Journal articles on the topic 'Biodegradable polymeric films'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Biodegradable polymeric films.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bhardwaj, Nikita, Mohd Tashfeen Ashraf, and Jaya Maitra. "Heavy metal ion uptake using biodegradable polymeric film." Brazilian Journal of Development 10, no. 1 (2024): 965–77. http://dx.doi.org/10.34117/bjdv10n1-063.
Full textLebedev, Vladimir, Denis Miroshnichenko, and Tetiana Tykhomyrova. "Study of lignite humic acids hybrid modification technology of biodegradable films based on polyvinyl alcohol." Technology audit and production reserves 2, no. 3(70) (2023): 10–13. http://dx.doi.org/10.15587/2706-5448.2023.277980.
Full textLebedev, Volodymyr, Denis Miroshnichenko, Serhiy Pyshyev, and Ananiy Kohut. "Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose." Chemistry & Chemical Technology 17, no. 2 (2023): 357–64. http://dx.doi.org/10.23939/chcht17.02.357.
Full textTimofiychuk, O. A., T. I. Prudnicova, D. O. Mishurov, V. L. Avramenko, and R. G. Shevcova. "Decomposition of biodegradable films developed on the basis of polyvinyl alcohol in the natural environment." Facta universitatis - series: Physics, Chemistry and Technology 7, no. 1 (2009): 61–67. http://dx.doi.org/10.2298/fupct0901061t.
Full textVladimir, Lebedev, Miroshnichenko Denis, and Tykhomyrova Tetiana. "Study of lignite humic acids hybrid modification technology of biodegradable films based on polyvinyl alcohol." Technology audit and production reserves 2, no. 3(70) (2023): 10–13. https://doi.org/10.15587/2706-5448.2023.277980.
Full textArkadyi, Petukhov, Shnyruk Oleg, Mikulionok Ihor, Gavva Oleksandr, and Kryvoplias-Volodina Liudmyla. "Design of a composition based on polyethylene and marble microparticles that decomposes under the effect of ultraviolet radiation." Eastern-European Journal of Enterprise Technologies 6, no. 6(108) (2020): 102–10. https://doi.org/10.15587/1729-4061.2020.216835.
Full textAlves, Layla Talita de Oliveira, Pãmella Fronza, Idalina Gonçalves, Washington Azevêdo da Silva, Leandro S. Oliveira, and Adriana S. Franca. "Development of Polymeric Films Based on Sunflower Seed Proteins and Locust Bean Gum." Polymers 16, no. 13 (2024): 1905. http://dx.doi.org/10.3390/polym16131905.
Full textNasreen, Zinia, Mubarak A. Khan, and A. I. Mustafa. "Improved Biodegradable Radiation Cured Polymeric Film Prepared from Chitosan-Gelatin Blend." Journal of Applied Chemistry 2016 (February 22, 2016): 1–11. http://dx.doi.org/10.1155/2016/5373670.
Full textViveka, R., and E. Nakkeeran. "Development and characterization of a novel biodegradable laboratory-made pullulan blended films." Journal of Environmental Biology 43, no. 6 (2022): 755–63. http://dx.doi.org/10.22438/jeb/43/6/mrn-5006.
Full textScaffaro, Roberto, Andrea Maio, Fiorenza Sutera, Emmanuel Gulino, and Marco Morreale. "Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review." Polymers 11, no. 4 (2019): 651. http://dx.doi.org/10.3390/polym11040651.
Full textUrkimbayeva, Perizat, Azamat Esmuratov, Raihan Rahmetullaeva, Daulet Kaldybekov, and Bauyrzhan Bakytzhanuly. "The creation of the technology of biodegradable films based on cornstarch." Chemical Bulletin of Kazakh National University, no. 3 (September 30, 2017): 14–19. http://dx.doi.org/10.15328/cb964.
Full textSweah, Zainab J. "A Swelling Study in Different PH and Mechanical Properties of Biodegradable Films Based on Pluronic F-127/ Poly-Vinyl Alcohol." Materials Science Forum 1002 (July 2020): 389–98. http://dx.doi.org/10.4028/www.scientific.net/msf.1002.389.
Full textAlshabanat, Mashael Nasser, and Murefah M. AL-Anazy. "An Experimental Study of Photocatalytic Degradation of Congo Red Using Polymer Nanocomposite Films." Journal of Chemistry 2018 (December 2, 2018): 1–8. http://dx.doi.org/10.1155/2018/9651850.
