Academic literature on the topic 'Biofilm recovery'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biofilm recovery.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biofilm recovery"

1

Oulahal, N., A. Martial-Gros, M. Bonneau, and L. J. Blum. "Combined effect of chelating agents and ultrasound on biofilm removal from stainless steel surfaces. Application to “Escherichia coli milk” and “Staphylococcus aureus milk” biofilms." Biofilms 1, no. 1 (January 2004): 65–73. http://dx.doi.org/10.1017/s1479050504001140.

Full text
Abstract:
Two ultrasonic devices – flat (T1) and curved (T2) ultrasonic transducers – were developed to remove biofilms from opened and closed surfaces, respectively. The aim is to standardize biofilm removal for in situ sanitary control in the food industry. The biofilms studied in this work were model biofilms made with milk on stainless steel sheets. We have shown in a previous study that sonication could be employed to remove and resuspend biofilm consistently, with a good recovery rate, from opened surfaces. Plate counting was used to assess the efficiency of each treatment. A total removal of Escherichia coli and Staphylococcus aureus from model biofilms was obtained with T1: 10 s at 40 kHz. However, ultrasound applied with T2 (a patented curved transducer developed for closed surfaces: 10 s at 40 kHz) failed to completely remove these model biofilms: 30±7% and 66±10% for E. coli and S. aureus biofilms, respectively. In order to improve the biofilm removal from closed surfaces with T2, the effect of the application of ultrasound in combination with chelating agent preparations was investigated. The application of ultrasound with T2 in 0.05 mol EDTA or EGTA per litre dislodged the E. coli milk model biofilm, with 100±10% and 100±5% recovery yields, respectively. These results showed a synergism between ultrasonic waves and chelator preparations, i.e. the combination achieved three times the recovery rate of sonication alone (30%). However, when the same treatment was applied to the S. aureus milk model biofilm, the combined treatment with EDTA or EGTA did not significantly improve the recovery of the biofilm cells: 74±26% with EDTA at 0.025 mol/l and 41–47% with EGTA at 0.025 mol/l and 0.05 mol/l, respectively, compared with 66±10% for sonication alone. The combined treatment was in agreement with an industrial control, i.e. a good reproducible recovery of the biofilm in a few seconds (10 s) for E. coli milk biofilms but not for S. aureus biofilms.
APA, Harvard, Vancouver, ISO, and other styles
2

Machado, Idalina, Joana Graça, Hélder Lopes, Susana Lopes, and Maria O. Pereira. "Antimicrobial Pressure of Ciprofloxacin and Gentamicin on Biofilm Development by an Endoscope-Isolated Pseudomonas aeruginosa." ISRN Biotechnology 2013 (August 28, 2013): 1–10. http://dx.doi.org/10.5402/2013/178646.

Full text
Abstract:
This work aims at characterizing endoscope biofilm-isolated (PAI) and reference strain P. aeruginosa (PA) adhesion, biofilm formation and sensitivity to antibiotics. The recovery ability of the biofilm-growing bacteria subjected to intermittent antibiotic pressure (ciprofloxacin (CIP) and gentamicin (GM)), as well as the development of resistance towards antibiotics and benzalkonium chloride (BC), were also determined. The capacity of both strains to develop biofilms was greatly impaired in the presence of CIP and GM. Sanitization was not complete allowing biofilm recovery after the intermittent cycles of antibiotic pressure. The environmental pressure exerted by CIP and GM did not develop P. aeruginosa resistance to antibiotics nor cross-resistance towards BC. However, data highlighted that none of the antimicrobials led to complete biofilm eradication, allowing the recovery of the remaining adhered population possibly due to the selection of persister cells. This feature may lead to biofilm recalcitrance, reinforcement of bacterial attachment, and recolonization of other sites.
APA, Harvard, Vancouver, ISO, and other styles
3

Gaertner, James P., Joseph A. Mendoza, Michael R. J. Forstner, and Dittmar Hahn. "Recovery of Salmonella from biofilms in a headwater spring ecosystem." Journal of Water and Health 9, no. 3 (April 26, 2011): 458–66. http://dx.doi.org/10.2166/wh.2011.173.

Full text
Abstract:
Salmonellae are pathogenic bacteria often detected in waters impacted by human or animal wastes. In order to assess the fate of salmonellae in supposedly pristine environments, water and natural biofilm samples along with snails (Tarebia granifera) and crayfish (Procambarus clarkia) were collected before and up to 7 days following four precipitation events from sites within the headwater springs of Spring Lake, San Marcos, TX. The samples were analyzed for the presence of salmonellae by polymerase chain reaction (PCR) after semi-selective enrichment. Salmonellae were detected in one water sample directly after precipitation only, while detection in ten biofilm and two crayfish samples was not related to precipitation. Salmonellae were not detected in snails. Characterization of isolates by rep-PCR revealed shared profiles in water and biofilm samples, biofilm and crayfish samples, and biofilm samples collected 23 days apart. These results suggest that salmonellae are infrequently washed into this aquatic ecosystem during precipitation runoff and can potentially take up residency in biofilms which can help facilitate subsequent long-term persistence and eventual transfer through the food chain.
APA, Harvard, Vancouver, ISO, and other styles
4

Dang, Minh-Huy, Ji-Eun Jung, Dae-Woo Lee, Kwang-Yeob Song, and Jae-Gyu Jeon. "Recovery of Acid Production in Streptococcus mutans Biofilms after Short-Term Fluoride Treatment." Caries Research 50, no. 4 (2016): 363–71. http://dx.doi.org/10.1159/000446408.

Full text
Abstract:
Fluoride is commonly used as an ingredient of topical oral hygiene measures. Despite the anti-acidogenic activities of fluoride against cariogenic biofilms, the recovery of the biofilms from fluoride damage is unclear. Herein, we investigated the recovery of acid production in Streptococcus mutans biofilms after short-term or during periodic 1-min fluoride treatments. For this study, 46-hour-old S. mutans biofilms were treated with fluoride (0-2,000 ppm F-) for 1-8 min and then incubated in saliva for 0-100 min. The 74-hour-old biofilms were also periodically treated with the fluoride concentration during biofilm formation (1 min/treatment). Changes in acidogenicity and viability were determined via pH drop and colony-forming unit assays, respectively. In this study, acid production after a 1-min fluoride treatment was recovered as saliva incubation time increased, which followed a linear pattern of concentration dependence (R = 0.99, R2 = 0.98). The recovery pattern was in a biphasic pattern, with an initial rapid rate followed by a second slow recovery. Furthermore, recovery from fluoride damage was retarded in a concentration-dependent manner as treatment time increased. In periodic 1-min fluoride treatments, acid production in the biofilms was not diminished during the non-fluoride treatment period; however, it was reduced in a concentration-dependent manner during the fluoride treatment period. The viability of the biofilm cells did not change, even at high fluoride concentrations. Collectively, our results suggest that brief fluoride treatment does not sustain anti-acidogenic activity against S. mutans in biofilms since the damage is recoverable with time.
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, Qingru, Veera Kainulainen, Iva Stamatova, Sok-Ja Janket, Jukka H. Meurman, and Riitta Korpela. "Mouthwash Effects on LGG-Integrated Experimental Oral Biofilms." Dentistry Journal 8, no. 3 (September 1, 2020): 96. http://dx.doi.org/10.3390/dj8030096.

