lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculetum Mill.). One PE mulch was included as control mulch. Firstly, it was evaluated whether BDM can release compounds by contact with an aqueous environment before the onset of their biodegradation, and whether the released compounds can affect plant development. It was found that all the BDM tested released a diversity of compounds, which in several cases (Bioplast SP4 and SP6, Mirel and Biofilm) inhibited germination, root morphology or the development and physiology of both plant species, while those from other BDM caused minor (Ecovio, Mater-Bi) or non-significant (Bioflex) effects. Next, the released compounds were identified, which were eventually diverse, both components of its polymeric structure (1,4-butanediol, lactic acid, terephthalic acid, etc.) and additives (fatty acids, glycerol, etc.). Among those identified, the ones having previously shown to affect tomato and lettuce plant development (1,4-butanediol, lactic acid and adipic acid) were quantified. They were found to be in substantially lower concentrations than the ones responsible for causing effects on plants, which does not allow establishing a direct relationship between their release from BDM and the effects they may have on plants. Thirdly, the effect of the accumulation of BDM fragments in the soil on tomato and lettuce germination and plant development was studied. For most BDM, the presence of their fragments did not affect germination but it reduced plant growth and chlorophyll content in tomato and especially in lettuce. In general, the identified effects were consistent with those of compounds released from BDM previously found, and PE fragments caused no effects. Altogether, results suggest that the BDM chemical composition plays a relevant role in its interaction with the plant root system, and that the consequences of the presence of BDM fragments in the soil is related to this composition, likely due to the release of components, rather than to their physical presence. Finally, the impact of the BDM fragments’ accumulation in the soil on the structure and functions of the agricultural soil microbial communities was studied. After incubation for three months, this accumulation had a low impact on the soil microbial communities’ diversity and structure. However, some materials caused significant changes in the abundance and diversity of selected bacterial (Mater-Bi), fungi (MIMGreen paper) and protists (Ecovio) groups. Although the total microbial activity was not altered, the chitinase activity, involved in the nitrogen cycle, was significantly decreased by both BDM and PE presence. The results obtained in this doctoral thesis provide new knowledge on the potential effects of BDMs on cultivated plants and soil microorganisms. They mainly show that BDM (1) easily release several compounds soon before their biodegradation starts, after contact with water, (2) the solution containing the released compounds, depending on its composition, may have effects on plants and (3) the accumulation of BDM fragments in the soil has the capacity to affect plant development and to modify the abundance and diversity of soil microorganisms depending on the composition of the BDM. The results will contribute to the design and development of biodegradable plastic mulches that have a low impact on cultivated plants and the environment.
Lian, Zhuoyang. "Biodegradable polymer particle formation using supercritical carbon dioxide." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 2.84 Mb., 293 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:1435248.
Full textShah, Brinda. "Synthesis of polyethylene/starch hybrids using aqueous mini emulsion polymerization /." Online version of thesis, 2010. http://hdl.handle.net/1850/12265.
Full textBooks on the topic "Biodegradable plastics"
Chiellini, Emo, and Roberto Solaro, eds. Biodegradable Polymers and Plastics. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9240-6.
Full textM, Vert, and International Scientific Workshop on Biodegradable Polymers and Plastics, Montpellier (2nd : 1991 : Monpellier, France), eds. Biodegradable polymers and plastics. Cambridge [England]: Royal Society of Chemistry, 1992.
Find full textSchlechter, Melvin. Biodegradable polymers. Norwalk, CT: Business Communications Co., 2001.
Find full textSudesh, Kumar. Polyhydroxyalkanoates from Palm Oil: Biodegradable Plastics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33539-6.
Full textCorporation, National Research Development, and Technology Information Forecasting and Assessment Council (India), eds. Biodegradable plastics: A joint study by TIFAC [&] NRDC. [New Delhi]: TIFAC, 2003.