Full textTosif, Mansuri M., Agnieszka Najda, Aarti Bains, Grażyna Zawiślak, Grzegorz Maj, and Prince Chawla. "Starch–Mucilage Composite Films: An Inclusive on Physicochemical and Biological Perspective." Polymers 13, no. 16 (2021): 2588. http://dx.doi.org/10.3390/polym13162588.
Full textHassan, Dilawar, Ayesha Sani, Ghulam Qadir Chanihoon, Aurora Antonio Pérez, Muhammad Ehsan, and Ana Laura Torres Huerta. "Environmentally Sustainable and Green Polymeric Method for Chitosan (CH) Film Synthesis Using Natural Acids and Impact of Zinc Ferrite Nanoparticles (NPs) on Water Solubility (WS) and Physical Properties." Polymers 16, no. 24 (2024): 3466. https://doi.org/10.3390/polym16243466.
Full textVisan, Anita Ioana, Gianina Popescu-Pelin, and Gabriel Socol. "Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery—A Basic Review." Polymers 13, no. 8 (2021): 1272. http://dx.doi.org/10.3390/polym13081272.
Full textCalambas, Heidy Lorena, Abril Fonseca, Dayana Adames, Yaneli Aguirre-Loredo, and Carolina Caicedo. "Physical-Mechanical Behavior and Water-Barrier Properties of Biopolymers-Clay Nanocomposites." Molecules 26, no. 21 (2021): 6734. http://dx.doi.org/10.3390/molecules26216734.
Full textGoiana, Mayara Lima, Adriano Lincoln Albuquerque Mattos, Henriette Monteiro Cordeiro de Azeredo, Morsyleide de Freitas Rosa, and Fabiano André Narciso Fernandes. "Influence of Dielectric Barrier Discharge Cold Plasma Treatment on Starch, Gelatin, and Bacterial Cellulose Biodegradable Polymeric Films." Polymers 14, no. 23 (2022): 5215. http://dx.doi.org/10.3390/polym14235215.
Full textSouza, Amanda L., Victor G. L. Souza, Meirielly Jesus, Fernando Mata, Taila V. de Oliveira, and Nilda de F. F. Soares. "Modification of Cellulose Nanocrystals Using Polydopamine for the Modulation of Biodegradable Packaging, Polymeric Films: A Mini Review." Sustainability 17, no. 12 (2025): 5633. https://doi.org/10.3390/su17125633.
Full textNazario-Naveda, Renny, Moisés Gallozzo-Cárdenas, Luis Angelats-Silva, Luis Cabanillas-Chirinos, and Santiago M. Benites. "Incorporation of biosynthesized silver nanoparticles on active potato starch films." Journal of Physics: Conference Series 3028, no. 1 (2025): 012009. https://doi.org/10.1088/1742-6596/3028/1/012009.
Full textKrümmel, Aline, Carlos Henrique Pagno, and Patrícia da Silva Malheiros. "Active Films of Cassava Starch Incorporated with Carvacrol Nanocapsules." Foods 13, no. 8 (2024): 1141. http://dx.doi.org/10.3390/foods13081141.
Full textGhafoor, Bakhtawar, Murtaza Najabat Ali, Umar Ansari, et al. "New Biofunctional Loading of Natural Antimicrobial Agent in Biodegradable Polymeric Films for Biomedical Applications." International Journal of Biomaterials 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/6964938.
Full textМяленко, Дмитрий Михайлович. "Investigation of changes in physical and mechanical parameters of biodegradable polymer films during composting." Food processing industry, no. 8 (August 5, 2021): 40–43. http://dx.doi.org/10.52653/ppi.2021.8.8.010.
Full textSuntornnond, Ratima, Jia An, Wai Yee Yeong, and Chee Kai Chua. "Biodegradable Polymeric Films and Membranes Processing and Forming for Tissue Engineering." Macromolecular Materials and Engineering 300, no. 9 (2015): 858–77. http://dx.doi.org/10.1002/mame.201500028.
Full textYamazaki, Kenichi, Tungalag Dong, Naoki Asakawa, Yoshio Inoue, and Koji Yazawa. "Fabrication of Compositional-Gradient Biodegradable Polymeric Films Showing Self-Bending Deformation." Macromolecular Rapid Communications 30, no. 6 (2009): 435–41. http://dx.doi.org/10.1002/marc.200800612.