Full text
Abstract:
In order to investigate the effects of mouthwashes on oral biofilms with probiotics, we compared in biofilms the susceptibility to mouthwashes of probiotic Lactobacillus rhamnosus GG (LGG) and oral pathogens Streptococcus mutans, Streptococcus sanguinis, and Candida albicans. We also evaluated these pathogens’ susceptibility to the mouthwashes and their recovery after mouthwash-rinsing in biofilms with/without LGG. First, 1-day-/3-day-old LGG-integrated multi-species biofilms were exposed for 1 min to mouthwashes containing chlorhexidine, essential oils, or amine fluoride/stannous fluoride. Cells were plate-counted and relative survival rates (RSRs) of LGG and pathogens calculated. Second, 1-day-/3-day-old multispecies biofilms with and without LGG were exposed for 1 min to mouthwashes; cells were plate-counted and the pathogens’ RSRs were calculated. Third, 1-day-old biofilms were treated for 1 min with mouthwashes. Cells were plate-counted immediately and after 2-day cultivation. Recovery rates of pathogens were calculated and compared between biofilms with/without LGG. Live/Dead® staining served for structural analyses. Our results showed that RSRs of LGG were insignificantly smaller than those of pathogens in both 1-day and 3-day biofilms. No significant differences appeared in pathogens’ RSRs and recovery rates after treatment between biofilms with/without LGG. To conclude, biofilm LGG was susceptible to the mouthwashes; but biofilm LGG altered neither the mouthwash effects on oral pathogens nor affected their recovery.
APA, Harvard, Vancouver, ISO, and other styles
6

Řičicová, Markéta, Soňa Kucharíková, Hélène Tournu, Jelle Hendrix, Helena Bujdáková, Johan Van Eldere, Katrien Lagrou, and Patrick Van Dijck. "Candida albicans biofilm formation in a new in vivo rat model." Microbiology 156, no. 3 (March 1, 2010): 909–19. http://dx.doi.org/10.1099/mic.0.033530-0.

Full text
Abstract:
Device-associated microbial growth, including Candida biofilms, represents more than half of all human microbial infections and, despite a relatively small risk of implant-associated diseases, this type of infection usually leads to high morbidity, increased health-care costs and prolonged antimicrobial therapy. Animal models are needed to elucidate the complex host–pathogen interactions that occur during the development of attached and structured biofilm populations. We describe here a new in vivo model to study Candida biofilm, based on the avascular implantation of small catheters in rats. Polyurethane biomaterials challenged with Candida cells were placed underneath the skin of immunosuppressed animals following only minor surgery. The model allowed the study of up to ten biofilms at once, and the recovery of mature biofilms from 2 days after implantation. The adhering inoculum was adjusted to the standard threshold of positive diagnosis of fungal infection in materials recovered from patients. Wild-type biofilms were mainly formed of hyphal cells, and they were unevenly distributed across the catheter length as observed in infected materials in clinical cases. The hyphal multilayered structure of the biofilms of wild-type strains was observed by confocal microscopy and compared to the monolayer of yeast or hyphal cells of two well-known biofilm-deficient strains, efg1Δ/efg1Δ cph1Δ/cph1Δ and bcr1Δ/bcr1Δ, respectively. The subcutaneous Candida biofilm model relies on the use of implanted catheters with accessible, fast and minor surgery to the animals. This model can be used to characterize the ability of antimicrobial agents to eliminate biofilms, and to evaluate the prophylactic effect of antifungal drugs and biomaterial coatings.
APA, Harvard, Vancouver, ISO, and other styles
7

Boltz, Joshua P., Barth F. Smets, Bruce E. Rittmann, Mark C. M. van Loosdrecht, Eberhard Morgenroth, and Glen T. Daigger. "From biofilm ecology to reactors: a focused review." Water Science and Technology 75, no. 8 (February 2, 2017): 1753–60. http://dx.doi.org/10.2166/wst.2017.061.

Full text
Abstract:
Biofilms are complex biostructures that appear on all surfaces that are regularly in contact with water. They are structurally complex, dynamic systems with attributes of primordial multicellular organisms and multifaceted ecosystems. The presence of biofilms may have a negative impact on the performance of various systems, but they can also be used beneficially for the treatment of water (defined herein as potable water, municipal and industrial wastewater, fresh/brackish/salt water bodies, groundwater) as well as in water stream-based biological resource recovery systems. This review addresses the following three topics: (1) biofilm ecology, (2) biofilm reactor technology and design, and (3) biofilm modeling. In so doing, it addresses the processes occurring in the biofilm, and how these affect and are affected by the broader biofilm system. The symphonic application of a suite of biological methods has led to significant advances in the understanding of biofilm ecology. New metabolic pathways, such as anaerobic ammonium oxidation (anammox) or complete ammonium oxidation (comammox) were first observed in biofilm reactors. The functions, properties, and constituents of the biofilm extracellular polymeric substance matrix are somewhat known, but their exact composition and role in the microbial conversion kinetics and biochemical transformations are still to be resolved. Biofilm grown microorganisms may contribute to increased metabolism of micro-pollutants. Several types of biofilm reactors have been used for water treatment, with current focus on moving bed biofilm reactors, integrated fixed-film activated sludge, membrane-supported biofilm reactors, and granular sludge processes. The control and/or beneficial use of biofilms in membrane processes is advancing. Biofilm models have become essential tools for fundamental biofilm research and biofilm reactor engineering and design. At the same time, the divergence between biofilm modeling and biofilm reactor modeling approaches is recognized.
APA, Harvard, Vancouver, ISO, and other styles
8

Reiter, Keli Cristine, Gustavo Enck Sambrano, Bárbara Villa, Thiago Galvão da Silva Paim, Caio Fernando de Oliveira, and Pedro Alves d'Azevedo. "Rifampicin fails to eradicate mature biofilm formed by methicillin-resistant Staphylococcus aureus." Revista da Sociedade Brasileira de Medicina Tropical 45, no. 4 (August 2012): 471–74. http://dx.doi.org/10.1590/s0037-86822012000400011.

Full text
Abstract:
INTRODUCTION: Antimicrobial activity on biofilms depends on their molecular size, positive charges, permeability coefficient, and bactericidal activity. Vancomycin is the primary choice for methicillin-resistant Staphylococcus aureus (MRSA) infection treatment; rifampicin has interesting antibiofilm properties, but its effectivity remains poorly defined. METHODS: Rifampicin activity alone and in combination with vancomycin against biofilm-forming MRSA was investigated, using a twofold serial broth microtiter method, biofilm challenge, and bacterial count recovery. RESULTS: Minimal inhibitory concentration (MIC) and minimal bactericidal concentration for vancomycin and rifampicin ranged from 0.5 to 1mg/l and 0.008 to 4mg/l, and from 1 to 4mg/l and 0.06 to 32mg/l, respectively. Mature biofilms were submitted to rifampicin and vancomycin exposure, and minimum biofilm eradication concentration ranged from 64 to 32,000 folds and from 32 to 512 folds higher than those for planktonic cells, respectively. Vancomycin (15mg/l) in combination with rifampicin at 6 dilutions higher each isolate MIC did not reach in vitro biofilm eradication but showed biofilm inhibitory capacity (1.43 and 0.56log10 CFU/ml reduction for weak and strong biofilm producers, respectively; p<0.05). CONCLUSIONS: In our setting, rifampicin alone failed to effectively kill biofilm-forming MRSA, demonstrating stronger inability to eradicate mature biofilm compared with vancomycin.
APA, Harvard, Vancouver, ISO, and other styles
9

Martinez, Keith A., Ryan D. Kitko, J. Patrick Mershon, Haley E. Adcox, Kotiba A. Malek, Melanie B. Berkmen, and Joan L. Slonczewski. "Cytoplasmic pH Response to Acid Stress in Individual Cells of Escherichia coli and Bacillus subtilis Observed by Fluorescence Ratio Imaging Microscopy." Applied and Environmental Microbiology 78, no. 10 (March 16, 2012): 3706–14. http://dx.doi.org/10.1128/aem.00354-12.

Full text
Abstract:
ABSTRACTThe ability ofEscherichia coliandBacillus subtilisto regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. TheE. colicytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In anE. colibiofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells.B. subtiliscells were acid shifted from pH 7.5 to pH 6.0. InB. subtilis, unlike the case withE. coli, cytoplasmic pH showed no “overshoot” but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individualB. subtiliscells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms.
APA, Harvard, Vancouver, ISO, and other styles
10

Delavar, Mojtaba Aghajani, and Junye Wang. "Lattice Boltzmann Method in Modeling Biofilm Formation, Growth and Detachment." Sustainability 13, no. 14 (July 16, 2021): 7968. http://dx.doi.org/10.3390/su13147968.

Full text
Abstract:
Biofilms are a complex and heterogeneous aggregation of multiple populations of microorganisms linked together by their excretion of extracellular polymer substances (EPS). Biofilms can cause many serious problems, such as chronic infections, food contamination and equipment corrosion, although they can be useful for constructive purposes, such as in wastewater treatment, heavy metal removal from hazardous waste sites, biofuel production, power generation through microbial fuel cells and microbially enhanced oil recovery; however, biofilm formation and growth are complex due to interactions among physicochemical and biological processes under operational and environmental conditions. Advanced numerical modeling techniques using the lattice Boltzmann method (LBM) are enabling the prediction of biofilm formation and growth and microbial community structures. This study is the first attempt to perform a general review on major contributions to LBM-based biofilm models, ranging from pioneering efforts to more recent progress. We present our understanding of the modeling of biofilm formation, growth and detachment using LBM-based models and present the fundamental aspects of various LBM-based biofilm models. We describe how the LBM couples with cellular automata (CA) and individual-based model (IbM) approaches and discuss their applications in assessing the spatiotemporal distribution of biofilms and their associated parameters and evaluating bioconversion efficiency. Finally, we discuss the main features and drawbacks of LBM-based biofilm models from ecological and biotechnological perspectives and identify current knowledge gaps and future research priorities.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Biofilm recovery"

1

Van, Gray Jonathon B. "Disturbance effects on assembly and recovery dynamics of freshwater microbial biofilm communitieis." Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent1556556989587688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ahmed, Warsama. "Nitrifying Moving Bed Biofilm Reactors at Low Temperatures and Cold Shock Conditions: A Kinetic, Biofilm and Microbiome Study." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41196.

Full text
Abstract:
The nitrification process, the biologically mediated process of ammonia treatment in water resources recovery facilities (WRRF), remains the most common treatment process to mitigate the adverse effects of effluent ammonia discharges in surface water. However, it is well established that the temperature-sensitive process of nitrification remains hindered at low temperatures in conventional suspended growth technologies; specifically, passive treatment systems such as the lagoons, representing over 50% of Canadian treatment facilities in operation. As such, nitrification in lagoon facilities remains unreliable during the cold seasons with no nitrification occurring at 1°C. In contrast to suspended growth systems, attached growth technologies such as the moving bed biofilm reactors (MBBR) have recently been proven capable of achieving significant nitrification rates at temperatures as low as 1°C and are proposed as suitable upgrade systems to the common lagoon facility to reach year-long ammonia treatment targets. As such, the main objective of this research is to investigate and expand the current knowledge by investigating the key research questions lacking in the current literature on post-carbon, low temperature nitrifying MBBR systems. With this aim, a temperature-controlled study of attached growth nitrification kinetics was conducted to isolate the effects of low temperatures on nitrifying MBBR system performance down to 1°C. A removal rate of 98.44 ± 4.69 gN/m³d is identified as the 1°C intrinsic removal rate and the design removal rate for nitrifying MBBR systems at low temperatures. Considering this intrinsic rate at 1°C, an assessment of reactor efficiency at elevated TAN concentrations typical of non-combined sewer systems indicates that a two reactor in-series MBBR system configuration is recommended for retrofitting lagoon facilities connected to sanitary sewers. The study of the reactor performance to temperatures as low as 1°C demonstrates a non-linear decline in removal efficiency between 10°C and 1°C, with the existence of a kinetic threshold temperature delineated between 4°C and 2°C. As such, this delineated temperature range accounts for a significant decline in the performance of low carbon nitrifying MBBR systems during the onset of the cold seasons. This research identifies new recommended Arrhenius correction coefficient values taking into account this kinetic threshold temperature, with a coefficient of 1.049 being recommended above the kinetic threshold (≥4°C) and 1.149 below the threshold temperature at 1°C. Moreover, since the elapsed time to low temperature was identified as a key factor of attached growth nitrification kinetics, a modified theta model accounting for temperature and time is proposed in this research to accurately model the rate of nitrifying MBBR systems between 4°C and 1°C. Finally, with the severe adverse effects of sudden decreases in temperature, or cold shocks, on nitrification kinetics being previously demonstrated but not well understood, this research compares acclimatized and cold shocked MBBR reactors down to 1°C. The findings indicate 21% lower kinetics in the cold shocked reactor with reactor efficiencies never reaching those of the acclimatized reactor despite extended operation at 1°C. Thus, the research delineates the potentially lasting effects of extreme weather events such as cold air outbreaks and snowmelt periods on nitrifying MBBR system performance. On the other hand, these same findings demonstrate the resiliency of nitrifying MBBR reactors as nitrification was maintained within these systems despite being cold-shocked down from 10°C and 1°C. This study of attached growth kinetics was coupled with an investigation of the nitrifying biofilms, biomass, and microbiome responses to low temperatures and cold shock down to 1°C to provide an understanding of the changes occurring in these systems down to the cellular level. Comparisons of acclimatized and cold shocked nitrifying biofilms responses down to 1°C were characterized by increases in biofilm thickness, increases in biomass viability; and, greater shifts in microbiome communities occurring above 4°C in the acclimatized biofilm. Considering these observations, results also indicated a significant increase in nitrifiers per carrier above 4°C. As such, these findings suggested that the bulk of nitrifying biofilm adaptation to cold temperatures occurs above 4°C, a crucial adaptation phase in acclimatized systems. This adaptation phase is shown to be lacking in cold-shocked systems, with the cold shocked biofilm and microbiome demonstrating significant differences with the acclimatized systems’ biofilm and microbiome. This research was performed to answer the critical research questions relating to the design and operation of the post-carbon, low temperature nitrifying MBBR systems, with the first low temperature MBBR systems being scheduled to begin operation in the fall of 2020. This research expands the current knowledge on low temperature attached growth nitrification kinetics as well as cold shocked attached growth nitrification kinetics in MBBR systems down to 1°C. In addition, this research delineates the effects of low temperatures and cold shocks on the nitrifying MBBR system’s biofilms and their embedded cells.
APA, Harvard, Vancouver, ISO, and other styles
3

Wolf, Daniel I. Wolf. "Multi-marker Metabarcoding Assessment of Biodiversity within Stream Biofilm Communities along an Acid Mine Drainage Recovery Gradient." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou152594729270327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marais, Tynan S. "A novel semi-passive process for sulphate removal and elemental sulphur recovery centred on a hybrid linear flow channel reactor." Doctoral thesis, Faculty of Engineering and the Built Environment, 2020. http://hdl.handle.net/11427/32843.

Full text
Abstract:
South Africa (SA) currently faces a major pollution problem from mining impacted water, including acid rock drainage (ARD), as a consequence of the mining activities upon which the economy has been largely built. The environmental impact of ARD has been further exacerbated by the country's water scarce status. Increasingly scarce freshwater reserves require the preservation and strategic management of the country's existing water resources to ensure sustainable water security. In SA, the primary focus on remediation of ARDcontaminated water has been based on established active technologies. However, these approaches are costly, lead to secondary challenges and are not always appropriate for the remediation of lower volume discharges. Mostly overlooked, ARD discharges from diffuse sources, associated with the SA coal mining industry, have a marked impact on the environment, similar to those originating from underground mine basins. This is due to the large number of deposits and their broad geographic distribution across largely rural areas of SA. Semi-passive ARD treatment systems present an attractive alternative treatment approach for diffuse sources, with lower capital and operational costs than active systems as well as better process control and predictability than traditional passive systems. These semi-passive systems typically target sulphate salinity through biological sulphate reduction catalysed by sulphate reducing bacteria (SRB). These anaerobic bacteria reduce sulphate, in the presence of a suitable electron donor, to sulphide and bicarbonate. However, the hydrogen sulphide product generated is highly toxic, unstable, easily re-oxidised and poses a significant threat to the environment and human health, so requires appropriate management. An attractive strategy is the reduction of sulphate to sulphide, followed by its partial oxidation to elemental sulphur, which is stable and has potential as a value-added product. A promising approach to achieve partial oxidation is the use of sulphide oxidising bacteria (SOB) in a floating sulphur biofilm (FSB). These biofilms develop naturally on the surfaces of sulphide rich wastewater streams. Its application in wastewater treatment and the feasibility of obtaining high partial oxidation rates in a linear flow channel reactor (LFCR) has been described. The use of a floating sulphur biofilm overcomes many of the drawbacks associated with conventional sulphide oxidation technologies that are costly and require precise operational control to maintain oxygen limiting conditions for partial oxidation. In the current study a hybrid LFCR, incorporating a FSB with biological sulphate reduction in a single reactor unit, was developed. The integration of the two biological processes in a single LFCR unit was successfully demonstrated as a ‘proof of concept'. The success of this system relies greatly on the development of discrete anaerobic and microaerobic zones, in the bulk liquid and at the airliquid interface, that facilitate sulphate reduction and partial sulphide oxidation, respectively. In the LFCR these environments are established as a result of the hydrodynamic properties associated with its design. Key elements of the hybrid LFCR system include the presence of a sulphate-reducing microbial community immobilised onto carbon fibres and the rapid development of a floating sulphur biofilm at the air-liquid interface. The floating sulphur biofilm consists of a complex network of bacterial cells and deposits of elemental sulphur held together by an extracellular polysaccharide matrix. During the Initial stages of FSB development, a thin transparent biofilm layer is formed by heterotrophic microorganisms. This serves as ‘scaffolding' for the subsequent attachment and colonisation of SOB. As the biofilm forms at the air-liquid interface it impedes oxygen mass transfer into the bulk volume and creates a suitable pH-redox microenvironment for partial sulphide oxidation. Under these conditions the sulphide generated in the bulk volume is oxidised at the surface. The biofilm gradually thickens as sulphur is deposited. The produced sulphur, localised within the biofilm, serves as an effective mechanism for recovering elemental sulphur while the resulting water stream is safe for discharge into the environment. The results from the initial demonstration achieved near complete reduction of the sulphate (96%) at a sulphate feed concentration of 1 g/L with effective management of the generated sulphide (95-100% removal) and recovery of a portion of the sulphur through harvesting the elemental sulphur-rich biofilm. The colonisation of the carbon microfibres by SRB ensured high biomass retention within the LFCR. This facilitated high volumetric sulphate reduction rates under the experimental conditions. Despite the lack of active mixing, at a 4-day hydraulic residence time, the system achieved volumetric sulphate reduction rates similar to that previously shown in a continuous stirred-tank reactor. The outcome of the demonstration at laboratory scale generated interest to evaluate the technology at pilot scale. This interest necessitated further development of the process with a particular focus on evaluating key challenges that would be experienced at a larger scale. A comprehensive kinetic analysis on the performance of the hybrid LFCR was conducted as a function of operational parameters, including the effect of hydraulic residence time, temperature and sulphate loading on system performance. Concurrently, the study compared the utilisation of lactate and acetate as carbon source and electron donor as well as the effect of reactor configuration on system performance. Comparative assessment of the performance between the original 2 L LFCR and an 8 L LFCR variant that reflected the pilot scale design with respect to aspect ratio was conducted. Pseudo-steady state kinetics was assessed based on carbon source utilisation, volumetric sulphate reduction, sulphide removal efficiency and elemental sulphur recovery. Additionally, the hybrid LFCR provided a unique synergistic environment for studying the co-existence of the sulphate reducing (SRB) and sulphide oxidising (SOB) microbial communities. The investigation into the microbial ecology was performed using 16S rRNA amplicon sequencing. This enabled the community structure and the relative abundance of key microbial genera to be resolved. These results were used to examine the link between process kinetics and the community dynamics as a function of hydraulic residence time. Results from this study showed that both temperature and volumetric sulphate loading rate, the latter mediated through both sulphate concentration in the feed and dilution rate, significantly influenced the kinetics of biological sulphate reduction. Partial sulphide oxidation was highly dependent on the availability and rate of sulphide production. Volumetric sulphate reduction rates (VSRR) increased linearly as hydraulic residence time (HRT) decreased. The optimal residence time was determined to be 2 days, as this supported the highest volumetric sulphate reduction rate (0.21 mmol/L.h) and conversion (98%) with effective sulphide removal (82%) in the 2 L lactate-fed LFCR. Lactate as a sole carbon source proved effective for achieving high sulphate reduction rates. Its utilisation within the process was highly dependent on the dominant metabolic pathway. The operation at high dilution rates resulted in a decrease in sulphate conversion and subsequent increase in lactate metabolism toward fermentation. This was attributed to the competitive interaction between SRB and fermentative bacteria under varying availability of lactate and concentrations of sulphate and sulphide. Acetate as a sole carbon source supported a different microbial community to lactate. The lower growth rate associated with acetate utilising SRB required longer start-up period and was highly sensitive to operational perturbations, especially the introduction of oxygen. However, biomass accumulation over long continuous operation led to an increase in performance and system stability. Microbial ecology analysis revealed that a similar community structure developed between the 2 L and 8 L lactate-fed LFCR configurations. This, in conjunction with the kinetic data analysis, confirmed that the difference in aspect ratio and scale had minimal impact on process stability and that system performance can be reproduced. The choice of carbon source selected for distinctly different, highly diverse microbial communities. This was determined using principle co-ordinate analysis (PCoA) which highlighted the variation in microbial communities as a function of diversity and relative abundance. The SRB genera Desulfarculus, Desulfovibrio and Desulfomicrobium were detected across both carbon sources. However, Desulfocurvus was found in the lactate-fed system and Desulfobacter in acetate-fed system. Other genera that predominated within the system belonged to the classes Bacteroidetes, Firmicutes and Synergistetes. The presence of Veillonella, a lactate fermenter known for competing with SRB, was detected in the lactate-fed systems. Its relative abundance corresponded well with the lactate fermentation and oxidation performance, where an apparent shift in the dominant metabolic pathway was observed at high dilution rates. Furthermore, the data also revealed preferential attachment of selective SRB onto carbon microfibers, particularly among the Desulfarculus and Desulfocurvus genera. The microbial ecology of the floating sulphur biofilm was consistent across both carbon sources. Key sulphur oxidising genera detected were Paracoccus, Halothiobacillus and Arcobacter. The most dominant genera present in the FSB were Rhizobium, well-known nitrogen fixing bacteria, and Pannonibacter. Both genera are members of the class Alphaproteobacteria, a well-known phylogenetic grouping in which the complete sulphur-oxidising, sox, enzyme system is highly conserved. An aspect often not considered in the operation of these industrial bioprocess systems is the microbial community dynamics within the system. This is particularly evident within biomass accumulating systems where the proliferation of non-SRB over time can compromise the performance and efficiency of the process. Therefore, the selection and development of robust microbial inoculums is critical for overcoming the challenges associated with scaling up, particularly with regards to start-up period, and long-term viability of sulphate reducing bioreactor systems. In the current study, long-term operation demonstrated the robustness of the hybrid LFCR process to maintain relatively stable system performance. Additionally, this study showed that process performance can be recovered through re-establishing suitable operational conditions that favor biological sulphate reduction. The ability of the system to recover after being exposed to multiple perturbations, as explored in this study, confirms the resilience and long-term viability of the hybrid process. A key feature of the hybrid process was the ability to recover the FSB intermittently without compromising biological sulphate reduction. The current research successfully demonstrated the concept of the hybrid LFCR and characterised sulphate reduction and sulphide oxidation performance across a range of operating conditions. This, in conjunction with a clearer understanding of the complex microbial ecology, illustrated that the hybrid LFCR has potential as part of a semi-passive approach for the remediation of low volume sulphate-rich waste streams, critical for treatment of diffuse ARD sources.
APA, Harvard, Vancouver, ISO, and other styles
5

Johansson, Matilda. "Produktion av bakteriell cellulose genom användning av det symbiotiska förhållandet mellan bakterier och jäst som används vid Kombuchatillverkning." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-23293.

Full text
Abstract:
Different factors such as growing environmental awareness due to the increasing negative impact of persistent plastic wastes, the uncontrollable price variations of the raw material and the rapid depletion of  reserves have increased the interest in research regarding polymers derived from renewable sources to replace petroleum-based materials. One of the earth’s most abundant macromolecules is cellulose. The production of cellulose from another resource replaces and reduces the demand from plants, the other resource being cellulose from a bacterial system. Bcaterial cellulose film were produced by fermenting apple waste (apple pomace) from cider production donated by Herrljunga Cider in Herrljunga, Sweden and expired fruit juice, produced by LoveJuice Indonesia, containing a mixture of fruits, mainly apple. As inoculum for the fermentations two different Kombucha cultures were used. To optimize the fermentation conditions, factors such as nitrogen source, sugar content, temperature, pH, surface area, sterilization of the substrate, culture condition and fermentation time was varied to obtain the desired result. The bacterial cellulose films were dried at 50-70 °C in an oven, air-dried or freeze-dried to evaluate the impact of drying technique on the final material. The behavior of the microorganism during fermentation was monitored by sampling and observation. The consumption rate of carbohydrates was analyzed using high performance liquid chromatography (HPLC). The properties of the obtained biofilms were analyzed using thermogravimetric analysis (TGA), tensile testing and determination of cellulose content in the obtained biofilms. Two different sugar concentrations (35 g/l and 70 g/l) and three different caffeine concentrations (0 g/l, 150 g/l and 225 g/l) as nitrogen source were investigated to determine the best condition. A control batch of conventional (black tea and 70 g/l table sugar) Kombucha was used as reference. The highest tensile strength (50 MPa) and thermal stability was observed in the biofilms with the highest yield that had been dried in oven. The biofilms obtained by fermenting apple pomace from the cider industry showed the highest tensile strength and highest thermal stability in comparison to fermenting expired fruit juice. The biofilm obtained by fermenting apple waste(sugar concentration 70 g/l) in combination with sterilizing the substrate without adding any nitrogen source, dried in an oven and purified using 0,1 M NaOH resulted in the highest tensile strength, highest thermal stability and the purest biofilm from a visual aspect. The highest yield was observed in the fermentation of apple pomace (sugar concentration 70 g/l) from the cider industry without sterilization of the initial media with an addition of nitrogen of approximately 450 mg/l). The optimal fermentation period was observed to be 14-15 days, at 25-28 °C under static conditions using a glass vessel with a diameter of 20 cm and an initial pH of 5,5.
APA, Harvard, Vancouver, ISO, and other styles
6

Jain, Pranjal, and Khaled Alturkmani. "Improving the Efficiency of Thermal Energy Usage in Residential Buildings by Heat Recovery from Wastewater." Thesis, Högskolan i Halmstad, Akademin för företagande, innovation och hållbarhet, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-44853.

Full text
Abstract:
This study aims to rationalize the consumption of thermal energy in residential buildings by recovering heat from wastewater inside the building before entering the central sewage network outside the building, by conducting an analytical study for a residential tower in Syria to find out the coverage percentage of the heat energy recovered from wastewater for the heating and domestic hot water loads needed for the tower, and calculating the percentage of reduction in carbon dioxide (CO2) gases. It is a simple technology as the thermal recovery system consists of three main components, which are in order: a wastewater tank, heat exchangers, and a heat pump. The research begins with an introduction that consists of the importance of wastewater and the waste heat energy it carries. After that, there are some case studies, research problem, its importance, the aim of the research, and finally the research methodology. In the first chapter, we talked about the concept of heat recovery from wastewater in general, methods of heat recovery, and the most important advantages and disadvantages of this process. It also includes an identification of the main parts used in this technology and how it works, especially the exchangers and the heat pump. This chapter also addresses the problem of forming a layer of biofilms on the surface of heat exchangers from the wastewater side and the most important methods used to treat it. We move on to the second chapter, in which we review the most important facilities for heat recovery from wastewater that have been viewed. Then comes the third chapter in which the heat recovery process was conducted for a nine storey residential tower in Syria, each floor has four apartments, where we first calculated the rate of wastewater flow for the entire tower, and we proposed a heat recovery system (physical model) inside the tower. Then the mathematical equations for heat recovery and the solution of these equations were developed based on some necessary assumptions needed in the solution process to know the most important results desired in this field. It also included the calculation of the coverage ratio of the heat energy recovered from the wastewater for the domestic hot water and heating loads, as well as the calculation of the mass and percentage of the reduction of carbon emitted to the atmosphere. Then simple economic feasibility was also conducted in this chapter to know the daily financial savings as a result of using this technology. The research ends with the most important conclusions and future research that have been reached and the conclusion of the research. The most important results show that the average coverage percentage of heat energy recovered from wastewater for heating load in residential buildings ranges between [30-56%]. It was also found that the average coverage percentage of heat energy recovered from wastewater for domestic hot water load ranges between [65-100%].
APA, Harvard, Vancouver, ISO, and other styles
7

Jia, Ru. "Mechanisms of Microbiologically Influenced Corrosion Caused by Corrosive Biofilms and its Mitigation Using Enhanced Biocide Treatment." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1541425677541433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ayoub, Hadeel Mohammed. "Anti-Caries Efficacy of Fluoride at Increasing Maturation of a Microcosm Biofilm." Diss., 2019. http://hdl.handle.net/1805/20539.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Dental biofilm is a main contributing factor in the initiation and progression of dental caries. The maturation of dental biofilms is expected to alter the anti-caries efficacy of fluoride compounds. In the first aim, we conducted a series of modeldevelopment experiments to test different variables to standardize a reproducible in-vitro microbial caries model. We evaluated: surface conditioning using saliva; sucrose concentrations and caries lesion severity; growth media conditions and mineral saturation; dental substrate types; pH cycling protocol characteristics. In the second aim, we used the developed model to evaluate the changes in the anti-caries efficacy of three fluoride compounds (Sodium fluoride (NaF); Stannous fluoride (SnF2); Amine fluoride (AmF); and deionized water (DIW- negative control)) at increasing maturation of a microcosm biofilm. We continued the pH cycling protocol for 4 days, 8 days, and 12 days. We tested biofilm cariogenicity and carious lesion severity at each maturation stage. In the third aim, we used the developed model to test the effect of different exposure periods (early vs. late exposure) of the biofilm to three fluoride compounds (NaF, SnF2, AmF, DIW) in comparison to DIW. We also evaluated the recovery of biofilm cariogenicity with each exposure period. We evaluated, for each exposure period and recovery stage, biofilm cariogenicity and carious lesion severity. We analyzed the relationships between different variables (biofilm age, fluoride compound type, exposure period) using ANOVA models. In conclusion: 1. The present model allows testing the effect of biofilm maturation on the anti-caries efficacy of fluoride compounds. 2. Biofilm maturation plays an important role in increasing biofilm tolerance against fluoride treatment; it could also influence the selection of fluoride compounds to achieve optimum cariostatic effect. 3. Exposure period, and type of fluoride compound, both influence the biofilm tolerance to fluoride anti-caries effect; they may also result in a sustainable release of fluoride over time.
2021-08-21
APA, Harvard, Vancouver, ISO, and other styles
9

"Microalgal Biofilms for Treatment of Domestic Wastewater and Resource Recovery." Master's thesis, 2016. http://hdl.handle.net/2286/R.I.38745.

Full text
Abstract:
abstract: The application of microalgal biofilms in wastewater treatment has great advantages such as abolishing the need for energy intensive aerators and recovering nutrients as energy, thus reducing the energy requirement of wastewater treatment several-fold. A 162 cm2 algal biofilm reactor with good wastewater treatment performance and a regular harvesting procedure was studied at lab scale to gain an understanding of effectual parameters such as hydraulic retention time (HRT; 2.6 and 1.3 hrs), liquid level (LL; 0.5 and 1.0 cm), and solids retention time (SRT; 3 and 1.5 wks). A revised synthetic wastewater “Syntho 3.7” was used as a surrogate of domestic primary effluent for nutrient concentration consistency in the feed lines. In the base case (2.6 hr HRT, 0.5 cm LL, and 3 wk SRT), percent removals of 69 ± 2 for total nitrogen (TN), 54 ± 21 for total phosphorous (TP), and 60 ± 7 for chemical oxygen demand (COD) were achieved and 4.0 ± 1.6 g/m2/d dry biomass was produced. A diffusion limitation was encountered when increasing the liquid level, while the potential to further decrease the HRT remains. Nonlinear growth kinetics was observed in comparing SRT variations, and promoting autotrophic growth seems possible. Future work will look towards producing a mathematical model and further testing the aptness of this system for large-scale implementation.
Dissertation/Thesis
Masters Thesis Chemical Engineering 2016
APA, Harvard, Vancouver, ISO, and other styles
10

Cheng, Yu Chung, and 鍾承佑. "Applying the Recovery of Municipal Waste Activated Sludge Pellets to Enhance the Nutrient Removal in Sequencing Batch Biofilm Reactor (SBR) System." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/81581575943377653798.

Full text
Abstract:
碩士
東海大學
環境科學與工程學系
95
Abstract Traditional activated sludge generates large amount of wasted activated sludge (WAS) and need excess cost to deal with. The ways to reduce the amount of WAS certainly will contribute to the cost down in treatment system. Therefore, this study attempts to recycle the wasted activated sludge cake and bake into immobilized pellets then add to the SBBR system. In this study, the WAS from Nei-Hu wastewater treatment plant mixed with red soil and some chemical additives to bake as the rebuilt WAS pellets. The pellets reused in sequencing batch biofilm reactor (SBBR) to attach biofilm and enhance the wastewater nutrient removal efficiency. In the SBBR system with rebuilt WAS pellets, the KN and KDN are 10.6 mg-NH4+-N/L-hr and 10.4 mg-NO3--N/L-hr which are higher than 5.3 mg-NH4+-N/L-hr and 5.0 mg-NO3--N/L-hr in the traditional SBR system. The SND efficiency removal results of SBBR with rebuilt WAS pellets are better than that of the SBBR with commercial pellets (with 99 % and 92%, respectively). The simulated ORP Nernst model can be applied to the real time control of the SBBR system to treat nutrient substrances.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Biofilm recovery"

1

Rodgers, E. B. Microbial biofilm studies of the environmental control and life support system water recovery test for Space Station Freedom. [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Biofilm recovery"

1

Chen-Charpentier, Benito, Yaqing Li, and Brian Suchomel. "Modeling of Biofilm Growth in Porous Media at the Pore Scale and Up-Scaling." In Resource Recovery, Confinement, and Remediation of Environmental Hazards, 195–215. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0037-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

De Vecchi, Elena, Marta Bottagisio, Monica Bortolin, Marco Toscano, Arianna Barbara Lovati, and Lorenzo Drago. "Improving the Bacterial Recovery by Using Dithiothreitol with Aerobic and Anaerobic Broth in Biofilm-Related Prosthetic and Joint Infections." In Advances in Experimental Medicine and Biology, 31–39. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/5584_2016_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vandecandelaere, Ilse, and Tom Coenye. "Microbial Composition and Antibiotic Resistance of Biofilms Recovered from Endotracheal Tubes of Mechanically Ventilated Patients." In Advances in Experimental Medicine and Biology, 137–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11038-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mittelman, Marc W. "[39] Recovery and characterization of biofilm bacteria associated with medical devices." In Biofilms, 535–51. Elsevier, 1999. http://dx.doi.org/10.1016/s0076-6879(99)10041-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Val del Río, Ángeles, Alba Pedrouso Fuentes, Elisa Amanda Giustinianovich, José Luis Campos Gomez, and Anuska Mosquera-Corral. "Anammox Process." In Technologies for the Treatment and Recovery of Nutrients from Industrial Wastewater, 264–89. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1037-6.ch010.

Full text
Abstract:
Application of anammox based processes is nowadays an efficient way to remove nitrogen from wastewaters, being good alternative to the conventional nitrification-denitrification process. This chapter reviews the possible configurations to apply the anammox process, being special attention to the previous partial nitritation, necessary to obtain the adequate substrates for anammox bacteria. Furthermore a description of the main technologies developed and patented by different companies was performed, with focus on the advantages and bottlenecks of them. These technologies are classified in the chapter based on the type of biomass: suspended, granular and biofilm. Also a review is presented for the industrial applications (food industry, agricultural wastes, landfill leachates, electronic industry, etc.), taking into account full scale experiences and laboratory results, as well as microbiology aspects respect to the anammox bacteria genera involved. Finally the possibility to couple nitrogen removal, by anammox, with phosphorus recovery, by struvite precipitation, is also evaluated.
APA, Harvard, Vancouver, ISO, and other styles
6

Carlos Caicedo, Juan, and Sonia Villamizar. "Acidithiobacillus Its Application in Biomining Using a Quorum Sensing Modulation Approach." In Acidophiles - Fundamentals and Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98774.

Full text
Abstract:
A group of particular acidophiles microorganisms (bacteria and archaea) known as chemolithoautotrophs are capable of using minerals as fuel. Its oxidation generates electrons to obtain energy and carbon that is obtained by fixing CO2 from the air. During this aerobic mineral oxidation, metals are solubilized or biodegraded. Metal bioleaching usually is used in biomining and urban biomining approaches to recovery metals such as copper, gold and zinc. Several species of bacterial genus Acidithiobacillus display a great bioleaching activity. Bacterial attachment and biofilm formation are the initial requirements to begin a successful bioleaching process. Biofilm formation in Acidithiobacillus bacteria is strongly regulated by cell to cell communication system called Quorum Sensing. The goal of this chapter is to review the Quorum Sensing system mediated by the autoinducer N-acyl- homoserine-lactones in the Bacterium Acidiothiobacillus ferroxidans, in order to enhance and to boost the bioleaching technologies based in the use of this bacterium. The main applications of the cell-to-cell communication system concepts in A. ferrooxidans are reviewed in this chapter. It is that the addition of synthetic autoinducers molecules, which act as agonist of quorum sensing system, especially those with long acyl chains, both as single molecules (C12-AHL, 3-hydroxy-C12-AHL, C14-AHL, and 3-hydroxy-C14-AHL) or as a mixture (C14-AHL/3- hydroxy-C14-AHL/3-oxo-C14-AHL) increased the adhesion to sulfur and pyrite and enhance the metal bioleaching in urban biomining approaches.
APA, Harvard, Vancouver, ISO, and other styles
7

"Infection." In Standards for the Management of Open Fractures, edited by Simon Eccles, Bob Handley, Umraz Khan, Iain McFadyen, Jagdeep Nanchahal, and Selvadurai Nayagam, 125–34. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198849360.003.0013.

Full text
Abstract:
Infection is the most feared and challenging complication in the treatment of open tibial fractures. Microorganisms can adhere as a biofilm on the surface of damaged bone, necrotic tissue, and internal fixation devices, and become resistant to phagocytosis and most antimicrobial agents. Established infection can delay healing and recovery, cause permanent functional loss, and potentially lead to amputation of the affected limb. The incidence of infection after severe open tibial fractures was reported to be over 30% in the 1980s and 1990s. Although there is evidence of a possible reduction in incidence in the past decade, the Lower Extremity Assessment Project (LEAP) study has shown that severe lower extremity trauma continues to be associated with infective complications necessitating additional operative treatment in a significant number of cases. Furthermore, greater bacterial virulence and increasing age and associated co-morbidities of the fracture population ensure that infection after open trauma remains a challenge.
APA, Harvard, Vancouver, ISO, and other styles
8

Curutchet, Gustavo, Edgardo Donati, Cristian Oliver, Cristina Pogliani, and Marisa R. Viera. "[11] Development of Thiobacillus biofilms for metal recovery." In Microbial Growth in Biofilms - Part B: Special Environments and Physicochemical Aspects, 171–86. Elsevier, 2001. http://dx.doi.org/10.1016/s0076-6879(01)37013-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rezić, Tonči, Iva Rezić, Michaela Zeiner, and Božidar Šantek. "Application of Mixed Microbial Culture Biofilms for Manganese (II), Cobalt (II), and Chromium (VI) Biosorption by Horizontal Rotating Tubular Bioreactor." In Biological Wastewater Treatment and Resource Recovery. InTech, 2017. http://dx.doi.org/10.5772/66920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

D. Bryers, James, and F. Drummond. "Local Mass Transfer Coefficients in Bacterial Biofilms Using Fluorescence Recovery After Photobleaching (FRAP)." In Immobilized Cells - Basics and Applications, Proceedings of an International Symposium organized under auspices of The Working Party on Applied Biocatalysis of the European Federation of Biotechnology Noordwijkerhout, 196–204. Elsevier, 1996. http://dx.doi.org/10.1016/s0921-0423(96)80028-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Biofilm recovery"

1

Thunyarat Pongtharangkul and Ali Demirci. "Recovery of Nisin during Fermentation in Biofilm Reactor." In 2006 Portland, Oregon, July 9-12, 2006. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2006. http://dx.doi.org/10.13031/2013.21043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Klueglein, Nicole, Felix Kögler, Irini J. Adaktylou, Marina L. Wuestner, Eva Mahler, Justus Scholz, Andrea Herold, and Hakan Alkan. "Understanding Selective Plugging and Biofilm Formation of a Halophilic Bacterial Community for MEOR Application." In SPE Improved Oil Recovery Conference. Society of Petroleum Engineers, 2016. http://dx.doi.org/10.2118/179620-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Simultaneous Online Recovery of Human Lysozyme Produced by Kluyveromyces lactis K7 in Biofilm Reactor." In 2014 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2014. http://dx.doi.org/10.13031/aim.20141895913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Obenhuber, D. C., T. L. Huff, and E. B. Rodgers. "Microbial Biofilm Studies of the Environmental Control and Life Support System Water Recovery Test for Space Station Freedom." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/911378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chakraborty, Susmit, Suresh Kumar Govindarajan, and Sathyanarayana N. Gummadi. "Numerical Investigation on Low Salinity Augmented Microbial Flooding LSAMF within a Sandstone Core for Enhanced Oil Recovery Under Nonisothermal and Fluctuating pH Conditions." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206098-ms.

Full text
Abstract:
Summary In an era of increasing energy demand, declining oil fields and fluctuating crude oil prices globally, most oil companies are looking forward to implementing cost effective and environmentally sustainable enhanced oil recovery (EOR) techniques such as low salinity waterflooding (LSWF) and microbial EOR (MEOR). The present study numerically investigates the combined influence of simultaneous LSWF and microbial flooding for in-Situ MEOR in tertiary mode within a sandstone core under spatiotemporally fluctuating pH and temperature conditions. The developed black oil model consists of five major coupled submodels: nonlinear heat transport model; ion transport coupled with multiple ion exchange (MIE) involving uncomplexed cations and anions; pH variation with salinity and temperature; coupled reactive transport of injected substrates, Pseudomonas putida and produced biosurfactants with microbial maximum specific growth rate varying with temperature, salinity and pH; relative permeability and fractional flow curve variations due to interfacial tension reduction and wettability alteration (WA) by LSWF and biofilm deposition. The governing equations are solved using finite difference technique. Operator splitting and bisection methods are adopted to solve the MIE-transport model. The present model is found to be numerically stable and agree well with previously published experimental and analytical results. In the proposed MIE-transport mechanism, decreasing injection water salinity (IWS) from 2.52 to 0.32 M causes enhanced Ca2+ desorption rendering rock surface towards more water wet. Consequently, oil relative permeability (kro) increases with &gt;55% reduction in water fractional flow (fw) at water saturation of 0.5 from the initial oil-wet condition. Further reducing IWS to 0.03 M causes Ca2+ adsorption shifting the surface wettability towards more oil-wet thus increasing fw by 52%. Formation water salinity (FWS) showed minor impact on WA with &lt;5% decrease in fw when FWS is reduced from 3.15 to 1.05 M. During LSAMF, biosurfactant production is enhanced by &gt;63% on reducing IWS from 2.52 to 0.32 M with negligible increase on further reducing IWS and FWS. This might be due to limiting nonisothermal (40 to 55 °C) and nutrient availability conditions. LSAMF caused significant WA, increase in kro with fw reduction by &gt;84%. Though pH increased from 8.0 to 8.9, it showed minor impact on microbial metabolism. Formation damage due to bioplugging observed near injection point is compensated by effective migration of biosurfactants deep within sandstone core. The present study is a novel attempt to show synergistic effect of LSAMF over LSWF in enhancing oil mobility and recovery at core scale by simultaneously addressing complex crude oil-rock-brine chemistry and critical thermodynamic parameters that govern MEOR efficiency within a typical sandstone formation. The present model with relatively lower computational cost and running time improves the predictive capability to pre-select potential field candidates for successful LSAMF implementation.
APA, Harvard, Vancouver, ISO, and other styles
6

Murphy, Thomas E., Keith Macon, and Halil Berberoğlu. "An Image Processing Technique to Recover the Biomass Concentration in Algae Biofilm Photobioreactors." In ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and M. ASME, 2012. http://dx.doi.org/10.1115/ht2012-58422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Oubekka, S. Daddi, R. Briandet, F. Waharte, M. P. Fontaine-Aupart, and K. Steenkeste. "Image-based Fluorescence Recovery After Photobleaching (FRAP) to dissect vancomycin diffusion-reaction processes in Staphylococcus aureus biofilms." In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ecbo.2011.80871i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Daddi Oubekka, S., R. Briandet, F. Waharte, M. P. Fontaine-Aupart, and K. Steenkeste. "Image-based fluorescence recovery after photobleaching (FRAP) to dissect vancomycin diffusion-reaction processes in Staphylococcus aureus biofilms." In European Conferences on Biomedical Optics, edited by Nirmala Ramanujam and Jürgen Popp. SPIE, 2011. http://dx.doi.org/10.1117/12.889461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography