Academic literature on the topic 'Biodiversity of soil'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biodiversity of soil.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biodiversity of soil"
Khaziev, F. Kh. "Soil and biodiversity." Russian Journal of Ecology 42, no. 3 (May 2011): 199–204. http://dx.doi.org/10.1134/s1067413611030088.
Full textBernard, Ernest C. "Soil nematode biodiversity." Biology and Fertility of Soils 14, no. 2 (October 1992): 99–103. http://dx.doi.org/10.1007/bf00336257.
Full textZanella, Augusto, Judith Ascher-Jenull, Jean-François Ponge, Cristian Bolzonella, Damien Banas, Maria De Nobili, Silvia Fusaro, Luca Sella, and Raffaello Giannini. "Humusica: Soil biodiversity and global change." Bulletin of Geography. Physical Geography Series 14, no. 1 (June 1, 2018): 15–36. http://dx.doi.org/10.2478/bgeo-2018-0002.
Full textTibbett, Mark, Tandra D. Fraser, and Sarah Duddigan. "Identifying potential threats to soil biodiversity." PeerJ 8 (June 12, 2020): e9271. http://dx.doi.org/10.7717/peerj.9271.
Full textReeleder, R. D. "Fungal plant pathogens and soil biodiversity." Canadian Journal of Soil Science 83, Special Issue (August 1, 2003): 331–36. http://dx.doi.org/10.4141/s01-068.
Full textGroffman, Peter M., and Patrick J. Bohlen. "Soil and Sediment Biodiversity." BioScience 49, no. 2 (February 1999): 139. http://dx.doi.org/10.2307/1313539.
Full textBamforth, Stuart S. "Interpreting soil ciliate biodiversity." Plant and Soil 170, no. 1 (March 1995): 159–64. http://dx.doi.org/10.1007/bf02183064.
Full textThiele-Bruhn, Sören, Jaap Bloem, Franciska T. de Vries, Karsten Kalbitz, and Cameron Wagg. "Linking soil biodiversity and agricultural soil management." Current Opinion in Environmental Sustainability 4, no. 5 (November 2012): 523–28. http://dx.doi.org/10.1016/j.cosust.2012.06.004.
Full textBaliuk, S., V. Medvediev, G. Momot, and A. Levin. "Keep the soil alive, protect soil biodiversity." Visnyk agrarnoi nauky 98, no. 12 (December 15, 2020): 5–11. http://dx.doi.org/10.31073/agrovisnyk202012-01.
Full textLukac, Martin. "Soil biodiversity and environmental change in European forests." Central European Forestry Journal 63, no. 2-3 (June 27, 2017): 59–65. http://dx.doi.org/10.1515/forj-2017-0010.
Full textDissertations / Theses on the topic "Biodiversity of soil"
Smith, Joanne. "Agri-environment schemes and soil biodiversity: assessing the conservation, biodiversity and functional value of arable field margins for soil macrofauna." Thesis, University of Reading, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486322.
Full textBird, Stephanie. "The impact of native and exotic plants on soil biodiversity and ecosystem function." Thesis, University of Roehampton, 2016. https://pure.roehampton.ac.uk/portal/en/studentthesis/the-impact-of-native-and-exotic-plants-on-soil-biodiversity-and-ecosystem-function(c9707653-095b-4570-83d9-a444585f5b71).html.
Full textVisagie, Cobus M. "Biodiversity in the genus Penicillium from coastal fynbos soil." Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1856.
Full textGodow, Bratt Tora, Mathilda Stigenberg, Andreas Elenborg, Sarah Ågren, and Andreas Medhage. "To monitor the microbial biodiversity in soil within Uppsala." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444210.
Full textOliveira, Vanessa Bezerra de Menezes. "Soil function and biodiversity: regional variations and climate changes." Doctoral thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11352.