Full textAchutha, S., Elizabath Johnson, S. Kumari Nisha, and Sarika Sivakumar. "Antimicrobial Biodegradable Polymeric Materials for Food Packaging Applications: Current Status and Future Directions." Materials Science Forum 1073 (October 31, 2022): 49–56. http://dx.doi.org/10.4028/p-a5my86.
Full textAbd Karim, Siti Fatma, Juferi Idris, Junaidah Jai, Mohibah Musa, and Ku Halim Ku Hamid. "Production of Thermoplastic Starch-Aloe vera Gel Film with High Tensile Strength and Improved Water Solubility." Polymers 14, no. 19 (2022): 4213. http://dx.doi.org/10.3390/polym14194213.
Full textTraore, Yannick L., Miral Fumakia, Jijin Gu, and Emmanuel A. Ho. "Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery." Journal of Biomaterials Applications 32, no. 8 (2017): 1119–26. http://dx.doi.org/10.1177/0885328217739451.
Full textZagidullina, I. A., A. A. Guzhova, and E. V. Perushkina. "Active packaging material based on biodegradable polymer." Proceedings of the Voronezh State University of Engineering Technologies 85, no. 4 (2024): 76–80. https://doi.org/10.20914/2310-1202-2023-4-76-80.
Full textOlewnik-Kruszkowska, Ewa, Magdalena Wrona, and Anna Rudawska. "A Study of Thin Films Based on Polylactide and Vanillic Acid-Crucial Properties Relevant to Packaging." Polymers 17, no. 7 (2025): 882. https://doi.org/10.3390/polym17070882.
Full textPăușescu, Iulia, Diana-Maria Dreavă, Ioan Bîtcan, Raluca Argetoianu, Diana Dăescu, and Mihai Medeleanu. "Bio-Based pH Indicator Films for Intelligent Food Packaging Applications." Polymers 14, no. 17 (2022): 3622. http://dx.doi.org/10.3390/polym14173622.
Full textParra, Duclerc F., Juliana A. Fusaro da ., Patricia Ponce ., and Ademar Benevolo Luga . "Biodegradable Polymeric Films of PHB from Burkholderia saccharia in Presence of Polyethyleneglycol." Pakistan Journal of Biological Sciences 8, no. 7 (2005): 1041–44. http://dx.doi.org/10.3923/pjbs.2005.1041.1044.
Full textShiroodi, Setareh Ghorban, Sepehr Nesaei, Mahmoudreza Ovissipour, Hamzah M. Al-Qadiri, Barbara Rasco, and Shyam Sablani. "Biodegradable Polymeric Films Incorporated with Nisin: Characterization and Efficiency against Listeria monocytogenes." Food and Bioprocess Technology 9, no. 6 (2016): 958–69. http://dx.doi.org/10.1007/s11947-016-1684-3.
Full textSalehi, Sahar, Mohammadhossein Fathi, ShaghayeghHaghjooy Javanmard, Farnaz Barneh, and Mona Moshayedi. "Fabrication and characterization of biodegradable polymeric films as a corneal stroma substitute." Advanced Biomedical Research 4, no. 1 (2015): 9. http://dx.doi.org/10.4103/2277-9175.148291.
Full textMishra, Geetanjali, Payoja Praharaj, Sony Pandey, and Smrutiranjan Parida. "Biodegradable layered double hydroxide based polymeric films for sustainable food packaging applications." Applied Clay Science 240 (August 2023): 106978. http://dx.doi.org/10.1016/j.clay.2023.106978.
Full textPavlovskaya, N. E., I. V. Gorkova, A. Yu Gavrilova, and I. N. Gagarina. "Study of the Effect of Composite Fillers on the Rheological Properties of Polymers to Create a Biodegradable Film." Ecology and Industry of Russia 24, no. 3 (2020): 29–33. http://dx.doi.org/10.18412/1816-0395-2020-3-29-33.
Full textSuhani, Sinha. "Nanoparticles loaded in consumable polymeric oral films: A smart dosage form design for oral administration." GSC Biological and Pharmaceutical Sciences 12, no. 1 (2020): 007–14. https://doi.org/10.5281/zenodo.4269331.
Full textChen, Yu Hang, and Qing Li. "Mathematical Modeling of Polymer Biodegradation and Erosion." Materials Science Forum 654-656 (June 2010): 2071–74. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2071.
Full textRichert, Agnieszka, Agnieszka Kalwasińska, Maria Swiontek Brzezinska, and Grażyna B. Dąbrowska. "Biodegradability of Novel Polylactide and Polycaprolactone Materials with Bacteriostatic Properties Due to Embedded Birch Tar in Different Environments." International Journal of Molecular Sciences 22, no. 19 (2021): 10228. http://dx.doi.org/10.3390/ijms221910228.
Full textKolmakov, A. G., A. S. Baikin, S. V. Gudkov, et al. "Polylactide-based stent coatings: biodegradable polymeric coatings capable of maintaining sustained release of the thrombolytic enzyme streptokinase." Pure and Applied Chemistry 92, no. 8 (2020): 1329–40. http://dx.doi.org/10.1515/pac-2019-1101.
Full textKollar, Jakub, Andrea Morelli, Federica Chiellini, Stanislav Miertus, Dusan Bakos, and Vladimir Frecer. "Epithelial cell adhesion on films mimicking surface of polymeric scaffolds of artificial urethra compared to molecular modeling of integrin binding." Journal of Bioactive and Compatible Polymers 34, no. 3 (2019): 280–90. http://dx.doi.org/10.1177/0883911519843309.
Full textFadhil, Zeyad, Hadeel Adil, Raghda Alsayed, et al. "Poly(Vinyl Chloride) Containing Gynostemma pentaphyllum as a Photostabilizer." Materials Science Forum 1021 (February 2021): 251–59. http://dx.doi.org/10.4028/www.scientific.net/msf.1021.251.
Full textde Carvalho, Guilherme Ribeiro, Geovana Silva Marques, Luiz Mario de Matos Jorge, and Regina Maria Matos Jorge. "Cassava bagasse as a reinforcement agent in the polymeric blend of biodegradable films." Journal of Applied Polymer Science 136, no. 12 (2018): 47224. http://dx.doi.org/10.1002/app.47224.
Full textAbd Al-Ghani, Mona M., Rasha A. Azzam, and Tarek M. Madkour. "Design and Development of Enhanced Antimicrobial Breathable Biodegradable Polymeric Films for Food Packaging Applications." Polymers 13, no. 20 (2021): 3527. http://dx.doi.org/10.3390/polym13203527.
Full textScarfato, Paola, Maria Luisa Graziano, Arianna Pietrosanto, Luciano Di Maio, and Loredana Incarnato. "Use of Hazelnut Perisperm as an Antioxidant for Production of Sustainable Biodegradable Active Films." Polymers 14, no. 19 (2022): 4156. http://dx.doi.org/10.3390/polym14194156.
Full textQuilez-Molina, Ana Isabel, Lara Marini, Athanassia Athanassiou, and Ilker S. Bayer. "UV-Blocking, Transparent, and Antioxidant Polycyanoacrylate Films." Polymers 12, no. 9 (2020): 2011. http://dx.doi.org/10.3390/polym12092011.
Full textShirokova, E. S., E. V. Tovstik, and A. I. Fokina. "Gelatin films containing plant extracts." Theoretical and Applied Ecology, no. 3 (September 25, 2023): 129–39. http://dx.doi.org/10.25750/1995-4301-2023-3-129-139.
Full textBaikin, Alexander S., Alexey G. Kolmakov, Lyudmila A. Shatova, et al. "Polylactide-Based Stent Coatings: Biodegradable Polymeric Coatings Capable of Maintaining Sustained Release of the Thrombolytic Enzyme Prourokinase." Materials 12, no. 24 (2019): 4107. http://dx.doi.org/10.3390/ma12244107.
Full textPleva, Pavel, Lucie Bartošová, Daniela Máčalová, Ludmila Zálešáková, Jana Sedlaříková, and Magda Janalíková. "Biofilm Formation Reduction by Eugenol and Thymol on Biodegradable Food Packaging Material." Foods 11, no. 1 (2021): 2. http://dx.doi.org/10.3390/foods11010002.
Full textMooney, D. J., G. Organ, J. P. Vacanti, and R. Langer. "Design and Fabrication of Biodegradable Polymer Devices to Engineer Tubular Tissues." Cell Transplantation 3, no. 2 (1994): 203–10. http://dx.doi.org/10.1177/096368979400300209.
Full text