Academic literature on the topic 'Bioenergy with Carbon Capture and Storage'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bioenergy with Carbon Capture and Storage.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bioenergy with Carbon Capture and Storage"

1

Jephta Mensah Kwakye, Darlington Eze Ekechukwu, and Olorunshogo Benjamin Ogundipe. "Reviewing the role of bioenergy with carbon capture and storage (BECCS) in climate mitigation." Engineering Science & Technology Journal 5, no. 7 (2024): 2323–33. http://dx.doi.org/10.51594/estj.v5i7.1346.

Full text
Abstract:
Climate change poses an imminent threat, necessitating innovative and sustainable strategies for mitigation. This paper explores the potential of Bioenergy with Carbon Capture and Storage (BECCS) as a promising approach. The introductory section sets the stage by elucidating the urgency of climate action. The background section surveys existing climate mitigation strategies, introducing bioenergy and carbon capture technologies. The paper delves into the distinctive contributions of bioenergy to carbon emission reduction and assesses the viability of various bioenergy sources. Simultaneously, the discussion on Carbon Capture and Storage (CCS) provides insight into the technological aspects of carbon capture. An integral focus is the integration of bioenergy and carbon capture technologies in BECCS, exploring synergies that enhance their combined efficacy. Real-world examples and case studies illustrate successful BECCS projects. Environmental and social impacts are critically examined, considering sustainability and ethical dimensions. Challenges and criticisms associated with BECCS are discussed comprehensively, addressing concerns and proposing potential solutions. The paper concludes by outlining future prospects for BECCS, offering recommendations for policymakers and stakeholders. It also suggests avenues for further research and development in this evolving field. Keywords: Bioenergy, Carbon Capture and Storage (BECCS), Climate Mitigation.
APA, Harvard, Vancouver, ISO, and other styles
2

Gładysz, Paweł, Magdalena Strojny, Łukasz Bartela, Maciej Hacaga, and Thomas Froehlich. "Merging Climate Action with Energy Security through CCS—A Multi-Disciplinary Framework for Assessment." Energies 16, no. 1 (2022): 35. http://dx.doi.org/10.3390/en16010035.

Full text
Abstract:
Combining biomass-fired power generation with CO2 capture and storage leads to so-called negative CO2 emissions. Negative CO2 emissions can already be obtained when coal is co-fired with biomass in a power plant with CCS technology. The need for bioenergy with CO2 capture and storage has been identified as one of the key technologies to keep global warming below 2 °C, as this is one of the large-scale technologies that can remove CO2 from the atmosphere. According to the definition of bioenergy with CO2 capture and storage, capturing and storing the CO2 originating from biomass, along with the biomass binding with carbon from the atmosphere as it grows, will result in net removal of CO2 from the atmosphere. Another technology option for CO2 removal from the atmosphere is direct air capture. The idea of a net carbon balance for different systems (including bioenergy with CO2 capture and storage, and direct air capture) has been presented in the literature. This paper gives a background on carbon dioxide removal solutions—with a focus on ecology, economy, and policy-relevant distinctions in technology. As presented in this paper, the bioenergy with CO2 capture and storage is superior to direct air capture for countries like Poland in terms of ecological impact. This is mainly due to the electricity generation mix structure (highly dependent on fossil fuels), which shifts the CO2 emissions to upstream processes, and relatively the low environmental burden for biomass acquisition. Nevertheless, the depletion of non-renewable natural resources for newly built bioenergy power plant with CO2 capture and storage, and direct air capture with surplus wind energy, has a similar impact below 0.5 GJ3x/t of negative CO2 emissions. When the economic factors are a concern, the use of bioenergy with CO2 capture and storage provides an economic justification at current CO2 emission allowance prices of around 90 EUR/t CO2. Conversely, for direct air capture to be viable, the cost would need to be from 3 to 4.5 times higher.
APA, Harvard, Vancouver, ISO, and other styles
3

Shcherbyna, Yevhen, Oleksandr Novoseltsev, and Tatiana Evtukhova. "Overview of carbon capture, utilisation and storage technologies to ensure low-carbon development of energy systems." System Research in Energy 2022, no. 2 (2022): 4–12. http://dx.doi.org/10.15407/srenergy2022.02.004.

Full text
Abstract:
Carbon dioxide CO2 is a component of air that is responsible for the growing global warning and greenhouse gases emissions. The energy sector is one of the main sources of CO2 emissions in the world and especially in Ukraine. Carbon capture, utilization and storage (CCUS) is a group of technologies that play a significant role along with renewable energy sources, bioenergy and hydrogen to reduce CO2 emissions and to achieve international climate goals. Nowadays there are thirty-five commercial CCUS facilities under operation around the world with a CO2 capture capacity up to 45 million tons annually. Tougher climate targets and increased investment provide new incentives for CCUS technologies to be applied more widely. CCUS are applications in which CO2 is captured from anthropogenic sources (power generation and industrial processes) and stored in deep geological formations without entering atmosphere or used in various products using technologies without chemical modification or with conversion. The article discusses the use of various technologies of CO2 capture (post-combustion capture, pre-combustion capture and oxy-combustion capture), CO2 separation methods and their application in the global energy transition to reduce the carbon capacity of energy systems. Technical and economic indicators of CO2 capture at different efficiencies for coal and gas power plants are given. Technologies of transportation and storage of captured carbon dioxide and their economic indicators are considered. The directions for the alternative uses of captured CO2, among which the main ones are the production of synthetic fuels, various chemicals and building materials, are also presented and described in the paper. The possibility of utilization captured СО2 in the production of synthetic fuel in combination with Power-to-Gas technologies was studied. Keywords: greenhouse gases emissions, fossil fuels, СО2 capture technologies, capture efficiency, synthetic fuel
APA, Harvard, Vancouver, ISO, and other styles
4

Hochman, Gal, and Vijay Appasamy. "The Case for Carbon Capture and Storage Technologies." Environments 11, no. 3 (2024): 52. http://dx.doi.org/10.3390/environments11030052.

Full text
Abstract:
In this paper, we use the literature to help us better understand carbon capture costs and how these estimates fare against those of avoided costs, focusing on bioenergy carbon capture and storage (BECCS), carbon capture and storage (CCS), as well as direct air capture technologies. We approach these questions from a meta-analysis perspective. The analysis uses meta-analysis tools while applying them to numerical rather than statistical studies. Our analysis shows that avoided costs are, on average, 17.4% higher than capture costs and that the carbon intensity of the feedstock matters: the estimates for coal-based electricity generation capture costs are statistically smaller than those for natural gas or air. From a policy perspective, the literature suggests that the costs of CCS are like the 45Q subsidy of USD 50 per metric ton of carbon captured.
APA, Harvard, Vancouver, ISO, and other styles
5

Sikarwar, Vineet Singh, Nageswara Rao Peela, Arun Krishna Vuppaladadiyam, et al. "Thermal plasma gasification of organic waste stream coupled with CO2-sorption enhanced reforming employing different sorbents for enhanced hydrogen production." RSC Advances 12, no. 10 (2022): 6122–32. http://dx.doi.org/10.1039/d1ra07719h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Christianides, Diogenis, Dimitra Antonia Bagaki, Rudolphus Antonius Timmers, et al. "Biogenic CO2 Emissions in the EU Biofuel and Bioenergy Sector: Mapping Sources, Regional Trends, and Pathways for Capture and Utilisation." Energies 18, no. 6 (2025): 1345. https://doi.org/10.3390/en18061345.

Full text
Abstract:
The European biofuel and bioenergy industry faces increasing challenges in achieving sustainable energy production while meeting carbon neutrality targets. This study provides a detailed analysis of biogenic emissions from biofuel and bioenergy production, with a focus on key sectors such as biogas, biomethane, bioethanol, syngas, biomass combustion, and biomass pyrolysis. Over 18,000 facilities were examined, including their feedstocks, production processes, and associated greenhouse gas emissions. The results highlight forestry residues as the predominant feedstock and expose significant disparities in infrastructure and technology adoption across EU Member States. While countries like Sweden and Germany lead in emissions management and carbon capture through bioenergy production with carbon capture and storage systems (BECCS), other regions face deficiencies in bioenergy infrastructure. The findings underscore the potential of BECCS and similar carbon management technologies to achieve negative emissions and support the European Green Deal’s climate neutrality goals. This work serves as a resource for policymakers, industry leaders, and researchers, fostering informed strategies for the sustainable advancement of the biofuels sector.
APA, Harvard, Vancouver, ISO, and other styles
7

Hu, Bin, Yilun Zhang, Yi Li, Yanguo Teng, and Weifeng Yue. "Can bioenergy carbon capture and storage aggravate global water crisis?" Science of The Total Environment 714 (April 2020): 136856. http://dx.doi.org/10.1016/j.scitotenv.2020.136856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fridahl, Mathias. "Socio-political prioritization of bioenergy with carbon capture and storage." Energy Policy 104 (May 2017): 89–99. http://dx.doi.org/10.1016/j.enpol.2017.01.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tanzer, Samantha Eleanor, Kornelis Blok, and Andrea Ramírez. "Can bioenergy with carbon capture and storage result in carbon negative steel?" International Journal of Greenhouse Gas Control 100 (September 2020): 103104. http://dx.doi.org/10.1016/j.ijggc.2020.103104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Full, Johannes, Steffen Merseburg, Robert Miehe, and Alexander Sauer. "A New Perspective for Climate Change Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with Carbon Capture and Storage (HyBECCS)." Sustainability 13, no. 7 (2021): 4026. http://dx.doi.org/10.3390/su13074026.

Full text
Abstract:
The greatest lever for advancing climate adaptation and mitigation is the defossilization of energy systems. A key opportunity to replace fossil fuels across sectors is the use of renewable hydrogen. In this context, the main political and social push is currently on climate neutral hydrogen (H2) production through electrolysis using renewable electricity. Another climate neutral possibility that has recently gained importance is biohydrogen production from biogenic residual and waste materials. This paper introduces for the first time a novel concept for the production of hydrogen with net negative emissions. The derived concept combines biohydrogen production using biotechnological or thermochemical processes with carbon dioxide (CO2) capture and storage. Various process combinations referred to this basic approach are defined as HyBECCS (Hydrogen Bioenergy with Carbon Capture and Storage) and described in this paper. The technical principles and resulting advantages of the novel concept are systematically derived and compared with other Negative Emission Technologies (NET). These include the high concentration and purity of the CO2 to be captured compared to Direct Air Carbon Capture (DAC) and Post-combustion Carbon Capture (PCC) as well as the emission-free use of hydrogen resulting in a higher possible CO2 capture rate compared to hydrocarbon-based biofuels generated with Bioenergy with Carbon Capture and Storage (BECCS) technologies. Further, the role of carbon-negative hydrogen in future energy systems is analyzed, taking into account key societal and technological drivers against the background of climate adaptation and mitigation. For this purpose, taking the example of the Federal Republic of Germany, the ecological impacts are estimated, and an economic assessment is made. For the production and use of carbon-negative hydrogen, a saving potential of 8.49–17.06 MtCO2,eq/a is estimated for the year 2030 in Germany. The production costs for carbon-negative hydrogen would have to be below 4.30 € per kg in a worst-case scenario and below 10.44 € in a best-case scenario in order to be competitive in Germany, taking into account hydrogen market forecasts.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bioenergy with Carbon Capture and Storage"

1

Crombie, Kyle. "Biochar – synergies between carbon storage, environmental functions and renewable energy production." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9778.

Full text
Abstract:
Growing concerns about climate change and the inevitable depletion of fossil fuel resources have led to an increased focus on renewable energy technologies and reducing GHG emissions. Limiting the atmospheric level of CO2 is essential to prevent the most damaging effects of climate change. Among renewable energy resources, biomass combustion has the largest potential to contribute to global energy demands, however it is considered to be a carbon neutral solution and so only limits CO2 concentrations rather than reducing them. Through pyrolysis rather than combustion, biomass can lead to carbon negative liquid, gaseous and solid fuels while also offering a route for long term carbon storage in the form of biochar. Biochar is a carbonaceous material which has shown potential for improving soil fertility, reducing GHG emissions and most importantly long term C storage in the environment. However many questions still remain unanswered with regard to biochar, especially the influence that process conditions can have on its performance in soil as well as any potential trade-offs between soil amendment, C sequestration and heat/power generation. This thesis is therefore focused on assessing the influence that process conditions and feedstock selection have on biochar properties related to carbon stabilisation, improving soil fertility (functional properties) as well as the distribution of energy amongst the pyrolysis co-products. To achieve this, a systematic set of biochar samples was produced, using a wide range of pyrolysis parameters (highest treatment temperature (HTT), heating rate, residence time, carrier gas flow rate and feedstock type), and analysed for physicochemical and functional properties. Pyrolysis HTT consistently showed a dominant influence on determining the final yields and properties of biochar, while the effect of other production parameters was varied. In this thesis the candidate first studied the effect that process conditions had on the long term stability of biochar, as an important indicator of its ability to sequester carbon. While increasing the HTT resulted in a decrease in biochar yield, overall the yield of stable-C increased with temperature. This meant that by applying a higher HTT during pyrolysis a higher C sequestration potential for biochar was achieved. Next to be examined was the influence that process conditions had on other functional properties (labile-C yield, biochar pH, extractable nutrients and cation exchange capacity (CEC)) was then examined. The labile-C yield of biochar decreased with increasing HTT due to the release of volatile matter, while the CEC and concentration of extractable nutrients tended to be higher in biochar produced at 450oC rather than greater HTTs. Biochar pH was also highly alkaline at elevated HTT. This indicated that while high HTT favoured C sequestration and biochar pH, lower HTT may be more favourable for other functional properties. Furthermore by assessing the mass and energy distribution amongst the solid, liquid and gaseous fractions, it was possible to determine the energy balance of the process and through this evaluate the trade-off between the C sequestration potential of biochar and the energy output of the liquid and gas fractions. As the severity of pyrolysis was raised, the total energy stored within the liquid and gaseous co-products increased at the expense of the energy content of biochar, therefore increasing the available energy output of the system and reducing the energy lost when using biochar for carbon storage rather than for bioenergy. This also demonstrated that the pyrolysis process could be fine-tuned to increase the amount of stored C while also improving the heat/power generation of the system. The higher energy content of the gas stream at elevated HTT was also seen to contain sufficient energy to sustain the pyrolysis process, which would free up the solid and liquid fractions for higher value applications while reducing the necessity for external fuel sources. Finally, the data set was used to produce statistical models enabling the prediction of biochar stable-C yield as well as the heating value of biochar. The results of this thesis therefore demonstrate that through applying high HTT the potential energy output of the pyrolysis system can be increased while producing a biochar product with high C sequestration potential and positive functional properties for soil amendment. Due to potential trade-offs, the final choice of process conditions and feedstock would then be made based on the specific requirements of a selected site for biochar application. Understanding the influence that production conditions have on the functional properties of biochar as well as the energy balance of the system is critical to developing specifically engineered bespoke biochar, be it for agricultural use, carbon storage, energy generation or combinations of the three.
APA, Harvard, Vancouver, ISO, and other styles
2

Bojö, Erik, and Vincent Edberg. "Koldioxidlagring i Sverige : En studie om CCS, Bio-CCS, DACCS och biokol ur ett 2045-perspektiv." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297570.

Full text
Abstract:
Sverige har som ambition att uppnå nettonollutsläpp av fossilt CO2 till år 2045. För att lyckas med detta ska landet minska sina utsläpp med 85%, samtidigt som så kallade kompletterande åtgärder kommer vidtas för att kompensera för resterande 15%. Denna studie utreder Sveriges arbete med negativa utsläpp som kompletterande åtgärd med fokus på teknikerna bio-energy for carbon capture and storage (Bio-CCS på svenska), Direct air capture for carbon capture and storage (DACCS) och biokol. Även carbon capture and storage (CCS), som kan bidra till att göra anläggningar CO2-neutrala, har studerats. Under arbetets gång har en litteraturstudie samt intervjuer med forskare, politiker, bransch- och företagsrepresentanter samt myndigheter genomförts.  För CCS och Bio-CCS, som innefattar avskiljning av CO2 från punktutsläpp, finns fyra olika avskiljningsstrategier som kallas post-, pre-, och oxyfuel combustion samt chemical looping. I fallet med DACCS tillämpas antingen absorption eller adsorption för att avskilja koldioxiden från atmosfären. Biokol produceras genom förbränning av biomassa i en pyrolysanläggning och kan sedan användas som jordförbättringsmedel och kolsänka. Det finns idag en inhemsk biokolsproduktion på kommersiell skala vilket gör att biokol skiljer sig från de övriga tre teknikerna som inte kommit lika långt i sin utveckling. Däremot finns det ett flertal pilotprojekt inom CCS och Bio-CCS i Sverige.  Sveriges väletablerade bioekonomi gör att det finns goda förutsättningar för biokol och Bio- CCS att bidra till negativa utsläpp ur ett 2045-perspektiv. DACCS anses däremot inte aktuellt som kompletterande åtgärd till år 2045. Efter intervjuer framgår att det råder en god samstämmighet mellan olika aktörer kring vilka faktorer som behöver behandlas för att implementera teknikerna. Gemensamt för alla tekniker är att det krävs ekonomiska incitament för att möjliggöra storskalig implementering. För CCS-teknikerna krävs även regulatoriska förändringar för att underlätta transporten av CO2.<br>Sweden's ambition is to achieve net zero emissions of fossil CO2 by the year 2045. To reach this target, Sweden aims to reduce its emissions by 85%, while so-called supplementary measures will be taken to compensate for the remaining 15%. This study investigates Sweden's work with negative emissions as a complementary measure with a focus on the technologies bio-energy for carbon capture and storage (Bio-CCS in Swedish), Direct air capture for carbon capture and storage (DACCS) and biochar. Carbon capture and storage (CCS), which can help make industrial plants CO2-neutral, has also been studied. During the project, a literature study and interviews with researchers, politicians, industry and company representatives as well as authorities were carried out, which formed the basis of the report.  For CCS and Bio-CCS, which include separation of CO2 from point source emissions, there are four different separation strategies called post-, pre-, and oxyfuel combustion as well as chemical looping. Among these, post combustion is highlighted as the most developed. In the case of DACCS, either absorption or adsorption is applied to separate CO2 from the atmosphere. CCS, Bio-CCS and DACCS all have in common that the captured CO2 must be stored in deep geological formations once it has been separated. Biochar is produced by heating biomass in a pyrolysis plant and can be used as a soil improver and carbon sink. Today Sweden has a domestic biochar production on a commercial scale, which means that biochar differs from the other three technologies that have yet to reach that stage of development. However, there are several pilot projects within Bio-CCS and CCS in Sweden.  Sweden's well-established bioeconomy means that the conditions are good for biochar and Bio-CCS to contribute to negative emissions in relation to the 2045 target. DACCS, on the other hand, is not considered relevant as a supplementary measure to the year 2045 due to its technical immaturity and high cost. From interviews with researchers, authorities, companies, industry organizations and politicians, it is clear that there is a consensus between the different actors on which factors need to be addressed in order to enable large-scale implementation of the technologies. Common to all technologies is that financial incentives are required to enable large-scale implementation. The CCS technologies also require regulatory changes to facilitate the transport of CO2.
APA, Harvard, Vancouver, ISO, and other styles
3

Karthikeyan, Tejas Latha. "Investigation of the absorption solvent for bioenergy carbon capture and storage (BECCS) through pilot plant trials." Thesis, KTH, Kemiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289165.

Full text
Abstract:
Att begränsa globala uppvärmningen till 1,5°C kommer kräva negativa koldioxidutsläpp. En metod för att generera negativa koldioxidutsläpp är så kallad Bio-Energy Carbon Capture and Storage (BECCS). En direkt implementering av BECCS är att fånga in CO2 från rökgas som genereras vid förbränning av biomassa i en så kallad post-combustion capture-konfigurering. Post-combustion BECCS har skapat en stor resonans hos kraftverksoperatörer och pappersproducenter. Stockholm Exergi, som ägs av Fortum och Stockholms Stad, siktar på att fånga in upp till 800 kt CO2 per år från deras biomass-eldade CHP-anläggning i Värtaverket vid 2024. Planen är att fånga in CO2 från rökgasen genom en absorptionsprocess och sedan skeppa det till Norge för geologisk förvaring. Mastersexamensarbetet följde en experimentskampanj driven av Stockholm Exergi som siktade på att uppnå experimentell validering av en absorptionsprocess för koldioxidinfångning från rökgas vid förbränning av biomassa. En testenhet konstruerades och tester genomfördes från december 2019 till maj 2020. Examensarbetet fokuserade på rollen absorptionsmedlet hade på infångningshastigheten. Tester med tre olika lösningsmedel genomfördes och de experimentella resultaten analyserades genom en kombination av jämviktsmodeller och Murphree-effektiviteter. Resultatet visar att ett absorptionsmedel baserat på vattenlöslig K2CO3 är kompatibel med rökgas från förbränning av biomassa, eftersom infångningshastigheter mellan 5 och 13 % uppmättes. De undersökta hastighetspromotorerna (3 vikt% H3BO3 + 1 vikt% V2O5) visade dock inte den förväntade effekten på infångningshastigheter, och på grund av tidsbegränsningar testades inte olika vikt% av promotorn under det här examensarbetet. Ingen tydlig slutsats drogs därför med hänsyn till promotorer. Baserat på Murphree-effektiviteterna som beräknats genom experimenten med konstant förhållande mellan vätske- och gasflöde uppskattas en 28–35 m hög kolonn fånga 90% av CO2 i rökgasen.<br>Limiting global warming to 1.5°C will require negative carbon emissions. One way for generating negative carbon emissions is through bio-energy carbon capture and storage (BECCS). A direct implementation of BECCS is to capture CO2 from the flue gas originating from the combustion of biomass in a post-combustion capture configuration. Post-combustion BECCS has generated considerable resonance among power plant operators and paper manufactures. Stockholm Exergi, owned by Fortum and Stockholm Stad, aims at capturing up to 800 kt CO2 per year from their biomass-fired CHP plant in Värtaverket by 2024. The plan foresees to capture CO2 from the flue gas utilizing an absorption process and shipment of the captured CO2 to Norway for geological storage. The Master thesis project followed an experimental campaign run by Stockholm Exergi that aimed at experimental validation of an absorption process for carbon capture from flue gas originating from the combustion of biomass. A test unit was constructed, and test trials were run from Dec. 2019 to May 2020. The thesis focused on the role of the absorption solvent on the capture rate. Test trails with three different solvents were conducted, and the experimental results were analyzed using equilibrium models combined with Murphree efficiencies. The results show that an absorption solvent based on aqueous K2CO3 is compatible with the flue gas derived from biomass combustion, i.e., capture rates ranging from 5 to 13 % were measured. However, the investigated rate promoters (3 wt.% H3BO3 + 1 wt.% V2O5) did not show the expected effect with regards to capture rates and due to time constrain different wt.% of the promoter were not tested within the scope of this thesis. Therefore, no firm conclusion was given with regards to promoters. Based on the Murphree efficiency calculated from the experiment with keeping a constant liquid to gas flow ratio, a column height of 28-35 m is estimated to capture 90% of CO2 from the flue gas.
APA, Harvard, Vancouver, ISO, and other styles
4

Persson, Skare Kjersti Maria. "BECCS is next : A study on Bioenergy with Carbon Capture and Storage in Norwegian news media." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445860.

Full text
Abstract:
Bioenergy with carbon capture and storage is emphasized by the Intergovernmental Panel on Climate Change as a key mitigation option to reach the Paris Agreement goal of 2 degrees Celsius but the required need of large-scale facilities is yet to be developed and is therefore in large theoretical. Norway is one country often portraited as a forerunner in the field especially when it comes to offshore storage. How media is framing the technology can impact how society responds to it. This thesis explores how bioenergy with carbon capture and storage is constructed in Norwegian news media between 2005 and 2020. This is done by conducting a discourse analysis based on Marten Haajers analytical approach and reflect on how the constructed story lines are aligned with the current policy path in Norway. The results show that the three discourses Survivalism, Promethenaism and Ecological modernization have dominated the Norwegian news media and the notion of bioenergy with carbon capture and storage. The majority of published articles in the sample were found to be supportive of the technology but there are also more critical voices who above all advocate an increased focus on the forests’ mitigation potential. The discourses constructed in the news media have clear similarities with the ongoing policy path on bioenergy with carbon capture and storage, as both voice the idea that technological development is well aligned with striving towards sustainability.
APA, Harvard, Vancouver, ISO, and other styles
5

Dittrich, Linnea, and Sofia Lillieroth. "The role of bioenergy for achieving a fossil fuel free Stockholm by 2040." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264528.

Full text
Abstract:
Bioenergy is extracted from biomass. What counts as biomass is generally quite diverse, but broadly speaking, it is material that previously lived. Today, energy extracted from biofuels make up around 23% of Stockholm city's total energy consumption. Stockholm city has set a goal to be a fossil-free city by 2040, i.e. zero emissions from energy use. Two sectors have been identified where emissions occur and these are the transport sector and the electricity and heating sector. This thesis will only address the electricity and heating sector. This includes all energy consumption within Stockholm city municipality. When Stockholm is developing towards a fossil fuel free city, it’s interesting to look at how important bioenergy will be as an energy source in the future. This thesis has scrutinized the role of bioenergy in reaching a fossil fuel free city. Three major policies have been investigated. The carbon dioxide tax and the emission rights system have promoted the bioenergy and its deployment in a positive way. The system of electricity certificates has shown to indirectly affect the bio energy in a negative way. The key finding is that bioenergy will have a great impact in reaching the goal mainly through its contributions with negative emissions, but it is also an important substitute to fossil fuels.<br>Bioenergi utvinns ur biomassa eller biobränslen. Biomassa och biobränslen är ganska diffusa begrepp då definitionen varierar runt om i världen, men generellt sett är det material som tidigare levt. Idag utgör energi från biobränslen cirka 23% av Stockholms stads totala energiförbrukning. Stockholms stad har satt upp ett mål att vara en fossilfri stad år 2040, det vill säga inga utsläpp från stadens energiförbrukning. Det finns två huvudsakliga sektorer där koldioxidutsläpp förekommer, dessa är transportsektorn och eloch värmesektorn. Detta inkluderar all energiförbrukning inom Stockholms kommuns gränser, till exempel uppvärmning av hushåll och energin de fordon som körs i staden förbrukar. När Stockholm utveckling går mot att bli en fossilbränslefri stad är det intressant att se hur viktig bioenergi kommer att vara som energikälla i framtiden. Denna rapport granskar bioenergins roll i att nå klimatmålet till 2040. De huvudsakliga slutsaterna är att bioenergi kommer ha en stor och viktig roll i att nå målet och att dess största inverkan kommer vara de negativa utsläppen. Vissa lagar har främjat bioenergin medans vissa indirekt har påverkat dess utveckling negativt. Bioenergin har en ljus framtid i Stockholm.
APA, Harvard, Vancouver, ISO, and other styles
6

Harrius, Josefine, and Amanda Larsson. "Avskiljning, användning och lagring av koldioxid från biogasproduktion : Lämpliga lösningar för Tekniska verkens biogasanläggning." Thesis, Linköpings universitet, Industriell miljöteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166448.

Full text
Abstract:
Carbon dioxide is released by natural and anthropogenic processes, such as the production and combustion of fossil fuels. Production of biogas also generates carbon dioxide, but of biogenic origin. The global, yearly emissions of greenhouse gases are regularly increasing, although agreements such as the Paris Agreement is signed by parties globally. Sweden has the goal to reach net-zero emissions by 2045, and thereafter to only obtain negative emission levels. To reach these goals the biogenic version of Carbon Capture and Storage (CCS) called Bioenergy with Carbon Capture and Storage (BECCS) is considered to be an essential strategy. Using carbon dioxide, through Carbon Capture and Utilization (CCU), in for example products, can complement BECCS since the strategy can increase the value of carbon dioxide. These strategies make it possible to reduce the climate impact of biogas production.  This master thesis aimed to chart different techniques in CCS and CCU to examine how they can be used to utilize or store carbon dioxide from biogas plants. What technical demands different solutions create was explored. The different techniques were assessed through a multi criteria analysis by a technological, environmental, marketable and economical standpoint to investigate which ones were the most suitable for a specific, studied case – Tekniska verken’s biogas plant. One suitable technique within CCU was analyzed through a screening of actors in the region. An environmental assessment of one technique in CCS and one in CCU were compared with the reference case Business as usual, to explore how a simulated biogas plant’s climate impact can change through the implementation of CCS and CCU.  The charting of literature gave findings of 42 different techniques, which were sifted down to 7; algae farming for wastewater treatment, BECCS in saltwater aquifers, carbon dioxide curing of concrete, bulk solutions, production of methanol, production of methane through Power To Gas and crop yield boosting in greenhouses. The multi criteria analysis pointed out carbon dioxide curing of concrete and BECCS in saltwater aquifers as suitable solutions for the studied case. The implementation of these techniques requires a liquefaction plant, infrastructure for transportation as well as business partners.  A life cycle assessment of the studied cases climate impact was given through modelling and simulation of a model plant of the studied case, with the functional unit 1 Nm3 biomethane. The reference case Business as usual had a climate impact of 0,38 kg CO2 eq, which corresponds to approximately one eighth of the climate impact of fossil fuels such as gasoline or diesel. By storing the carbon dioxide through BECCS in saltwater aquifers the climate impact decreased to - 0,42 kg CO2 eq. By utilizing the carbon dioxide through curing of concrete the biomethane’s climate impact decreased to -0,72 kg CO2 eq. The results thereby evince that Swedish biogas producers can improve their climate performance through CCS and CCU.<br>Koldioxid släpps ut av såväl naturliga som antropogena processer, exempelvis vid produktion och förbränning av fossila bränslen. Även vid biogasproduktion uppkommer koldioxid, men av biogent ursprung. Årliga globala utsläpp av växthusgaser ökar regelbundet, trots överenskommelser som Parisavtalet som syftar till att begränsa klimatförändringarna. Sverige ska nå nettonollutsläpp senast 2045 och därefter ha negativa utsläppsnivåer. För att uppnå detta mål anses en biogen version av Carbon Capture and Storage (CCS), det vill säga avskiljning och lagring av koldioxid, kallad Bioenergy with Carbon Capture and Storage (BECCS) vara en essentiell strategi. Tillvaratagande av koldioxid, genom Carbon Capture and Utilization (CCU), kan ge ett bra komplement till BECCS eftersom det nyttiggör koldioxid i produkter och kan öka värdet av koldioxid. Tekniker inom CCS och CCU möjliggör minskad klimatpåverkan inom biogasproduktion.  Detta examensarbete syftade till att kartlägga olika alternativ inom teknikerna CCS och CCU för att undersöka hur dessa kan användas för att nyttiggöra eller lagra koldioxid från biogasanläggningar, samt att undersöka vilka tekniska krav som ges av lösningarna. Utifrån en multikriterieanalys bedömdes vilka lösningar som var tekniskt, miljömässigt, marknadsmässigt och ekonomiskt motiverade för tillvaratagande av koldioxid. Bedömningen genomfördes genom att studera specifikt fall som var Tekniska verken i Linköpings biogasanläggning. Den lösning som valdes ut som lämplig inom CCU analyserades ur ett marknadsmässigt perspektiv genom en översiktlig kartläggning av aktörer i regionen. Därefter studerades klimatpåverkan från en förenklad modell av Tekniska verkens biogasanläggning för att undersöka hur denna förändras vid implementering av en lämplig lösning inom CCS respektive CCU.  Genom en screening av lösningsförslag identifierades 42 lösningsförslag inom CCS och CCU som sållades ner till sju stycken; algodling vid vattenrening, BECCS i saltvattenakviferer, betong härdad av koldioxid, bulklösning, metanoltillverkning, tillverkning av metan genom Power To Gas samt växthusodling. Multikriterieanalysen visade att koldioxidhärdad betong inom CCU och BECCS i saltvattenakviferer inom CCS var lämpliga lösningar för det studerade fallet. För implementering av förslagen krävdes bland annat en förvätskningsanläggning, infrastruktur för transport och samarbetspartners.  De studerade scenariernas klimatmässiga livscykel erhölls genom modellering och simulering av en modellanläggning av det studerade fallets biogasanläggning i programvaran SimaPro med användning av den funktionella enheten 1 Nm3 fordonsgas. Resultatet visade att fordonsgasen i referensfallet har en klimatpåverkan på 0,38 kg koldioxidekvivalenter. Fordonsgasens klimatpåverkan var cirka en åttondel av fossila bränslen såsom bensin och diesels klimatpåverkan. Vid lagring av koldioxid genom BECCS i saltvattenakviferer förändrades klimatpåverkan till - 0,42 kg koldioxidekvivalenter. När koldioxid användes till härdning av betong förändrades fordonsgasens klimatpåverkan till -0,72 kg koldioxidekvivalenter. Detta innebär att svenska producenter av biogas kan förbättra sin klimatpåverkan genom såväl lösningar inom CCS som CCU.
APA, Harvard, Vancouver, ISO, and other styles
7

Villar, I. Comajoan Laia. "Simulation of stripper modifications for bioenergy carbon capture by absorption." Thesis, KTH, Kemiteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299891.

Full text
Abstract:
Att koldioxidutsläppen neutraliseras är avgörande för att begränsa klimatförändringarna. Bioenergi i kombination med separation och lagring av koldioxid (BECCS) är en Teknik som kan generera negativa utsläpp. Det största hindret för dess storskaliga genomförande är de höga energikraven för processen. Detta projekt syftar till att kvantifiera energistraffen för lean solvent flash och modifikationer för multitrycksstrippning för att förbättra prestandan av koldioxidavskiljning (CC) i en kraftvärmeverksanläggning för förbränning av biomassa.  En jämviktsmodell utvecklades och validerades för att simulera en fullskalig CC genom kemisk absorption i Aspen Plus med kaliumkarbonat som lösningsmedel. Båda layoutändringarna resulterar i energipåföljder på 18-21 % för en kraftvärmeverk, medan energistraffet för baslinjeprocessen är 5 %. För ett kraftverk går straffen från 32 till 62 %. Detta visar hur en förbättring av processen kan minska kostnaderna för CCS, särskilt om värme anses vara en värdefull produkt. CCS i kraftvärmeverk har en mycket lägre energipåverkan än i kraftverk där värme inte återvinns.<br>Bio-energy with carbon capture and storage (BECCS) is a technology that can generate negative emissions. Hence it is recognized as a solution for becoming carbon neutral, which is essential for climate change mitigation. The main obstacle for its large scale implementation is the high energy requirements of the process. This thesis aims at quantifying the energy penalties for lean solvent flash and multi-pressure stripper layout modifications to improve the performance of carbon capture (CC) by means of absorption with a liquid solvent in a biomass-fired CHP plant. The work focuses on K2CO3 based solvents operated in a mixed temperature swing/pressure swing cycle witch is deemed advantageous for heat recovery.  An equilibrium model was developed and validated to simulate a full-scale CC by chemical absorption in Aspen Plus using potassium carbonate as solvent. Both layout modifications result in energy penalties of 18-21 % for a CHP plant, while the energy penalty for the baseline process is 28 %. For a power plant, the penalties go from 32 % to 62 % for the lean solvent flash and the multi-pressure stripper respectively. This shows how improving the process can reduce the costs of CCS, especially if heat is considered a valuable product. CCS in CHP plants has a much lower energy impact than in power plants where heat is not recovered.
APA, Harvard, Vancouver, ISO, and other styles
8

Ćwik, Agnieszka. "Advanced carbon capture and storage technologies." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667648.

Full text
Abstract:
In this work two research topics are presented: investigation of carbonation reactions of high – calcium waste materials and CO2 storage in coal. Firstly, sorption capacity of CO2 and CH4 of hard coal and associated sorption-induced expansion of the material was measured. This investigation was maintained in isothermal and non-isothermal conditions. Experiments were done on purpose-design apparatus allowing simultaneous measurement of sorption kinetics and sorption-induced swelling/contraction of coal. Chosen coal sample had higher sorption capacity for CO2 when compare to capacity for CH4.. Next to CO2 storage, the topic of CO2 utilization has been investigated. Carbonation of European high-calcium fly ashes is assessed. The experiments have been done on different fly ashes with content of 5-36% CaO. Complementary, characterization and analysis of fly ash samples has been performed. Acceleration of carbonation has been explored. Experiments has been done in temperature range between 25 and 290°C, 1-12 bar of CO2, CO2 + H2O and simulated flue gas over reaction times between 2 and 72 hours. Major conclusions of this work is that increasing the temperature and pressure strongly enhances the process of carbonation. Also, addition of water vapor substantially accelerates the process and increase its kinetics. This thesis reports that maintaining the carbonation process without steam addition leads to effective carbonation conversion. Chemical fixation of CO2 molecules with solid material of fly ash with high content of CaO to produce calcium carbonate is possible. The highest sequestration capacity achieved is 117.7 g CO2/kg fly ash and highest carbonation efficiency obtained is 48%. The microstructural analysis of fly ash samples showed the evolution of the cenosphere surface according to the carbonation experiments conditions. Different shapes and sizes of calcium carbonate has been detected after carbonation experiments. The compositional constraints of fly ashes that control reaction with CO2 has been described. It was found that not the bulk content of CaO is the factor controlling the carbonation reaction, but the content of free lime. Impact on carbonation of two pressure flow systems was assessed: batch and continuous flow, with and without addition of steam. Using he batch treatment with addition of steam gave the highest carbonation efficiency. Another set of carbonation experiments which has been done was with using simulated flue gas (84% N2, 15% CO2, 1 % H2O) instead of pure CO2 stream, in conditions: 160°C, 6 bar of gas and 2 hours of reaction time. It was concluded that using flue gas instead of pure stream of carbon dioxide lowers the carbonation rate of about 9%. Final part of this research was to determine the change of free lime content in fly ash samples before and after carbonation. Carbonation reactions lead to substantial decrease of free lime contents in fly ashes. In most cases, the amount of free lime in fly ash after carbonation was compatible with the current EU legislations regarding fly ash incorporation to cement as admixture.<br>En este trabajo se presentan dos temas de investigación: almacenamiento de CO2 en carbón y carbonatación de residuos industriales con un alto contenido en calcio. En primer lugar, se midió la capacidad de sorción de CO2 y CH4 de la hulla y su asociada expansión. Esta investigación se mantuvo en condiciones isotérmicas y no isotérmicas. Los experimentos se realizaron en un aparato diseñado específicamente, el cual permite la medición simultánea de la cinética de sorción y su asociada expansión y contracción. La muestra de carbón elegido tenía una mayor capacidad de absorción de CO2 comparado a CH4. Además, la absorción de CO2 indujo una expansión de volumen en el carbón, duplicando la obtenida tras la absorción de CH4. La cinética de deformación lineal muestra que la expansión del carbón inducida por ambos gases es anisotrópica, y es mayor en la dirección perpendicular al plano de estratificación que en paralelo a este. El análisis dilatométrico hace referencia a la deformación del material en presencia de CH4 es casi dos veces más baja que la obtenida en presencia de CO2, en el mismo rango de presión. El aumento de temperatura da como resultado una expansión adicional del carbón cuando se expone a CH4. La absorción de CO2 en el carbón en condiciones iso-térmicas conduce a la contracción de la muestra. Esto podría estar asociado con la composición petrográfica del carbón. Los datos obtenidos de la cinética de absorción y expansión de carbón se ajustaron en una ecuación cinética. El modelo utilizado fue: ‘Ecuación Exponencial Estirada’. El modelado de la cinética de absorción y expansión es importante para determinar la respuesta del carbón como posible almacenamiento de gas y permite predecir los cambios en la absorción-transporte de carbón. Junto al almacenamiento de CO2, la utilización de este también ha sido investigado. Se evalúa la carbonatación de las cenizas volante de origen europeo con alto contenido en calcio. Los experimentos se han realizado en diferentes cenizas volantes con un contenido entre 5-36% de CaO. Un estudio detallado de la carbonatación acelerada de las cenizas volantes has sido llevado a cabo Los experimentos se han realizado en un rango de temperatura entre 25 y 290°C, 1 - 12 bares de CO2, CO2 + H2O y gases de combustión simulados durante tiempos de reacción entre 2 y 72 horas. La principal conclusión de este trabajo es: el aumento de temperatura, presión y la adición de vapor de agua acelera considerablemente el proceso de carbonatación en estos materiales. Evidencias experimentales sugieren que una carbonatación efectiva se puede obtener sin la adición de vapor de agua. La mayor capacidad de CO2 secuestrado es de 117.7 g CO2/kg de cenizas volantes y la mayor eficiencia de carbonatación obtenida equivale a 48%. El análisis microestructural de las cenizas volantes mostró una evolución de la superficie de la cenosferas según las condiciones de los experimentos de carbonatación. Se han detectado diferentes formas y tamaños de carbonato de calcio después de los experimentos de carbonatación Se han descrito las restricciones referidas a la composición de las cenizas volantes que controlan su reacción con CO2. Se encontró que el factor dominante que controla la reacción de carbonatación es el contenido mineralógico de cal libre, en lugar del contenido total de CaO. Se evaluó el impacto en la carbonatación de dos sistemas presurizados: batch y flujo continuo, con y sin adición de vapor. Las reacciones llevadas a cabo en sistemas tipo batch con la adición de vapor produjeron la mayor eficiencia de carbonatación. Otra serie de experimentos de carbonatación realizados consistieron en el uso de gas de combustión simulado (84% N2, 15% CO2, 1% H2O) en lugar de CO2 puro. Las condiciones experimentales fueron: 160°C, 6 bares de presión total y 2 horas de tiempo de reacción. Se concluyó que el uso de gas de combustión en lugar de dióxido de carbono puro reduce la tasa de carbonatación de aproximadamente el 9%. Finalizando, el contenido de cal libre ha sido determinado para cada muestra antes y después de las reacciones de carbonatación en una variedad de cenizas volantes. Las reacciones de carbonatación produjeron una disminución sustancial del contenido de cal libre en las cenizas volantes. En la mayoría de los casos, el contenido de cal libre después de la carbonatación fue compatible con las legislaciones actuales de la UE con respecto a la incorporación de cenizas volantes al cemento como aditivo.<br>W niniejszej przedstawiono dwa tematy badawcze: badanie reakcji karbonatyzacji odpadów wysoko wapniowych i składowania CO2 w węglu. W pierwszej części badawczej dokonano analizy pojemności sorpcyjnej CO2 i CH4 węgla kamiennego oraz zmiany wolumetryczne węgla spowodowane procesem sorpcji. Eksperymenty prowadzono w warunkach izotermicznych i nieizotermicznych. Do pomiarów użyto specjalistycznego aparatu do jednoczesnego pomiaru sorpcji oraz ekspansji próbek wywołanej sorpcją. Wybrana próbka węgla charakteryzowała się większą pojemnością sorpcyjną dla CO2 niż dla CH4. Odkształcenia próbki węgla spowodowane sorpcją CO2 były dwa razy większe niż odkształcenia próbki wzbudzone sorpcją metanu. Ekspansja próbki jest anizotropowa w wyniku sorpcji obu gazów i większa w kierunku prostopadłym niż równoległym. Analiza dylatometryczna wskazuje, że ekspansja węgla w obecności CH4 jest prawie dwukrotnie mniejsza niż ekspasnsja węgla podczas sorpcji CO2, w tym samym zakresie ciśnień. Prowadzenie eksperymentów sorpcji w warunkach nieizotermicznych powoduje dodatkową ekspansję węgla podczaj reakcji z CH4. Sorpcja CO2 na węglu w tych warunkach prowadzi do kontrakcji próbki. Przedstawione różnice wolumetryczne mogą być związane ze składem petrograficznym węgla. Dane kinetyk sorpcji i rozszerzalności próbki węgla kamiennego zostały dopasowane do równania kinetycznego. Zastosowanym modelem było równanie ’Stretched Exponential Equation’. Modelowanie kinetyki sorpcji i rozszerzalności węgla jest ważne w celu określenia potencjalu zmagazynowania CO2 w węglu oraz pozwala przewidzieć zmiany wolumetryczne pokładów węglowych. W drugiej części niniejszej pracy zbadano temat utylizacji ditlenku węgla. Przedstawiono oraz zbadano temat karbonatyzacji europejskich popiołów lotnych o wysokiej zawartościści tlenku wapnia. Doświadczenia przeprowadzono na różnych popiołach lotnych o całkowitej zawartości CaO w przedziale 5-36%. Dokonano również charakteryzacji oraz analizy wybranych próbek popiołów lotnych. Przeprowadzono próby akceleracji kinetyki procesu karbonatyzacji. Eksperymenty wykonano w zakresie temperatur od 25 do 290°C, ciśnienia 1-12 barów CO2, CO2 + H2O lub mieszaniny gazów. Czas reakcji eskerymentów mieścił się w przedziale 2 a 72 godzin. Podwyższenie temperatury oraz ciśnienia CO2 zwiększa konwersję gazu i CaO do węglanu wapnia. Ponadto, dodanie pary wodnej do strumienia CO2 przyśpiesza proces karbonatyzacji. Uzyskane wyniki eskerymentów pozwalają wnioskować, że karbonatyzacja w warunkach gaz – ciało stałe, bez dostępu wody jest możliwa do przeprowadzenia. Opisane warunki doświadczeń pozwoliły na interakcję cząsteczek CO2 z tlenkiem wapnia zawartym w popiele lotnym i wytworzenie kalcytu. Najwyższa uzyskana pojemność sekwestracyjna CO2 wyniosła 117,7 g CO2/kg popiołu lotnego, a najwyższa uzyskana wydajność karbonatyzacji wyniosła 48%. Analiza mikrostrukturalna próbek popiołów lotnych ukazała ewolucję powierzchni cenosfer podczas zmieniających się warunków eskerymentalnych procesu karbonatyzacji. Podczas analizy próbek popiołu po karbonatyzacji wykryto w materiale różne kształty i rozmiary węglanu wapnia. Zdeterminowano wpływ składu chemicznego popiołów lotnych na reakcję z ditlenkiem węgla. Stwierdzono, że zawartość wolnego wapna jest czynnikiem kontrolującym reakcję, a nie całkowita zawartość CaO. Oceniono wpływ na reakcję karbonatyzacji dwóch układów przepływu ciśnieniowego: reaktor zamknięty oraz reaktor z ciągłym przepływem gazu, z dodatkiem pary wodnej lub bez. Zastosowanie reaktora zamkniętego z dodatkiem pary dało najwyższą wydajność karbonatyzacji. W finalnej partii eskerymentów karbonatyzacji użyto symulowanego gazu spalinowego (84% N2, 15% CO2, 1% H2O) zamiast czystego strumienia CO2, w warunkach: 160°C, 6 barów ciśnienia i 2 godzin czasu reakcji. Stwierdzono, że stosowanie gazu spalinowego zamiast czystego strumienia dwutlenku węgla obniża wydajność karbonatyzacji o około 9%. Końcową częścią badań procesu karbonatyzacji było określenie zmiany zawartości wolnego wapna w próbkach popiołu lotnego przed i po nasyceniu ditlenkiem węgla. Reakcje karbonatyzacji prowadzą do znacznego zmniejszenia zawartości wolnego wapna w popiele lotnym. W większości przypadków ilość wolnego wapna w popiele lotnym po nasycaniu ditlenkiem węgla była zgodna z obowiązującymi przepisami UE dotyczącymi utylizacji popiołów lotnych w cemencie, jako domieszki.
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, Adam (Adam M. ). 1978. "Regulatory issues controlling carbon capture and storage." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/27019.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2004.<br>Includes bibliographical references (leaves 74-76).<br>Climate change is increasingly being recognized by governments, industry, the scientific community, and the public as an issue that must be dealt with. Parties are pursuing various strategies to reduce CO₂ emissions. Renewable energy, energy efficiency, cleaner fuels, terrestrial CO₂ sequestration, and geologic CO₂ capture and storage (CCS) are the major efforts underway. This thesis examines some major regulatory and political issues that may affect geologic sequestration projects in the future. CCS is a technology system that captures CO₂ from a point source (e.g. power plant or industrial facility), pressurizes it into liquid form, transports it, and finally injects it underground into a porous geology for long-term storage. Technical and economic issues of capture, transportation, and injection of CO₂ have been relatively well studied over the past decade. The impacts of how current environmental regulation and political action to curb climate change will affect CCS have not been thoroughly explored. This thesis investigates the Environmental Protection Agency's Underground Injection Control Program and several types of protected and restricted land use areas to evaluate where it would be difficult or impossible to site a CCS project. I also explore state-level action on climate change and categorize them based on their attractiveness for CCS projects. I suggest a methodology for incorporating this regulatory information into a geographic information system based decision analysis tool, designed to aid decision makers dealing with CCS.<br>by Adam Smith.<br>S.M.
APA, Harvard, Vancouver, ISO, and other styles
10

Al-Janabi, Nadeen. "Engineering novel porous materials for carbon capture and storage." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/engineering-novel-porous-materials-for-carbon-capture-and-storage(919c4243-ed8d-4a6b-9207-43c6a2c62637).html.

Full text
Abstract:
Global warming along with the climate change derived from the World's demand for energy are among the greatest challenges to our society. To tackle climate change issue, research must focus on proposing practical approaches for carbon emissions reduction and environmental remediation. This thesis focuses on carbon dioxide separation mainly from flue gases (major sources of carbon dioxide emissions) using metal organic frameworks (MOFs) to reduce its impact on the global warming hence the climate change. MOFs are a class of crystalline porous adsorbents with structures that attract CO2 selectively and store it in their porous frameworks. Over the course of this PhD research, the fundamental aspects of these materials, as well as their practical applications, have been investigated. For example, the synthesis recipe of copper (II) benzene-1,3,5-tricarboxylate (CuBTC) MOF was improved to deliver a product of high yield ( > 89%) and free of by-product. Also, a mechanism study on the hydrothermal stability CuBTC MOF was carried out under simulated flue gas conditions and delivered the first experimental proof of the decomposition mechanism of CuBTC MOF caused by the water vapour. The fundamental understanding of the stability of materials then motivated the research into the development of a facile method of using an economic functional dopant (i.e. glycine) to strengthen the structure of CuBTC MOF (completely stable towards water vapour), as well as to improve the selectivity of resulting materials to CO2 (by 15% in comparison to the original CuBTC MOF). The suitability of the CuBTC MOF for fixed bed adsorption processes was also assessed using a combined experimental and process simulation method. In addition to the experimental approaches, molecular simulation based on grand canonical Monte Carlo method was also used to understand the effect of structural defects of MOFs on the CO2 adsorption isotherms.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Bioenergy with Carbon Capture and Storage"

1

Romitti, Yasmin, ed. Bioenergy with Carbon Capture and Storage Approaches for Carbon Dioxide Removal and Reliable Sequestration. National Academies Press, 2018. http://dx.doi.org/10.17226/25170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bui, Mai, and Niall Mac Dowell, eds. Carbon Capture and Storage. Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788012744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

(Firm), Knovel, ed. Carbon capture and storage. Butterworth-Heinemann/Elsevier, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kuckshinrichs, Wilhelm, and Jürgen-Friedrich Hake, eds. Carbon Capture, Storage and Use. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11943-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Royal Society of Chemistry (Great Britain), ed. Carbon capture: Sequestration and storage. RSC Pub., 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pereira, Eduardo G., Alberto J. Fossa, and Thomas L. Muinzer, eds. Carbon Capture Utilization and Storage. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-81272-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Commission, European, ed. CO2 capture and storage projects. Office for Official Publications of the European Communites, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ahmadian, Ali, Ali Elkamel, and Ali Almansoori, eds. Carbon Capture, Utilization, and Storage Technologies. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-46590-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gielen, Dolf. Prospects for CO₂ capture and storage. OECD/IEA, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Agency, International Energy, and Organisation for Economic Co-operation and Development., eds. Prospects for CO₂ capture and storage. International Energy Agency/Organisation for Rconomic Co-operation and Development, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Bioenergy with Carbon Capture and Storage"

1

Järvinen, Mika, Hanna Paulomäki, Han van Kasteren, et al. "Bioenergy and Waste." In Green Energy and Technology. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-69856-9_6.

Full text
Abstract:
Abstract A significant proportion of the decarbonization occurring in energy production is based on solar and wind energy. However, biomass also retains its place in the energy palette. This chapter presents an analysis of the technologies and sustainable levels of using biomass and waste for energy, as well as bioenergy carbon capture and storage applications. Furthermore, the chapter addresses the production of materials and chemicals in a manner that is supportive of the achievement of both climate and nature conservation goals. The chapter ultimately concludes that the sustainable utilization of biomass is constrained by its substantial land area requirements and subsequent adverse impacts on the natural environment. The growing population (forecast to stabilize at approximately 10–11 billion by 2030, from 8 billion in 2024) presents a challenge to current systems of production for food, energy, and materials. Given that most of the terrestrial world has already been impacted by human activities, there is a limited opportunity for further expansion. This necessitates the identification of more cost-effective land uses to meet our needs and the implementation of circular economy solutions to reduce the demand for virgin materials. Biomass represents a natural chemical storage of solar energy, and biomass and derived biofuels can be employed, for instance, to balance the variability in wind and solar power generation. It is imperative to guarantee that the utilization of biofuels does not exceed the rate at which plants are capable of binding the CO₂ released throughout the harvesting, production, and combustion processes. It is of additional significance that the growth and maintenance of biomass represents a natural carbon capture and storage mechanism with considerable potential. The principles of sustainability must be applied to the utilization of Bioenergy Carbon Capture and Storage (BECCS). The sustainable potential for BECCS should be fully exploited, while ensuring that any adverse impacts on the natural environment, such as the loss of habitats and species, water pollution or fluxes of greenhouse gas emissions from soil or water, are avoided.
APA, Harvard, Vancouver, ISO, and other styles
2

Fajardy, Mathilde. "Chapter 5. Bioenergy with Carbon Capture and Storage (BECCS)." In Energy and Environment Series. Royal Society of Chemistry, 2022. http://dx.doi.org/10.1039/9781839165245-00080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Welfle, Andrew, and Raphael Slade. "The Supply of Biomass for Bioenergy Systems." In Biomass Energy with Carbon Capture and Storage (BECCS): Unlocking Negative Emissions. John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119237716.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hajian, Christopher Sarkizi Shams, and Mahsa Sedighi. "A Critical Survey of Bioenergy with Carbon Capture and Storage (BECCS)." In Green Energy and Technology. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90720-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anandarajah, Gabrial, Olivier Dessens, and Will McDowall. "The Future for Bioenergy Systems: The Role of BECCS?" In Biomass Energy with Carbon Capture and Storage (BECCS): Unlocking Negative Emissions. John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119237716.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Newton-Cross, Geraldine, and Dennis Gammer. "The System Value of Deploying Bioenergy with CCS (BECCS) in the United Kingdom." In Biomass Energy with Carbon Capture and Storage (BECCS): Unlocking Negative Emissions. John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119237716.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Prabowo, Bayu, Muhammad Aziz, Kentaro Umeki, Mi Yan, Herri Susanto, and Kunio Yoshikawa. "Utilization of Rice Husk in the CO2-Recycling Gasification System for the Effective Implementation of Bioenergy with Carbon Capture and Storage (BECCS) Technology." In ACS Symposium Series. American Chemical Society, 2015. http://dx.doi.org/10.1021/bk-2015-1194.ch013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Markewitz, Peter, and Richard Bongartz. "Carbon Capture Technologies." In Carbon Capture, Storage and Use. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11943-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhattacharya, Indrani, T. T. More, J. S. S. Yadav, et al. "Carbon Burial and Enhanced Soil Carbon Trapping." In Carbon Capture and Storage. American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413678.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schwendig, Frank. "Carbon Capture and Storage." In Managing CO2 Emissions in the Chemical Industry. Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527633623.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bioenergy with Carbon Capture and Storage"

1

Cordova-Cordova, Jesmyl-Elisa, and Carlos Pozo. "Assessing the Environmental Impact of Global Hydrogen Supply through the Lens of Planetary Boundaries." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.176362.

Full text
Abstract:
Hydrogen is increasingly recognized as a crucial energy carrier for a low-carbon future. However, most studies on clean hydrogen production devote limited attention to the entire supply chain. This study evaluates the sustainability of 800 combinations of hydrogen production and transportation methods, comparing their environmental impacts against the geophysical limits defined by the Planetary Boundaries framework. Findings reveal that no supply chain alone can make the current economy sustainable, yet powering water electrolysis with bioenergy and carbon capture and storage can meet the CO2-based planetary boundaries. The analysis also underscores the need for decarbonization efforts in the hydrogen transportation sector, as certain options could offset the benefits of clean hydrogen production.
APA, Harvard, Vancouver, ISO, and other styles
2

Mohan, V. "Combining Bioenergy with Carbon Capture and Storage (BECCS) - A Review." In Near Surface Geoscience 2016 - 22nd European Meeting of Environmental and Engineering Geophysics. EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201602034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rodrigues Miranda, Caetano. "Multiscale molecular approach to model bioenergy with carbon capture and storage processes." In Goldschmidt2023. European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.17041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nemer, Martha, Jorge Duque-Rivera, Daniel Aviles, Daniel Salas, and Angel D. Ramirez. "Carbon Footprint of Electricity Generation in a Conceptual Bioenergy Power Plant With Carbon Capture and Storage." In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-112331.

Full text
Abstract:
Abstract This paper analyzes the efficiency of a BECCS (Bioenergy with carbon capture and storage) system as an energy generation carbon sink in Ecuador, conceptualizing a 20MW power plant whose energy source is eucalyptus wood and evaluating its carbon footprint with an attributional life cycle assessment (LCA). The paper presents the technical specifications of the equipment and the processes needed to carry out the operation. Aiming at a case study for Pichincha - Ecuador, the power plant will contribute 3.5% of the total energy needed to power the province. The selected region possesses a high concentration of optimal areas with adequate soil to plant eucalyptus, equivalent to 56% of the total available in Ecuador. The electricity generation system has a global efficiency of 33.3% without considering the internal consumption of equipment and 13.4% assuming all internal consumptions. The carbon footprint was determined using the OpenLCA software, previous work on LCA of electricity generation in Ecuador and commercial life cycle inventory databases. The result for the proposed system is −0,95 kgCO2/kWh, demonstrating that it delivers carbon-negative energy because the growth of the eucalyptus removed carbon from the atmosphere. In contrast, the traditional energy generation systems by steam generation using fuel oil combustion have a carbon footprint of 0,93 kgCO2/kWh.
APA, Harvard, Vancouver, ISO, and other styles
5

Kaiser, David, Shashank Sakleshpur, Mani Sarathy, Ribhu Gautam, Murali Khandavilli, and Carolina Arias Gallego. "Evaluation of Miscanthus Gasification and Oxy-Combustion Carbon Dioxide Removal Potential with Carbon Capture Towards Implementation of Bioenergy with Carbon Capture and Storage in England." In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/210984-ms.

Full text
Abstract:
Abstract Bioenergy with Carbon Capture and Storage (BECCS) pathways and supply chain designs are researched broadly and implemented for scenarios as of the IEA's (2021) Net Zero by 2050 report. The Committee on Climate Change (2018a, 2018b) has identified Miscanthus as one biomass type to achieve its negative emission goals and aligned one third of 1.2 million hectares under high level and one third of 0.7 million hectares under medium level of ambition (multi-functional land use) for the cultivation of Miscanthus for BECCS in the UK. In this study the input of 39 t/hr of Miscanthus x giganteus biomass as well as Energy technologies institutes (2015) information on projected distributed BECCS installations in the UK for BECCS were considered to bring up different gasifying agent options for H2 generation through Miscanthus Gasification with pre combustion carbon capture and one configuration for oxy-combustion with post combustion carbon capture for highly efficient power generation. Process simulations with Aspen software were conducted to determine power yields and carbon capture rates of optimized bioenergy with carbon capture value chains, sensitivity analysis were executed in order to optimize the configurations. The aim of the study was to observe how highest achievable power generation efficiencies of H2 generation through gasification of Miscanthus x giganetus compare with oxy-combustion power generation efficiency and how the different pathways influence the carbon capture efficiency. The aim was to inform BECCS implementation decisions with optimum possible H2 and power generation yields as well as their respective carbon capture potential. It was found that under oxygen, air and steam as gasifying agents steam is most effective for H2 generation with 3.1 t/hr of H2 produced under a input of 39 t/hr of Miscanthus input, which generates 35,6 MW of power in a simulated H2 turbine. Under simulation assumptions it captures thereby 55,2 t/hr of CO2 with a carbon capture rate of 99%. Oxy-combustion is more efficient than the gasification pathways in regard of power generation, which is 100,4 MW with CO2 capture of 36,6 t/hr with an carbon capture efficiency of 73,8 %. Concluding oxy-combustion is preferred, if highly efficient power generation is wanted and lower carbon capture rate is accepted thereby. When H2 generation is preferred, steam gasification should be chosen as highest efficient gasification pathway. The exact numbers of power generation as well as carbon capture can be used now to estimate UKs overall power generation as well as carbon capture potential of Miscanthus x giganteus cultivation under different land use scenarios considering land use change effects and biodiversity.
APA, Harvard, Vancouver, ISO, and other styles
6

Robert, M. J., S. Jain, C. Golaco, et al. "Strategy Development to Address the Challenges of CO2 Storage in Depleted Gas-Condensate Carbonate Reservoirs. A Case Study from the Sajaa Field, U.A.E." In GOTECH. SPE, 2024. http://dx.doi.org/10.2118/219315-ms.

Full text
Abstract:
The Intergovernmental Panel on Climate Change (IPCC, 2022) states that both emissions mitigation and negative emissions efforts and technologies are required to limit average global warming to the 1.5°C projected scenario. CO2 geological storage is a negative emissions technology that is an enabler for direct air capture with CO2 storage (DACS) and bioenergy with carbon capture and storage (BECCS) (IEA, 2022) and tackles emissions in hard-to-abate sectors, such as the steel and cement industries. The International Energy Agency (IEA, 2023) estimates that sequestering 1.2 Gt of CO2 per annum by 2050 through carbon capture, utilisation and storage (CCUS) is required. Geological carbon capture and storage (CCS) will account for 95% of the sequestration (IEA, 2021), with 30 – 50% of that permanently stored in depleted oil and gas reservoirs (IPCC, 2005). The IEA (2023) states that only 45 Mt CO2 was captured in 2023. CCS projects with geological storage have concentrated on saline aquifers, such as the Quest and Northern Light projects, and in depleted fields with sandstone reservoirs, such as the Weyburn and In Salah projects. Despite their significant global potential, the focus on carbonate reservoirs and depleted gas-condensate fields has been low, reflecting in the limited amount of published material and knowledge sharing available.
APA, Harvard, Vancouver, ISO, and other styles
7

Lourenço, M. C. M., Y. A. R. Perez, T. C. Rodrigues, et al. "Carbon Capture and Storage in Brazil and Systematic Review of Criteria for Prospecting Potential Areas." In Offshore Technology Conference Brasil. OTC, 2023. http://dx.doi.org/10.4043/32864-ms.

Full text
Abstract:
Abstract This work aims to present the current scenario of Carbon Capture and Storage (CCS) in Brazil and fundamental criteria for prospecting potential areas. It reviews and applies the existing scientific literature used worldwide for CCS projects. By integrating information, we expect to provide comprehensive insights into CCS in Brazil and outline methods and criteria for screening and select areas in Brazilian sedimentary basins. This work is based on applied research methodologies. A survey was conducted to examine the current Brazilian context, including the potential sectors for CCS in the country and ongoing developments. Additionally, several previous works on projects worldwide were reviewed to formulate criteria for assessing the prospectivity of CO2 storage areas, which can be applied at scale. By combining Brazil's current status and CCS methodological references, we integrated information to propose an applicable site screening and selection criteria for Brazil. Furthermore, we elucidated some of the potential and challenges that the country faces. In Brazil, energy and industry are the principal sectors for decarbonization with CCS, including the oil and gas sector, bioenergy, thermal power plants, refineries, and steel, cement and chemical industries. Ongoing research is focused on specific storage sites and other CCS technologies. Currently, Brazil's CO2-EOR in the Pre-salt fields is globally recognized. Research is also being conducted on saline aquifers in the Paraná Basin to use CCS with bioenergy (BECCS). Additionally, there is a pilot project under development in the Parecis Basin. Despite these advancements, there have been no few approaches concerning methodologies and criteria for prospecting areas for permanent storage in Brazil. In this study, we propose a methodology for selecting and developing qualified CCS sites, which involves regional analysis, site screening, site selection, and site characterization. Considering Brazil's early stages in CCS implementation, we have provided a list of screening and selection criteria applicable to the country. The expertise and legacy of the oil and gas industry play a crucial role in advancing CCS in Brazil, alongside the intensified national potential through BECCS. In order to progress, the country needs to address necessities such as data availability, policies, the carbon market, and regulations. This work presents an innovative element to organize and structure key elements to allow a national scale analysis to explore future opportunities for CCS in Brazil. Due to the absence of previous national studies, an unprecedented overview of applicable criteria was provided to prospect potential regions for CCS projects in the country.
APA, Harvard, Vancouver, ISO, and other styles
8

Lau, Hon Chung, Kai Zhang, Harsha Kumar Bokka, and Seeram Ramakrishna. "Getting Serious with Net-Zero: Implementing Large-Scale Carbon Capture and Storage Projects in ASEAN." In Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/31881-ms.

Full text
Abstract:
Abstract As a region, the ten nations of ASEAN emitted 1.65 Gtpa CO2 in 2020 from the combustion of fossil fuels. Analyses reveal that ASEAN's renewable energy resources are low to moderate and unevenly distributed geographically. Furthermore, there are substantial sustainable issues related to hydropower and bioenergy. The current rate of addition of new renewable power capacity is too slow to allow ASEAN countries to achieve net-zero by the middle of the century. More tools, in addition to renewable energies, will be needed. It is found, however, that carbon capture and storage (CCS) is a key enabling technology to decarbonize ASEAN's fossil-fuel power and industrial plants and to produce blue hydrogen needed to decarbonize the industry sector. Furthermore, results of CO2 source-sink mapping exercises show that there is enough capacity in major sedimentary basins in ASEAN to permanently store two centuries of anthropogenic CO2 emission. Six first mover large-scale CCS projects in ASEAN with potential to mitigate up to 300 Mtpa CO2 from Singapore, Indonesia, Malaysia and Thailand have been identified. Furthermore, the steps needed to implement these CCS projects are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Lau, Hon Chung, Kai Zhang, Harsha Kumar Bokka, and Seeram Ramakrishna. "Getting Serious with Net-Zero: Implementing Large-Scale Carbon Capture and Storage Projects in ASEAN." In Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/31881-ms.

Full text
Abstract:
Abstract As a region, the ten nations of ASEAN emitted 1.65 Gtpa CO2 in 2020 from the combustion of fossil fuels. Analyses reveal that ASEAN's renewable energy resources are low to moderate and unevenly distributed geographically. Furthermore, there are substantial sustainable issues related to hydropower and bioenergy. The current rate of addition of new renewable power capacity is too slow to allow ASEAN countries to achieve net-zero by the middle of the century. More tools, in addition to renewable energies, will be needed. It is found, however, that carbon capture and storage (CCS) is a key enabling technology to decarbonize ASEAN's fossil-fuel power and industrial plants and to produce blue hydrogen needed to decarbonize the industry sector. Furthermore, results of CO2 source-sink mapping exercises show that there is enough capacity in major sedimentary basins in ASEAN to permanently store two centuries of anthropogenic CO2 emission. Six first mover large-scale CCS projects in ASEAN with potential to mitigate up to 300 Mtpa CO2 from Singapore, Indonesia, Malaysia and Thailand have been identified. Furthermore, the steps needed to implement these CCS projects are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Avila, R. M., E. Loureiro, A. Szklo, and L. Furtado. "Saline Aquifers Unlocking Brazilian Carbon Storage Pathways." In Offshore Technology Conference. OTC, 2025. https://doi.org/10.4043/35867-ms.

Full text
Abstract:
Abstract This study provides an overview of Brazil's efforts in CCS, focusing on three selected options based on Brazil's characteristics, and presents a case study for each: Case one concerns Enhanced Oil Recovery; Case two covers the hard-to-abate sector using a Hub System, and Case three focuses on bioenergy with geological storage. The goal is to provide insights into Brazil's potential to store CO2 in saline aquifers based on real projects, primarily using Hub systems. The first case describes the world's largest operating CO2-EOR project, the Tupi oil field, located in ultradeep water, southeast of Brazil. To manage the highly concentrated CO2 levels in the oil, specialized skills, materials, and technology were developed and now can be applied to other CCS projects, including those without hydrocarbon. This paper presents concerns about the pre-salt oil field, including the controversy surrounding carbon capture, precisely the geological type as opposed to the anthropogenic type. The second case focused on the saline aquifers, characterized by the sandstone reservoir of the São Tomé Member, located in the north Campos sedimentary basin, continental shelf, in front of Rio de Janeiro State. The maps show the generous size and thickness of the geological site, providing ample pore space for CO2 injection, but it is not a conventional trap. The third case presented Brazil's most advanced BECCS project, in Mato Grosso State, which includes recently acquired geological and geophysical data. This article proposes that an outstanding model to unlock the country's geological storage of CO2 pathways is based on the saline aquifer reservoir, in a Hub system connecting different hard-to-abate sources or a cluster of sources on a BECCS example. This study reanalyzed old seismic data previously used to search for hydrocarbons in areas where exploration had failed, as confirmed by wells. The data was reinterpreted to map geological reservoirs, particularly saline aquifers, to store CO2, presenting a new geological interpretation for this updated objective. A significant occurrence was the approval of Law N°. 14,993 in October 2024, establishing the legal framework for carbon dioxide capture and geological storage while defining the Agency responsible for building the regulatory framework.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bioenergy with Carbon Capture and Storage"

1

Hennequin, Louis, Jack Miller, and Jonathan Wentworth. Bioenergy with carbon capture and storage (BECCS). Parliamentary Office of Science and Technology, 2020. http://dx.doi.org/10.58248/pn618.

Full text
Abstract:
According to global climate and economic models, removing greenhouse gases from the atmosphere will be necessary to limit global warming to 1.5˚C. Among Greenhouse Gas Removal (GGR) techniques, these models assume that Bioenergy with Carbon Capture and Storage (BECCS) could play a prominent role. This POSTnote summarises why BECCS has been included in the models, outlines the challenges and trade-offs of deploying at scale, and considers policy options for supporting its development.
APA, Harvard, Vancouver, ISO, and other styles
2

Hayat, Muhammad Adnan, Khalid Alhadhrami, and Amro Elshurafa. Challenges and Opportunities for Sustainable Deployment of Bioenergy with Carbon Capture and Storage Pathways (BECCS) Globally. King Abdullah Petroleum Studies and Research Center, 2023. http://dx.doi.org/10.30573/ks--2023-dp28.

Full text
Abstract:
Countries are exploring various options to achieve net-zero emissions, including bioenergy with carbon capture and storage (BECCS), which is the process of capturing and storing carbon dioxide (CO2) from processes that utilize bioenergy to produce heat, electricity or biofuels. However, this technology faces sustainability concerns, an unclear public perception and has complex value chains for its emissions. Adding to this complexity, the literature presents two opposing views regarding the potential of BECCS to achieve negative emissions. This paper analyzes in detail a wide range of BECCS pathways in terms of their ability to achieve negative emissions and their associated costs. Out of the seven assessed pathways, our analysis shows that the corn-to-ethanol and biomethane-production-from-maize BECCS pathways in the U.S., along with biomethane production from wet manure in Europe and baling of straw pellets with trans-Atlantic shipment, can achieve negative emissions at a cost of 50, 108, 159 and 232 dollars per ton of CO2 ($/tCO2), respectively. Other technologies, such as poplar pellets, forest residue and agricultural residue with trans-Atlantic shipments, are not able to achieve negative emissions.
APA, Harvard, Vancouver, ISO, and other styles
3

Sathyanadh, Anusha, and Helene Muri. Open access dataset of ESM simulations of combined land- and ocean-based NETs. OceanNets, 2024. http://dx.doi.org/10.3289/oceannets_d4.7.

Full text
Abstract:
In this deliverable, we perform Earth system model (ESM) simulations to assess the role of land-based and ocean-based negative emission technologies (NETs) for achieving the temperature target set by the 2015 Paris Agreement. The dataset provided from this work package will be used for investigating carbon sequestration potential, side-effects and potential constraints of combining oceanic and terrestrial NETs with the help of an earth system model, NorESM2. Two long NorESM2 coupled simulations with SSP5-3.4-OS scenario are conducted to check the CDR potential of terrestrial CDR, and terrestrial and marine CDR together by combining land-based Bioenergy for Carbon Capture and Storage (BECCS) and Ocean Alkalinization Enhancement (OAE) scenarios together. For the terrestrial BECCS simulation, the default land use distribution in the original CMIP6 SSP5-3.4 land use dataset is modified to accommodate more bioenergy crop in the future while keeping the total crop area of 2015 for food throughout the century and combining it with a bio-CCS system. For the second simulation we combined the above terrestrial BECCS simulation with 2030-high OAE scenario from Deliverable 4.6. A higher amount of carbon captured by making use of the carbon sequestration potential of land and ocean together. (OceanNets Deliverable ; D4.7)
APA, Harvard, Vancouver, ISO, and other styles
4

White, D. Carbon capture and storage. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/311151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nealon, Teresa. Wyoming Carbon Capture and Storage Institute. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1158899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suter, Jack, Brian Ramsey, Travis Warner, Raymond Vactor, Clint Noack, and Joshua Nowak. Carbon Capture, Transport, & Storage Final Report. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1871493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wildgust, Neil, Kerryanne Leroux, Barry Botnen, et al. Nebraska Integrated Carbon Capture and Storage Pre-Feasibility Study. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1457761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Deanna Gilliland and Matthew Usher. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project. Office of Scientific and Technical Information (OSTI), 2011. http://dx.doi.org/10.2172/1031460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Craven, J., and D. White. Carbon capture and storage (CCS) studies at the Aquistore CO2 storage site. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/299730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dismukes, David E., Mehdi Zeidouni, Muhammad Zulqarnain, et al. Integrated Carbon Capture and Storage in the Louisiana Chemical Corridor. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1526406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!