Full textEmbora o objetivo principal da proteção internacional dos solos seja proteger tanto as funções quanto a estrutura do solo, a atual abordagem trata principalmente da proteção ao nível estrutural. Há uma carência de estudos que contemplem a ligação das funções do solo com os níveis da comunidade. Além disso, é ainda desconhecido se as variáveis ambientais (ex: tipos de solo, condições climáticas) atuam nas funções do solo da mesma maneira que influenciam sua estrutura biológica. Ademais, as alterações climáticas poderão ter sozinhas ou combinadas com os poluentes, um grande efeito nos ecossistemas terrestres. O presente trabalho propõe estudar as funções e a estrutura biológica do solo quando impactados devido a estresse tóxico (poluição por Cu) e/ou alterações a fatores como a temperatura e abundância de organismos, de maneira a simular possíveis variações regionais ou climáticas. Para alcançar os objetivos principais 3 experiências utilizando diferentes densidades de E. crypticus e 2 gerações foram feitas (Capítulos II e III). Duas experiências com mesocosmos (SMS) decorreram durante 3 meses sob uma gama de diversas temperaturas (10 – 29°C), que representam temperaturas médias para Portugal e Dinamarca (Capítulos IV e V). Duas experiências de campo também foram realizadas com intuito de validar os SMSs (Capítulo VI). Resultados demonstraram que os efeitos do Cu na reprodução dos enquitraídeos dependem da densidade inicial de organismos, especialmente na 2ª geração. Entretanto, nos SMSs expostos a Cu, a densidade inicial é menos importante nos resultados finais. O aumento da temperatura alterou majoritariamente a fase inicial de crescimento populacional. Em períodos mais longos, a abundância estabilizou tornando-se menos influenciada pelas temperaturas. Períodos longos de exposição reforçaram os efeitos da temperatura, como por ex: diversas espécies foram similarmente afetadas a 29 ou 26°C quando expostas durante 28 ou 61 dias respectivamente. De forma geral, o Cu reduziu a abundância da maioria das espécies ao longo do tempo, com poucas exceções. Os resultados da decomposição da matéria orgânica (MO) e atividade alimentar associaram-se com a abundância de organismos em baixas temperaturas (10-23°C). Entretanto, com o aumento das temperaturas (19-29°C), este comportamento não foi claro e a abundância de espécies e atividade alimentar diminuíram enquanto a decomposição da MO aumentou. Além disso, os resultados observados nos SMSs foram confirmados no campo. Mais especificamente, alterações ocorreram na fase de crescimento (correspondente à Primavera) e a exposição ao Cu diminuiu os efeitos da temperatura. Metodologias mais complexas (ex: mais gerações e experiências com múltiplas espécies) apresentam muitos benefícios, mas também proporcionam respostas mais complexas, as quais exigem um maior “peso” de evidências para serem comprovadas.
Although the main aim for international soil protection is to protect both the soil structure and the soil function, the current soil protection approach mainly deals with protecting the soil structure level. There is a lack of studies that link the community level with soil function. Additionally, it is unknown if the environmental variables (e.g. soil type, climate conditions) are acting on function in the same way they influence the biological soil structure. On top of this, climate change will alone and in combination with pollution have a strong effect on the terrestrial ecosystem. In the present work the soil biological structure and function were studied when impacted due to a toxic stress (Cu pollution) and due to changes in factors such as organisms’ abundance, and temperature, simulating ecological aspects, regional and climate changes. To achieve the main goals 3 experiments using different densities of E. crypticus and two generations were performed and culminated in two papers (Chapters II & III). Two multispecies experiments (SMS) were conducted until 3 months and under various temperatures (10-29˚C), representing the span of average temperatures for Denmark and Portugal (Chapters IV & V). Two Field experiments were also performed in order to validate the results of the SMSs (Chapter VI). Results showed that the effect of Cu on reproduction does depend on the density, especially so in the succeeding generation. Nevertheless, in the SMS test with Cu, the initial density is less important for the outcome. Increased temperature in the SMSs caused major changes in the abundance, mainly in the initial phase of population growth. At longer exposures the population abundance stabilized and became less influenced by temperatures. The longer exposure enforced the temperature effects, e.g. for several species effects at 29ºC-28 days were similar to 26ºC-61 days. Copper caused a general depression in abundance over time for most species with a few exceptions. The OM decomposition and feeding activity responses at low temperature (10-23°C) were associated with the increase in species abundance whereas this was less clear at high temperatures (19-29°C), here with a decrease in feeding activity and species abundance but increase in OM decomposition. Additionally, responses observed in the SMSs were confirmed in the field. In specific, changes occurred in the growth phase (corresponding to the late spring exposure) and Cu depressed the temperature responses. More complex approaches (i.e. more generations and multispecies approach) has many benefits, but provides also more complex answers that may require more weight of evidence.