Find full textŌshima, Kazushi. Gurīn purasuchikku zairyō gijutsu to dōkō: Recent technology and market trend of green plastics. Tōkyō: Shīemushī Shuppan, 2005.
Find full textK, Ching C. T., Kaplan David 1953-, and Thomas Edwin L, eds. Biodegradable polymers and packaging. Lancaster: Technomic Pub. Co., 1993.
Find full textKyōkai, Baio Indasutorī. Sangyō gijutsu kenkyū kaihatsu itakuhi "seibunkaisei purasuchikku no biseibutsu kenki bunkai shiken hōhō ni kansuru hyōjunka" seika hōkokusho. [Tokyo]: Baio Indasutorī Kyōkai, 2009.
Find full textMaterials, American Society for Testing and. ASTM standards on environmentally degradable plastics. Philadelphia, PA: ASTM, 1993.
Find full textBook chapters on the topic "Biodegradable plastics"
Andrade-Guel, Marlene Lariza, Alma Berenice Jasso-Salcedo, Diana Iris Medellín-Banda, Marco Antonio De Jesus-Tellez, and Christian Javier Cabello-Alvarado. "Plastics Technology." In Biodegradable Polymers, 32–54. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003230533-3.
Full textMaréchal, Freddy. "Biodegradable Plastics." In Biodegradable Polymers and Plastics, 67–71. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9240-6_5.
Full textScott, Gerald. "Photo-biodegradable plastics." In Degradable Polymers, 169–85. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0571-2_9.
Full textMcCarthy, Stephen P. "Biodegradable Polymers." In Plastics and the Environment, 359–77. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471721557.ch9.
Full textVerma, Deepak, and Elena Fortunati. "Biobased and Biodegradable Plastics." In Handbook of Ecomaterials, 1–23. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-48281-1_103-1.
Full textVerma, Deepak, and Elena Fortunati. "Biobased and Biodegradable Plastics." In Handbook of Ecomaterials, 2955–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68255-6_103.
Full textEl Menofy, Nagwan Galal, and Abdelrahman Mossad Khattab. "Plastics Biodegradation and Biofragmentation." In Handbook of Biodegradable Materials, 1–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-83783-9_22-1.
Full textEl Menofy, Nagwan Galal, and Abdelrahman Mossad Khattab. "Plastics Biodegradation and Biofragmentation." In Handbook of Biodegradable Materials, 571–600. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-09710-2_22.
Full textPratt, Steven, Nanthi S. Bolan, Bronwyn Laycock, Paul Lant, Emily Bryson, and Leela Dilkes-Hoffman. "Biodegradable Bioplastics." In Particulate Plastics in Terrestrial and Aquatic Environments, 425–34. First edition. | Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003053071-30.
Full textSwift, Graham. "Biodegradable Water-Soluble Polymers." In Plastics and the Environment, 491–519. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471721557.ch12.
Full textConference papers on the topic "Biodegradable plastics"
Strach, Chloe, George Rushlau, Maureen Hennenfent, and Theresa Passe. "Biodegradable Plastics." In The 3rd Global Virtual Conference of the Youth Environmental Alliance in Higher Education. Michigan Technological University, 2021. http://dx.doi.org/10.37099/mtu.dc.yeah-conference/april2021/all-events/37.
Full textKuhn, K., W. Witek, and H. Kuhnle. "Disposal of biodegradable plastics." In Proceedings First International Symposium on Environmentally Conscious Design and Inverse Manufacturing. IEEE, 1999. http://dx.doi.org/10.1109/ecodim.1999.747616.
Full textNutakor, C., M. N. Ivantsova, and O. N. Kanwugu. "Biodegradable plastics: Prospects and application." In THE VII INTERNATIONAL YOUNG RESEARCHERS’ CONFERENCE – PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2020). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0032355.
Full textOlayide Oyeyemi Fabunmi, Lope G Tabil, Peter R Chang, and Satyanarayan Panigrahi. "Developing Biodegradable Plastics from starch." In ASABE/CSBE North Central Intersectional Meeting. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2007. http://dx.doi.org/10.13031/2013.24179.
