Academic literature on the topic 'Biodegradation/biodeterioration'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biodegradation/biodeterioration.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biodegradation/biodeterioration"

1

Eggins, H. O. W., and T. A. Oxley. "Biodeterioration and biodegradation." International Biodeterioration & Biodegradation 48, no. 1-4 (2001): 12–15. http://dx.doi.org/10.1016/s0964-8305(01)00062-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kurtböke, Ipek, Irina Ivshina, and Linda L. Blackall. "Microbial biodeterioration and biodegradation." Microbiology Australia 39, no. 3 (2018): 115. http://dx.doi.org/10.1071/ma18036.

Full text
Abstract:
Microorganisms including bacteria and fungi can use a wide variety of organic compounds as their carbon and energy sources and exploit numerous options as electron acceptors facilitating their ability to live in diverse environments. Such microbial biodegradative activities can result in the bioremediation of polluted sites or cause biodeterioration. Biodegradation and biodeterioration are closely related processes, and they often involve the same organisms, processes and materials.
APA, Harvard, Vancouver, ISO, and other styles
3

Taylor, David W., and John F. Kennedy. "Biodeterioration and biodegradation 8." Carbohydrate Polymers 21, no. 2-3 (1993): 241. http://dx.doi.org/10.1016/0144-8617(93)90022-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pekhtasheva, Elena, Anatoly Neverov, Stefan Kubica, and Gennady Zaikov. "Biodegradation and Biodeterioration of Some Natural Polymers." Chemistry & Chemical Technology 6, no. 3 (2012): 263–80. http://dx.doi.org/10.23939/chcht06.03.263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

DEMNEROVA, K., and B. FLANNIGAN. "12th International Biodeterioration and Biodegradation Symposium." International Biodeterioration & Biodegradation 54, no. 2-3 (2004): 79. http://dx.doi.org/10.1016/s0964-8305(04)00092-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Demnerova, Katerina, and Brian Flannigan. "12th International Biodeterioration and Biodegradation Symposium." International Biodeterioration & Biodegradation 54, no. 2-3 (2004): 79. http://dx.doi.org/10.1016/j.ibiod.2004.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gaylarde, Christine C., and Diego A. Moreno. "The 13th International Biodeterioration and Biodegradation Symposium: State-of-the-art in biodeterioration, biodegradation, and bioremediation." International Biodeterioration & Biodegradation 58, no. 3-4 (2006): 107. http://dx.doi.org/10.1016/j.ibiod.2006.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Denison, R. A. "Short Communication to International Biodeterioration and Biodegradation." International Biodeterioration & Biodegradation 44, no. 2-3 (1999): 83–84. http://dx.doi.org/10.1016/s0964-8305(99)00069-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Williams, D. F., and S. P. Zhong. "Biodeterioration/biodegradation of polymeric medical devices in situ." International Biodeterioration & Biodegradation 34, no. 2 (1994): 95–130. http://dx.doi.org/10.1016/0964-8305(94)90002-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bento, Fatima M., and Christine C. Gaylarde. "Editorial – 8th Latin American Biodeterioration and Biodegradation Symposium." International Biodeterioration & Biodegradation 95 (November 2014): 331. http://dx.doi.org/10.1016/j.ibiod.2014.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Biodegradation/biodeterioration"

1

Mollasalehi, Somayeh. "Fungal biodegradation of polyvinyl alcohol in soil and compost environments." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/fungal-biodegradation-of-polyvinyl-alcohol-in-soil-and-compost-environments(83f0d3a8-c24a-400b-b297-57d165fbd97c).html.