Dickens, Helen Elizabeth. "Functional attributes of biodiversity in decomposer communities." Thesis, University of Exeter, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326955.
Full textLimer, Laura Michelle Clare. "Biodiversity and ecosystem function : modelling soil biota and carbon cycling." Thesis, University of York, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442353.
Full textMarí, Marí Teresa. "Changes in soil biodiversity and activity along management and climatic gradients." Doctoral thesis, Universitat de Lleida, 2017. http://hdl.handle.net/10803/457976.
Full textLos llamados "rangelands" son áreas sin cultivar, ampliamente pastoreadas por animales domésticos y salvajes, actualmente amenazados por los cambios climático y de uso del suelo. Los microorganismos del suelo tienen un papel clave tanto en la descomposición como en diversos procesos del ecosistema, por lo que composición y función de la comunidad microbiana han sido utilizados durante mucho tiempo como índices de fertilidad del suelo. Los rangelands europeos y africanos comparten un origen antropogénico común, pero el clima y la gestión del suelo les afectan de una manera diferente. Es por ello que esta tesis pretende analizar la comunidad microbiana de ambos tipos de ecosistemas, a fin de observar los efectos de algunas de las amenazas comunes desde una perspectiva más global. Mientras que el sobrepastoreo demostró tener el efecto más perjudicial sobre la función microbiana en suelos kenianos, se encontró un efecto más fuerte del clima sobre los prados europeos. Los hongos y las bacterias covariaron a lo largo de gradientes altitudinales y climáticos, pero la comunidad bacteriana mostró una recuperación más rápida después de las perturbaciones biológicas y físico-químicas del suelo. Este conjunto de estudios añade nuevos conocimientos sobre la estructura y función de los rangelands africanos y europeos, e invita a explorar nuevas líneas de investigación que incluyan tanto bacterias como hongos en el estudio de la comunidad microbiana del suelo.
Rangelands are uncultivated areas extensively grazed by wild and domestic animals, currently threatened by land use and climatic changes. Soil microorganisms play a key role in decomposition and several ecosystem processes and the composition and function of the microbial community have been long used as indices of soil fertility. African and European rangelands share a common anthropogenic origin, but climate and management affect them in a different way. That is why this thesis aimed to analyze the microbial community of both in order to observe the effects of some common threats from a more global perspective. While overgrazing proved to have the most detrimental effect on the soil microbial function in Kenyan soils, a stronger effect of climate was found to affect European grasslands. Fungi and bacteria co-varied along altitudinal and climatic gradients, but the bacterial community showed a fast recovery after biological and soil physico-chemical disturbances. This group of studies adds new knowledge on the structure and function of the African and European rangelands, and invite to explore new lines of research including both fungal and bacterial consortia when studying the soil microbial community.
Valentine, Lori Lisa. "The biodiversity of ectomycorrhizal fungi associated with Quercus garryana /." View full-text version online through Southern Oregon Digital Archives, 2002. http://soda.sou.edu/awdata/040226b1.pdf.
Full textIncludes bibliographical references (leaves 37-43). Also available via Internet as PDF file through Southern Oregon Digital Archives: http://soda.sou.edu. Search Bioregion Collection.
Marshall, Carolyn Bowers. "Effect of plant functional group removal on the soil microbial community diversity and composition." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2865.
Full textBooks on the topic "Biodiversity of soil"
European Commission. Directorate-General. Joint Research Centre, ed. European atlas of soil biodiversity. Luxembourg: Office for Official Publications of the European Comnunities, 2010.
Find full textR. M. C. P. Rajapaksha. Soil biodiversity: Microorganisms in soils of Sri Lanka. Battaramulla, Sri Lanka: Biodiversity Secretariat, Mnistry of Environment & Renewable Energy, 2014.
Find full textCollins, H. P., G. P. Robertson, and M. J. Klug, eds. The Significance and Regulation of Soil Biodiversity. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0479-1.
Full textMoreira, F. M. S. Biodiversidade do solo em ecossistemas brasileiros. Lavras, MG: Editora UFLA, 2008.
Find full textMoreira, F. M. S., J. O. Siqueira, and L. Brussaard, eds. Soil biodiversity in Amazonian and other Brazilian ecosystems. Wallingford: CABI, 2006. http://dx.doi.org/10.1079/9781845930325.0000.
Full textInternational Symposium on Soil Biodiversity (1993 Michigan State University). The significance and regulation of soil biodiversity: Proceedings of the International Symposium on Soil Biodiversity, held at Michigan State University, East Lansing, May 3-6, 1993. Dordrecht: Kluwer Academic, 1995.
Find full textQiuzhong, Yang, and Guo li bian yi guan (China), eds. Tu rang sheng wu duo yang xing. Taibei Shi: Guo li bian yi guan chu ban, 2010.
Find full textAccademia economico-agraria dei georgofili (Florence, Italy). Biodiversità e il metagenoma del terreno agrario. Firenze: Edizioni Polistampa, 2011.
Find full textDobrovolʹskiĭ, Gleb Vsevolodovich. Rolʹ pochvy v formirovanii i sokhranenii biologicheskogo raznoobrazii︠a︡. Moskva: T-vo nauch. izd. KMK, 2011.
Find full textDobrovolʹskiĭ, Gleb Vsevolodovich. Rolʹ pochvy v formirovanii i sokhranenii biologicheskogo raznoobrazii︠a︡. Moskva: T-vo nauch. izd. KMK, 2011.
Find full textBook chapters on the topic "Biodiversity of soil"
Beed, Fenton, Thomas Dubois, Daniel Coyne, Didier Lesueur, and Srinivasan Ramasamy. "Soil Biodiversity." In Routledge Handbook of Agricultural Biodiversity, 127–44. New York, NY : Routledge, 2017.: Routledge, 2017. http://dx.doi.org/10.4324/9781317753285-9.
Full textWall, Diana H., Gina Adams, and Andrew N. Parsons. "Soil Biodiversity." In Ecological Studies, 47–82. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0157-8_4.
Full textGroombridge, Brian. "Soil Macrofauna." In Global Biodiversity, 103–15. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2282-5_11.
Full textBamforth, Stuart S. "Interpreting soil ciliate biodiversity." In The Significance and Regulation of Soil Biodiversity, 179–84. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0479-1_16.
Full textWall, Diana H. "Biodiversity: Extracting Lessons from Extreme Soils." In Soil Biology, 71–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74231-9_4.
Full textSzlavecz, Katalin, Ian Yesilonis, and Richard Pouyat. "Soil as a foundation to urban biodiversity." In Urban Biodiversity, 18–35. Milton Park, Abingdon, Oxon; New York, NY: Routledge, 2018. | Series: Routledge studies in urban ecology: Routledge, 2017. http://dx.doi.org/10.9774/gleaf.9781315402581_3.
Full textNovik, Galina, Victoria Savich, and Elena Kiseleva. "Biodiversity Conservation of Phages and Microbial Populations." In Soil Biology, 261–301. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96971-8_10.
Full textHavlicek, Elena, and Edward A. D. Mitchell. "Soils Supporting Biodiversity." In Interactions in Soil: Promoting Plant Growth, 27–58. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8890-8_2.
Full textPérès, Guénola. "Soils Suppressing Biodiversity." In Interactions in Soil: Promoting Plant Growth, 95–118. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8890-8_5.
Full textFranzluebbers, Alan J. "Ecosystems: Soil Animal Functioning." In Terrestrial Ecosystems and Biodiversity, 191–96. Second edition. | Boca Raton: CRC Press, [2020] | Revised edition of: Encyclopedia of natural resources. [2014].: CRC Press, 2020. http://dx.doi.org/10.1201/9780429445651-25.
Full textConference papers on the topic "Biodiversity of soil"
CHEKIN, M. R., and A. G. KUDINOVA. "CHARACTERIZATION OF BACTERIAL COMMUNITIES IN THE SOIL OF OASIS LARSEMANN HILLS, EASTERN ANTARCTICA." In 5TH MOSCOW INTERNATIONAL CONFERENCE "MOLECULAR PHYLOGENETICSAND BIODIVERSITY BIOBANKING". TORUS PRESS, 2018. http://dx.doi.org/10.30826/molphy2018-43.
Full textRaducu, Daniela. "MICROSCOPIC TOOLS USE TO ASSES THE SOIL BIODIVERSITY PROVIDING ECOSYSTEM SERVICE." In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/3.2/s13.040.
Full textIamandei, Maria. "The impact of some agricultural practices on soil biodiversity in sunflower crop." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.112517.
Full textBerbec, Adam Kleofas, and Beata Feledyn-Szewczyk. "Biodiversity of weeds and soil seed bank in organic and conventional farming systems." In Research for Rural Development, 2018. Latvia University of Life Sciences and Technologies, 2018. http://dx.doi.org/10.22616/rrd.24.2018.045.
Full textAlia, Zerrouki, Redjaimia Lilia, Kara Karima, and Rached-Kanouni Malika. "ASSESSMENT AND DIAGNOSIS OF POTENTIAL BIODIVERSITY IN THE CHETTABA FOREST (ALGERIA)." In GEOLINKS Conference Proceedings. Saima Consult Ltd, 2021. http://dx.doi.org/10.32008/geolinks2021/b2/v3/02.
Full textMaryina-Chermnykh, O. G. "Influence of tillage techniques on the structure of the micromycete complex of the grain rhizosphere." In Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-69.
Full textRaducu, Daniela. "THE LIFE QUALITY OF THE BIODIVERSITY IN A FOREST SOIL AFFECTED BY ANTHROPIC POLLUTION." In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019v/1.4/s03.055.
Full textS.U., Susha Lekshmi, and D. N. Singh. "Keynote Speech: Significance of Soil Moisture Content and its Measurement Techniques." In International Web Conference in Civil Engineering for a Sustainable Planet. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.112.keynote4.
Full textFazekasova, Juraj. "RELATIONSHIP BETWEEN VEGETATION BIODIVERSITY AND SOIL FUNCTIONAL DIVERSITY OF ALKALIZED SOIL IN THE EMISSION AREA OF MAGNESIUM FACTORY JELSAVA � LUBENIK (SLOVAKIA)." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/51/s20.103.
Full textShovitri, Maya, Risyatun Nafi’ah, Titi Rindi Antika, Nur Hidayatul Alami, N. D. Kuswytasari, and Enny Zulaikha. "Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria." In PROCEEDING OF INTERNATIONAL BIOLOGY CONFERENCE 2016: Biodiversity and Biotechnology for Human Welfare. Author(s), 2017. http://dx.doi.org/10.1063/1.4985426.
Full textReports on the topic "Biodiversity of soil"
Sperk, Carolin, Jes Weigelt, Alexander Müller, Jonathan Davis, and Ravi Prabhu. One Investment, many Benefits: Soil Rehabilitation for Poverty Reduction, Food Security, Climate Change Adaptation, and Biodiversity Protection. TMG Research gGmbH, May 2017. http://dx.doi.org/10.35435/2.2017.1.
Full text