Full textHashitani, T., E. Yano, Y. Ando, and Y. Kanazawa. "Biodegradable plastics for LSI shipping materials." In Proceedings First International Symposium on Environmentally Conscious Design and Inverse Manufacturing. IEEE, 1999. http://dx.doi.org/10.1109/ecodim.1999.747615.
Full textUsachev, Ivan, and Dmitry Solomin. "GLOBAL TRENDS IN BIODEGRADABLE POLYMERS." In GEOLINKS Conference Proceedings. Saima Consult Ltd, 2021. http://dx.doi.org/10.32008/geolinks2021/b2/v3/35.
Full textShinyama, K., and S. Fujita. "Mechanical and electrical properties of biodegradable plastics." In Proceedings of 2005 International Symposium on Electrical Insulating Materials, 2005. (ISEIM 2005). IEEE, 2005. http://dx.doi.org/10.1109/iseim.2005.193488.
Full textMansor, Mohd Khairulniza, Dayang Habibah A. I. H., and Mazlina Mustafa Kamal. "Evaluation of biodegradable plastics for rubber seedling applications." In ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2015): 4th National Conference on Advanced Materials and Radiation Physics. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4928840.
Full textMuchtar, Zainuddin, Gracella Sarumaha, Sri Adelila Sari, Siti Rahmah, and Moondra Zubir. "Structure characterization of young coconut husk biodegradable plastics." In THE 8TH ANNUAL INTERNATIONAL SEMINAR ON TRENDS IN SCIENCE AND SCIENCE EDUCATION (AISTSSE) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0114027.
Full textHollstein, Frank, Markus Wohllebe, Sixto Arnaiz, and David Manjon. "Identification of bio-plastics by NIR-SWIR-Hyperspectral-Imaging." In OCM 2015 - 2nd International Conference on Optical Characterization of Materials. KIT Scientific Publishing, 2015. http://dx.doi.org/10.58895/ksp/1000044906-6.
Full textReports on the topic "Biodegradable plastics"
Dumont, Joseph. Discovering New Biodegradable Plastics. Office of Scientific and Technical Information (OSTI), July 2021. http://dx.doi.org/10.2172/1811869.
Full textZhang, Ann, and Michael Carus. Bio-based and Biodegradable Plastics Industries in China. Nova-Institut GmbH, May 2024. http://dx.doi.org/10.52548/jvsu6976.
Full textvan den Oever, Martien, Karin Molenveld, Maarten van der Zee, and Harriëtte Bos. Bio-based and biodegradable plastics : facts and figures : focus on food packaging in the Netherlands. Wageningen: Wageningen Food & Biobased Research, 2017. http://dx.doi.org/10.18174/408350.
Full textLenz, Robert W. International Workshop on Biodegradable Plastics and Polymers (4th) Held in Durham, New Hampshire on 11-14 October 1995. Fort Belvoir, VA: Defense Technical Information Center, March 1996. http://dx.doi.org/10.21236/ada306205.
Full textSaadeh, Shadi, and Pritam Katawał. Performance Testing of Hot Mix Asphalt Modified with Recycled Waste Plastic. Mineta Transportation Institute, July 2021. http://dx.doi.org/10.31979/mti.2021.2045.
Full textShort, Samuel. Alternatives to single-use plastics in food packaging and production. Food Standards Agency, August 2023. http://dx.doi.org/10.46756/sci.fsa.taf512.
Full textAlec Brewer, Alec Brewer. Transforming Styrofoam waste into biodegradable plastic. Experiment, May 2019. http://dx.doi.org/10.18258/13643.
Full textKäb, Harald, Florence Aeschelmann, Lara Dammer, and Michael Carus. Consumption of biodegradable and compostable plastic products in Europe. Nova-Institut GmbH, April 2016. http://dx.doi.org/10.52548/hhtp8922.
Full text