Full text
Abstract:
For over 50 years, synthetic petrochemical-based plastics have been produced in ever growing volumes globally and since their first commercial introduction; they have been continually developed with regards to quality, colour, durability, and resistance. With some exceptions, such as polyurethanes, most plastics are very stable and are not readily degraded when they enter the ground as waste, taking decades to biodegrade and therefore are major pollutants of terrestrial and marine ecosystems. During the last thirty years, extensive research has been conducted to develop biodegradable plastics as more environmentally benign alternatives to traditional plastic polymers. Polyvinyl alcohol (PVA) is a water-soluble polymer which has recently attracted interest for the manufacture of biodegradable plastic materials. PVA is widely used as a paper coating, in adhesives and films, as a finishing agent in the textile industries and in forming oxygen impermeable films. Consequently, waste-water can contain a considerable amount of PVA and can contaminate the wider environment where the rate of biodegradation is slow. Despite its growing use, relatively little is known about its degradation and in particular the role of fungi in this process. In this study, a number of fungal strains capable of degrading PVA from uncontaminated soil from eight different sites were isolated by enrichment in mineral salts medium containing PVA as a sole carbon source and subsequently identified by sequencing the ITS and 5.8S rDNA region. The most frequently isolated fungal strains were identified as Galactomyces geotrichum, Trichosporon laibachii, Fimetariella rabenhorsti and Fusarium oxysporum. G. geotrichum was shown to grow and utilise PVA as the sole carbon source with a mean doubling time of ca. 6-7 h and was similar on PVA with molecular weight ranges of 13-23 KDa, 30-50 KDa and 85-124 KDa. When solid PVA films were buried in compost, Galactomyces geotrichum was also found to be the principal colonizing fungus at 25°C, whereas at 45°C and 55°C, the principle species recovered was the thermophile Talaromyces emersonii. ESEM revealed that the surface of the PVA films were heavily covered with fungal mycelia and DGGE analysis of the surface mycelium confirmed that the fungi recovered from the surface of the PVA film constituted the majority of the colonising fungi. When PVA was added to soil at 25°C, and in compost at 25°C and 45°C, terminal restriction fragment length polymorphism (T-RFLP) revealed that the fungal community rapidly changed over two weeks with the appearance of novel species, presumably due to selection for degraders, but returned to a population that was similar to the starting population within six weeks, indicating that PVA contamination causes a temporary shift in the fungal community.
APA, Harvard, Vancouver, ISO, and other styles
2

Odier, Étienne. "Biodegradation de la lignine par les bacteries." Paris 7, 1986. http://www.theses.fr/1986PA077092.

Full text
Abstract:
La these comprend une etude bibliographique sur la biodegradation des lignines par les microorganismes, ainsi que les resultats experimentaux obtenus avec des bacteries: isolement des bacteries ligninolytiques; etude de la biodegradation des lignines de paille de ble et de bois de peuplier; analyse cytochimique de la delignification du bois de peuplier; etude de la degradation bacterienne en milieu anaerobie; etude des voies metaboliques de degradation d'un compose modele de type dimere par pseudomonas cepacia. Tous les resultats presentes ont ete publies precedemment sous forme d'articles
APA, Harvard, Vancouver, ISO, and other styles
3

Déchariaux, Huguette. "Biodegradation anaerobie des xenobiotiques dans les sediments." Paris 7, 1988. http://www.theses.fr/1988PA077047.

Full text
Abstract:
Des sediments d'eaux douces sont compares au niveau de leurs proprietes physicochimiques et biologiques. Le denombrement de 4 groupes bacteriens anaerobies (heterotrophes, sulfatoreducteurs, cellulolytiques et methangenes) montrent la coexistence de ces quatres types bacteriens dans tous les sediments et a toutes les profondeurs. La variabilite de la biomasse apparait donc suffisante pour permettre la biodegradation d'un xenobiotique dans toute la colonne sedimentaire
APA, Harvard, Vancouver, ISO, and other styles
4

Bhattacharya, Sriradha. "Investigation of marble limestone biocolonization: the case study of Convento das Maltezes in Estremoz." Master's thesis, Universidade de Évora, 2018. http://hdl.handle.net/10174/27699.

Full text
Abstract:
Over centuries, different lithotypes – either calcitic such as limestones and marbles, and/or silicious such as sandstones and granites have been used in historical monuments, whose deterioration/degradation differs as per the hardness, porosity and chemical composition of each stone. However, over the last decades living microorganisms have been associated with structural and aesthetical damages to building stone in historical monuments. The current research focuses on the investigation of degradation/deterioration in architectural marble monuments, with the aim to contribute to a better understanding the role of microbial agents on the biodegradation/biodeterioration of monuments built in marble. A multidisciplinary approach was employed to perform material characterisation and alteration products detection involving in situ and laboratory analysis in order to arrive at a comprehensive assessment of biocolonisation. Studying the microbial proliferation gave a wider perspective on recognising the role of microorganisms and their ability to degrade cultural heritage materials, which in turn helps understand and chalk out a mitigation process for future. The micro-analytical techniques distinguished and identified the alterations processes like patina formation, pigmentation and biofilms formation. The biocontamination was characterised by SEM-EDS, culture-dependent methods (CDM) and Next Generation Sequencing (NGS). CDM and NGS confirm the presence of several strains of bacteria, filamentous fungi and yeasts that appears to contribute to the presence of calcium oxalates, carotenoids and biofilms formation. Thus, it is imperative to study and comprehend the causes for marble degradation/deterioration, and recognise the source for the alteration of these materials, in order to define effective strategies to prevent marble decay and safeguard our cultural heritage; RESUMO: Biocolonização de pedra calcária: O caso de estudo do Convento das Maltesas em Estremoz Ao longo dos séculos, diferentes litotipos - calcíticos, como calcários e mármores, e / ou siliciosos como arenitos e granitos - têm sido utilizados em monumentos históricos, cuja degradação/deterioração difere de acordo com a dureza, porosidade e composição química de cada pedra. Nas últimas décadas, a presença de microrganismos tem sido associada a danos estruturais e estéticos de pedra utilizada em monumentos históricos. O presente trabalho tem como objetivo o estudo da degradação/deterioração de mármore aplicado em património arquitetónico, com o objetivo de contribuir para uma melhor compreensão do papel dos agentes microbianos na biodegradação/biodeterioração deste material, em contexto histórico. Foi utilizada uma abordagem multidisciplinar na caracterização de materiais e na deteção de produtos de alteração, envolvendo análises in situ e em laboratório, no sentido de obter uma avaliação abrangente da biocolonização. O estudo da proliferação microbiana permite uma perspetiva mais ampla no reconhecimento do papel dos microrganismos e da sua capacidade para degradar os materiais do património cultural, o que, por sua vez pode vir a ser útil na definição de estratégias de mitigação, para o futuro. As técnicas microanalíticas permitiram distinguir e identificar alguns processos de alteração, como formação de pátinas, pigmentação e formação de biofilmes. A biocontaminação foi caracterizada por SEM-EDS, através de métodos dependentes de cultura (CDM) e por Sequenciação de Nova Geração (NGS). CDM e NGS confirmam a presença de várias espécies de bactérias, fungos filamentosos e leveduras que parecem contribuir para a presença de oxalatos de cálcio, formação de carotenóides e de biofilmes. Assim , é imperativo estudar e compreender as causas da degradação/deterioração do mármore, e reconhecer os agentes responsáveis pela alteração destes materiais, de forma a que possam ser definidas estratégias eficientes para prevenção do seu declínio, contribuindo para a salvaguarda dos nossos bens patrimoniais.
APA, Harvard, Vancouver, ISO, and other styles
5

Rosado, Tânia Isabel Soares. "New methodologies for the characterisation and biodegradation assessment of mural paintings." Doctoral thesis, Universidade de Évora, 2014. http://hdl.handle.net/10174/13363.

Full text
Abstract:
Mural paintings are an ancient art form, with historic and cultural value, whose preservation is imperative. These artworks have suffered degradation, promoted by several agents, however, the contribution of the microorganisms on the paintings alteration has been undervalued. This work aimed the development of innovative strategies that allow to identify and characterise the role of the microorganisms in the degradation/deterioration of mural paintings. Complementary methodologies, including culture-dependent methods and molecular approaches were used, combining with microanalytical techniques to material characterisation. This enabled the development of novel analytical protocols for microbial population assessment. Following the characterisation of the microbial diversity, the metabolically active population were assessed by enzymatic markers and viability assays, in order to signalise the main biodeteriogenic agents involved in the biodeterioration of these heritage assets. Through simulation assays, using high cells density from the microbial isolates, complemented with in situ tests, it was possible to detect the presence of several alteration products namely oxalates, plattnerite and carotenoids, attributed to specific biodeteriogenic agents. Mitigation strategies, directed to the identified biodeteriogenic agents, were also developed; Novas metodologias para Caracterização e Avaliação da Biodegradação de pinturas murais Resumo: A pintura mural é uma ancestral forma de arte, com enorme valor histórico e cultural, cuja preservação é imperativa. Estas obras de arte têm sido alvo de degradação, provocada por diversos agentes, no entanto, a contribuição dos microrganismos para o processo de alteração das pinturas tem sido pouco valorizada. Este trabalho teve como objetivo o desenvolvimento de estratégias inovadoras que permitam identificar e caracterizar o papel dos microrganismos no processo de degradação/deterioração de pinturas murais. Metodologias complementares, incluindo métodos de cultura e abordagens moleculares, foram usadas em combinação com técnicas micro-analíticas de caracterização material, permitindo o desenvolvimento de protocolos analíticos inovadores para avaliação da população microbiológica. Após a caracterização da diversidade microbiológica avaliou-se a população metabolicamente ativa recorrendo a marcadores enzimáticos e testes de viabilidade celular para sinalizar os principais agentes biodeteriogénicos envolvidos na biodeterioração destes bens patrimoniais. Através de ensaios de simulação laboratorial, utilizando elevadas densidades celulares de isolados microbianos, complementadas com ensaios in situ, foi possível detetar a presença de diversos produtos de alteração nomeadamente oxalatos, platenerite e carotenoides, atribuídos a agentes biodeteriogénicos específicos. Foram ainda desenvolvidas estratégias de mitigação direcionadas para os agentes biodeteriogénicos identificados.
APA, Harvard, Vancouver, ISO, and other styles
6

Attal, Aline. "Etude de la stabilité et de la modélisation d'un digesteur anaérobie : rôle du pH, de l'acétate et de l'hydrogène." Toulouse, INSA, 1989. http://www.theses.fr/1989ISAT0009.

Full text
Abstract:
Etude des 3 systemes bacteriens, les acetogenes, les acetoclastes et les hydrogenophiles, impliques dans les deux dernieres etapes de la methanisation d'effluents biodegradables. L'effet inhibiteur de leurs substrats respectifs (propionate, acetate et hydrogene-co#2) et du ph a ete etudie pour chacune de ces populations bacteriennes. Les cinetiques de degradation des substrats en digesteur anaerobie, ont ete modelisees selon l'expression de monod
APA, Harvard, Vancouver, ISO, and other styles
7

Al, Mallah Maha. "Biodegradation des hydrocarbures dans les milieux sursales." Aix-Marseille 2, 1988. http://www.theses.fr/1988AIX22040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tournesac, Catherine. "Mise en évidence d'une enzyme d'oxydation de la lignine chez un pseudomonas." Grenoble 1, 1986. http://www.theses.fr/1986GRE10110.

Full text
Abstract:
Bacterie isolee du sol, capable de degrader un dimere de type beta -0-4 ether (gge) et d'attaquer les fonctions cetones conjuguees des lignines de "bois explose". Mise en evidence de 2 enzymes solubles. Purification partielle de l'enzyme active sur lignines de "bois explose", qui presente les caracteres d'une monooxygenase, liee a nad(p)h, et provoque une diminution de la masse moleculaire moyenne de la lignine. La bacterie parait capable de scinder les chaines aliphatiques des lignines, probablement apres une hydroxylation rendant labile la liaision calpha -cbeta
APA, Harvard, Vancouver, ISO, and other styles
9

DAMANHURI, IMAM-SLAMET TRI-PADMI. "Contribution a la mise au point de tests d'activite biologique pour les dechets soumis a biodegradation." Paris 7, 1987. http://www.theses.fr/1987PA077029.

Full text
Abstract:
L'utilisation du substrat enzymatique, le ttc, dans le test d'activite deshydrogenasique, permet d'evaluer l'activite de la biomasse active dans des milieux varies telle une boue activee, un milieu liquide anaerobie tel des lisiers, ou un milieu heterogene comme des ordures menageres. Ce test permet de prevoir l'apparition d'un phenomene de gonflement des boues en presence de germes filamenteux. Il est utilisable egalement comme outil toxicologique, puisqu'il permet d'identifier le mode d'action du toxique sur le systeme enzymatique controle. Dans les milieux heterogenes naturels, comme dans une decharge d'ordures menageres, il permet d'avoir une indication sur le potentiel energetique d'un dechet ou sur l'age d'un dechet ou d'un produit organique en cours de stabilisation
APA, Harvard, Vancouver, ISO, and other styles
10

De, Laat Joseph. "Contribution à l'etude du mode d'élimination de molécules organiques modèles sur charbon actif en grains : intéractions entre les processus d'adsorption et de biodégradation." Poitiers, 1988. http://www.theses.fr/1988POIT2010.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Biodegradation/biodeterioration"

1

Allsopp, D. Introduction to biodeterioration. Edward Arnold, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

J, Seal Kenneth, ed. Introduction to biodeterioration. E. Arnold, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gumargalieva, K. Z. Biodegradation and biodeterioration of polymers: Kinetical aspects. Nova Science Publishers, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

International Biodeterioration and Biodegradation Symposium (10th 1996 Hamburg, Germany). Biodeterioration and biodegradation: Papers of the 10th International Biodeterioration and Biodegradation Symposium, Hamburg, 15-18 September, 1996. VCH, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

LABS, 2. (Conference) (1995 Gramado Rio Grande do Sul Brazil). LABS 2 : biodegradation and biodeterioration in Latin America. British Phycological Society, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1925-, Rossmoore Harold W., ed. Biodeterioration and biodegradation 8: Proceedings of the 8th International Biodeterioration and Biodegradation Symposium, Windsor, Ontario, Canada, 26-31 August 1990. Elsevier Applied Science, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meeting, Pan American Biodeterioration Society. Biodeterioration research 2: General biodeterioration, degradation, mycotoxins, biotoxins, and wood decay. Plenum Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Noe-Nygaard, Arne. Larvikiter i kvaderstenskirker: Et argument for en "gammel norsk isstrøm" i tidlig Weichsel. Miljøministeriet, Danmarks geologiske undersøgelse, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Konferent͡sii͡a, Biopovrezhdenii͡a v. promyshlennosti (1994 Penza Russia). Biopovrezhdenii͡a v promyshlennosti: Konferent͡sii͡a, 25-26 okti͡abri͡a 1994 g. : tezisy dokladov. Privolzhskiĭ Dom nauchno-tekhn. propagandy, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Arun, Arya, ed. Studies on some fungal biodeteriogens. Bharatiya Kala Prakashan, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Biodegradation/biodeterioration"

1

Smith, R. N. "Biodeterioration of Fuels." In Biodegradation. Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-3470-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jaouadi, Bassem, Khelifa Bouacem, Hatem Rekik, et al. "Biotechnological Properties of New Microbial Peroxidases for Lignin and Humic Acid Biodegradation and Biodeterioration." In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (2nd Edition). Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51210-1_121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eveleigh, Douglas E. "Biodegradation of Biomass—Mechanisms." In Biodeterioration 7. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1363-9_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Biddlestone, Anthony J., and Kenneth R. Gray. "A Review of Aerobic Biodegradation of Solid Wastes." In Biodeterioration 7. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1363-9_108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

White, Graham F., and Nicholas J. Russell. "Mechanisms of Bacterial Biodegradation of Alkyl Sulphate and Alkylpolyethoxy Sulphate Surfactants." In Biodeterioration 7. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1363-9_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Savković, Željko, Miloš Stupar, Nikola Unković, Aleksandar Knežević, Jelena Vukojević, and Milica Ljaljević Grbić. "Fungal Deterioration of Cultural Heritage Objects." In Biodegradation [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98620.

Full text
Abstract:
Significant percent of world cultural heritage artifacts is threatened by fungal infestation. Fungi can deteriorate different substrates via various physical and chemical mechanisms. Hyphal growth and penetration into the substrate can cause symptoms like discoloration, biopitting, cracking, exfoliation and patina formation. On the other hand, chemical mechanisms include acid secretion, release of extracellular enzymes, pigment production, oxidation/reduction reactions and secondary mycogenic minerals formation. These processes can lead to serious, both esthetic and structural, alterations which may be irreversible and could permanently impair artworks. Proper isolation and identification of autochthonous isolates, as well as employment of different microscopic techniques and in vitro biodegradation tests are pivotal in understanding complex biodeterioration mechanisms caused by microorganisms, including fungal deteriogens. Biodeterioration and biodegradation studies require multidisciplinary approach and close collaboration of microbiologists, chemists, geologists and different personnel responsible for the safeguarding of cultural heritage monuments and artifacts, especially restorers and conservators.
APA, Harvard, Vancouver, ISO, and other styles
7

Falkiewicz-Dulik, Michalina, Katarzyna Janda, and George Wypych. "BIODEGRADATION, BIODETERIORATION, AND BIOSTABILIZATION OF INDUSTRIAL PRODUCTS." In Handbook of Material Biodegradation, Biodeterioration, and Biostablization. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-895198-87-4.50008-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Falkiewicz-Dulik, Michalina, Katarzyna Janda, and George Wypych. "ANALYTICAL METHODS IN BIODEGRADATION, BIODETERIORATION, AND BIOSTABILIZATION." In Handbook of Material Biodegradation, Biodeterioration, and Biostablization. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-895198-87-4.50011-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laha, Soumita Dutta, Kingshuk Dutta, and Patit Paban Kundu. "Biodegradation of Low Density Polyethylene Films." In Handbook of Research on Microbial Tools for Environmental Waste Management. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3540-9.ch014.

Full text
Abstract:
With its ever-increasing demand, the enormous production of low density polyethylene (LDPE) is leading to its huge accumulation in the environment. LDPE remains durable and inert to natural degradation and deterioration. This chapter focuses on various microbial effects and approaches on biodegradation of LDPE. Biodegradation takes place through several different strategies, such as assimilation, biodeterioration, biofragmentation, etc. Few microorganisms have so far been isolated which can grow on LDPE. Degradation by microbial enzyme is considered to be one of the most powerful tools to study the biodegradation of LDPE. Some blends and composites of LDPE with natural polymers have been found to be biodegradable; however, their manufacturing is costly. Thorough analysis of the microbial degradation of LDPE helps us realize the overall mechanism involved. In essence, this chapter aims to objectify the in situ biodegradation of LDPE via development of microbial biofilm on the polymer surface.
APA, Harvard, Vancouver, ISO, and other styles
10

Falkiewicz-Dulik, Michalina, Katarzyna Janda, and George Wypych. "EFFECT OF MATERIAL PROPERTIES ON BIODETERIORATION." In Handbook of Material Biodegradation, Biodeterioration, and Biostablization. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-895198-87-4.50006-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography