Academic literature on the topic 'Biogas production potential'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biogas production potential.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biogas production potential"
Pavliukh, Lesia, Sergii Boichenko, Valeriya Onopa, Oksana Tykhenko, Petro Topilnytskyy, Viktoria Romanchuk, and Igor Samsin. "Resource Potential for Biogas Production in Ukraine." Chemistry & Chemical Technology 13, no. 1 (March 5, 2019): 101–6. http://dx.doi.org/10.23939/chcht13.01.101.
Full textNallathambi Gunaseelan, V., and P. Lakshmanaperumalsamy. "Biogas production potential of Parthenium." Biological Wastes 33, no. 4 (1990): 311–14. http://dx.doi.org/10.1016/0269-7483(90)90135-f.
Full textKalinichenko, Antonina, Valerii Havrysh, and Vasyl Perebyynis. "Evaluation of Biogas Production and Usage Potential." Ecological Chemistry and Engineering S 23, no. 3 (September 1, 2016): 387–400. http://dx.doi.org/10.1515/eces-2016-0027.
Full textManyi-Loh, Christy E., Sampson N. Mamphweli, Edson L. Meyer, Anthony I. Okoh, Golden Makaka, and Michael Simon. "Investigation into the Biogas Production Potential of Dairy Cattle Manure." Journal of Clean Energy Technologies 3, no. 5 (2015): 326–31. http://dx.doi.org/10.7763/jocet.2015.v3.217.
Full textKoçer, Anıl Tevfik, and Didem Özçimen. "Investigation of the biogas production potential from algal wastes." Waste Management & Research: The Journal for a Sustainable Circular Economy 36, no. 11 (September 25, 2018): 1100–1105. http://dx.doi.org/10.1177/0734242x18798447.
Full textManonmani, P., Lurwan Muazu, M. C. Kamaraj, Mukesh Goel, and R. Elangomathavan. "Biogas Production Potential of Food Waste." International Journal of Environment, Agriculture and Biotechnology 2, no. 2 (2017): 701–11. http://dx.doi.org/10.22161/ijeab/2.2.18.
Full textIsci, A., and G. N. Demirer. "Biogas production potential from cotton wastes." Renewable Energy 32, no. 5 (April 2007): 750–57. http://dx.doi.org/10.1016/j.renene.2006.03.018.
Full textMaghanaki, M. Mohammadi, B. Ghobadian, G. Najafi, and R. Janzadeh Galogah. "Potential of biogas production in Iran." Renewable and Sustainable Energy Reviews 28 (December 2013): 702–14. http://dx.doi.org/10.1016/j.rser.2013.08.021.
Full textPutri, Dewi Artanti, Roy R. Saputro, and B. Budiyono. "Biogas Production from Cow Manure." International Journal of Renewable Energy Development 1, no. 2 (July 9, 2012): 61–64. http://dx.doi.org/10.14710/ijred.1.2.61-64.
Full textKoryś, Katarzyna Anna, Agnieszka Ewa Latawiec, Katarzyna Grotkiewicz, and Maciej Kuboń. "The Review of Biomass Potential for Agricultural Biogas Production in Poland." Sustainability 11, no. 22 (November 19, 2019): 6515. http://dx.doi.org/10.3390/su11226515.
Full textDissertations / Theses on the topic "Biogas production potential"
Shi, Chen. "Potential Biogas Production from Fish Waste and Sludge." Thesis, KTH, Mark- och vattenteknik (flyttat 20130630), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171807.
Full textLopes, Alice do Carmo Precci. "Biogas production potential from kraft pulp mill sludge." Universidade Federal de Viçosa, 2017. http://www.locus.ufv.br/handle/123456789/10437.
Full textMade available in DSpace on 2017-05-30T13:10:23Z (GMT). No. of bitstreams: 1 texto completo.pdf: 2018178 bytes, checksum: f542263170df07213000e3e4bebf72ed (MD5) Previous issue date: 2017-03-28
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
O processo de fabricação da polpa celulósica kraft demanda elevada quantidade de água e energia. Embora a indústria gere parte de sua própria energia pela queima do licor negro na caldeira de recuperação e biomassa residual na caldeira de biomassa, a indústria ainda é dependente de energia elétrica e combustíveis fósseis adicionais. Devido ao aumento da tarifa de energia, a indústria de celulose tem sido motivada a aumentar sua eficiência energética, tornando-se autossuficiente. A produção de biogás a partir do lodo gerado na estação de tratamento de efluentes da indústria constitui uma potencial alternativa de gerenciamento dos resíduos e produção de energia. O objetivo principal desta dissertação foi avaliar o potencial da produção de biogás a partir dos lodos primário e secundário provenientes da indústria de celulose kraft branqueada. A dissertação foi estruturada em 5 Capítulos desenvolvidos em forma de artigos científicos. O Capítulo 1 apresentou uma revisão de literatura sobre os processos de produção de celulose kraft e de biogás, bem como um panorama sobre legislações brasileiras relacionadas à implantação de biodigestores. Foi concluído que há pouco estudo relativo à digestão anaeróbia de lodo de celulose kraft. Adicionalmente, apesar de o Brasil apresentar um grande potencial de produção de biogás, o país ainda carece de incentivos governamentais no setor. O Capítulo 2 objetivou (i) identificar a melhor relação substrato/inóculo (2/1, 1/1 e 0.4 g VS substrato /g VS inóculo ); (ii) identificar o melhor tipo de inóculo (lodo de UASB ou lodo de UASB + estrume); e (iii) estimar o potencial de substituição da energia elétrica demandada pelo sistema de aeração da estação de tratamento de efluentes da indústria de celulose kraft branqueada a partir do biogás produzido. Para tanto, foram utilizados como substratos o lodo primário (PS), lodo secundário (SS) e a mistura de ambos (MIX). Os resultados mostraram que o lodo secundário possuiu maior potencial de produção de biogás para uma relação 1/1 g VS substrato /g VS inóculo , utilizando lodo de UASB como inóculo. O estrume aumentou a produção de metano do lodo primário para relação S/I 1/1, porém pré-tratamentos devem ser testados de modo a aumentar a biodegradabilidade do substrato. Por fim, o biogás produzido apresentou potencial de substituir 23% daxi demanda de energia elétrica da estação de tratamento de efluentes. O Capítulo 3 objetivou (i) estimar o potencial de produção de biogás em condições termofílicas a partir do PS, SS e MIX; (ii) calibrar o modelo de digestão anaeróbia desenvolvido por Rajendran et al. (2014); e (iii) determinar a melhor composição do lodo e a influência de adição de nitrogênio no sistema de digestão anaeróbia a partir de simulações numéricas. Foi identificado que (i) a máxima produção de metano foi atingida pelo lodo secundário em 30 dias (46.9 NmL CH4/g VS); (ii) o modelo de digestão anaeróbia foi aplicável para lodo de celulose kraft após ajustes; (iii) a melhor composição de lodo foi de 21.62% de carboidratos, 61,67% de lipídeos e 16.72% de proteínas. A adição de nitrogênio aumentou a produção de metano para o PS e o MIX, mas reduziu para o SS. Os Capítulos 4 e 5 foram desenvolvidos por estudantes intercambistas como parte do programa Living Lab Biobased Brazil. Os objetivos do Capítulo 4 foram ajustar o modelo de Rajendran et al. (2014) para a condição mesofílica e simular o uso do biogás em forma de eletricidade e calor. A partir da simulação foi possível produzir 88 GJ/d de calor e 148 kW de potência elétrica. Além disso, a partir do ajuste do modelo de Rajendran et al. (2014) para a condição mesofílica, foram propostas melhorias para o modelo. Por fim, o Capítulo 5 objetivou apresentar potenciais alternativas para o gerenciamento do lodo de celulose kraft pós-digestão anaeróbia, utilizando a ferramenta de Análise de Multi-Critério simplificada. A partir das alternativas avaliadas (aterro sanitário, aplicação no solo, compostagem, incineração, pirólise/gaseificação e produção de algas), a compostagem se apresentou como a melhor opção.
The kraft pulping process is energy intensive. Although the mill generates part of its own energy by burning the black liquor in the recovery boiler and wooden biomass in the biomass boiler, it still relies on additional electricity and fossil fuel sources. Due to an energy price increase, the pulp industry has been driven to optimize its energy efficiency and self-sufficiency. One attractive industrial opportunity is to produce biogas from sludge using the anaerobic digestion technology. Thus, the main objective of this dissertation was to evaluate the potential of biogas production from bleached kraft pulp mill primary and secondary sludges. The dissertation was structured in 5 Chapters written as scientific papers. Chapter 1 presented a literature review about kraft pulp mills, biogas production, and legislations related to the implantation of biodigesters. It was concluded that there are still very few studies related to the anaerobic digestion of kraft pulp mill sludges. Additionally, although Brazil has great potential for biogas production, the country still faces barriers related to political incentives. Chapter 2 aimed at (i) identifying the best substrate to inoculum ratio (2/1, 1/1, and 0.4 g VS substrate /g VS inoculum ); (ii) identifying the best inoculum type (UASB sludge and UASB sludge + cow dung); and (iii) estimating the potential of substituting the electricity demand of the mill’s effluent treatment plant (ETP) aeration system. The substrates used consisted of primary (PS) and secondary (SS) sludges, and the mixture (MIX) between PS and SS. The results showed that the SS presented the highest methane production, with an optimal ratio of 1 g VS substrate /g VS inoculum using UASB sludge as inoculum. Cow dung increased the methane production of the PS for S/I = 1/1, but pre-treatment of PS should be tested to increase the substrate biodegradability. Finally, the methane yield led to a potential substitution of 23% of the ETP electricity demand. Chapter 3 aimed to (i) estimate potential biogas production under thermophilic conditions for the same substrates; (ii) calibrate the anaerobic digestion model developed by Rajendran et al. (2014); and (iii) simulate the best sludge composition and the influence of nitrogen addition on anaerobic digestion system. It was found that the (i) the maximum methane yield was achieved with theix secondary sludge at 30 days (46.9 NmL CH4/g VS); (ii) the applied anaerobic digestion model was applicable for the kraft pulp mill sludge after minor adjustments; (iii) optimal sludge composition was found to be 21.62% carbohydrates, 61.67% lipids and 16.72% proteins. The addition of nitrogen increased the methane yield for PS and MIX, but decreased it for SS. Chapters 4 and 5 were the result of work developed by bachelor exchange students as part of the Living Lab Biobased Brazil Program. Chapter 4 aimed to adjust the Rajendran et al. (2014) model for mesophilic conditions and simulate biogas use in the form of electricity and heat. From the simulation, a potential heat production of 88 GJ/d and electric power of 148 kW was found. From Chapter 4, possibilities for improving the Rajendran et al. (2014) model were proposed. Finally, Chapter 5 aimed at giving an insight into the possible alternatives for managing the anaerobically digested kraft pulp mill sludge using a simplified Multi- Criteria Decision Analysis tool. From the analyzed alternatives (landfill, land application, composting, incineration, pyrolysis/gasification and algae production), composting appeared to be the most suitable alternative.
Rodriguez, Chiang Lourdes Maria. "Methane potential of sewage sludge to increase biogas production." Thesis, KTH, VA-teknik, Vatten, Avlopp och Avfall, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96294.
Full textBjörklund, Simon, and Niklas Öhman. "Biogas opportunities in Curitiba : Analysis of business potential for biogas production from municipal solid waste." Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211698.
Full textDen brasilianska staden Curitiba producerardagligen 2 500 ton MSW (municipal solid waste) som i dagsläget deponeras. Isyfte att hitta en mer hållbar lösning för avfallshantering ämnade denna studieundersöka potentialen för biogasproduktion via rötning genom att analyseragenomförbarheten av småskalig decentraliserad biogasproduktion samtcentraliserad produktion i kommersiell skala. En fältstudie genomfördes för attkartlägga specifika lokala omständigheter och samla in data genom intervjueroch litteratur. Olika metoder för insamling av organiskt avfall granskades ochalternativen för biogasproduktion utvärderades genom att jämföra de högstatillåtna investeringskostnaderna för ett positivt nettonuvärde av en framtidainvestering med uppskattade investeringskostnader från litteraturkällor.Småskalig decentraliserad biogasproduktion visade sig vara det bästaalternativet från ett ekonomiskt och socialt perspektiv. För centraliseradproduktion var resultaten tvetydiga men indikerade att en lönsam affärsmodellpotentiellt kunde utarbetas. Rötning av substrat med hög fuktighetshalt i en“floating-drum” reaktor eller en tub-formad reaktor bedöms vara bäst lämpat förbiogasproduktion i liten skala emedan ett kontinuerligt system för rötning avtorra substrat bedöms som det bästa alternativet för storskaligbiogasproduktion. Känslighetsanalysen visade att mängden insamlat organisktavfall samt priset på slutprodukterna hade störst påverkan på det ekonomiskautfallet. Studien påvisade även att en implementering av en rötningsanläggningskulle minska växthuspotentialen i avfallshanteringssystemet oavsett skala. Detrekommenderas att kommunen fortsätter med och utvecklar ett pilotprojekt iMercado Regional, samt undersöker möjligheterna för effektivare sophämtning ochsamlar mer specifika data om sammansättning och kvantitet för olika sopflöden. Arbetetutfördes som ett led i samarbetet mellan KTH, svenska Naturvårdsverket,Curitiba kommun och lokala universitet i Paraná, Brasilien.
Olsson, Alexander. "A Comparative Study of Swedish and Chinese Biogas Production with a Brief Economical Feasibility Analysis." Thesis, KTH, Skolan för kemivetenskap (CHE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-150785.
Full textDetta examensarbete i kemiteknik behandlar biogasproduktion i Kina. Examensarbetet är uppdelat i två delar. Den första delen innehåller en energipotential och nulägesanalys av biogas i Kina och en jämförelse med situationen i Sverige (kapitel 1). Biogas potentialen i Kina är 950-2180 TWh beroende på olika källor. Speciellt är potentialen från fiskarens 11 TWh. Del 1 omfattar även satsvisa utrötningsförsök där samrötning av majshalm och svingödsel sker med hjälp av substrat från Dajugezhuang i Tianjin. Experimenten utfördes vid Tianjin Academy of Environmental Science. Experimenten visar inte en signifikant minskning av COD vid samrötning av grisgödsel med halm och försöken är behäftade med osäkerhet. De bör därför genomföras igen efter de rekommendationer som ges i denna rapport. Det upptäcks att den ymp som används påverkar C:N-kvoten mycket. När samrötningsexperiment genomförs, ska en ymp som har en C:N-kvot nära den önskade för försöket användas. Detta beror på att den organiska belastningen måste hållas låg. Del 2 i detta examensarbete är en feasibility-analys och marknadsundersökning av biogas i Kina. En modell skapades i Excel, där ekonomiska data från biogasanläggningar i Kina används för att uppskatta resultatet att producera biogas i Kina. Modellen visar att det mest ekonomiska sättet att använda biogasen är att uppgradera den och injicera det till gasnätet. Detta beror på den lägre investeringskostnaden för en uppgraderingsanläggning jämfört med ett elkraftverk. Modellen använder el- och gaspriser från olika provinser i Kina. Guangdong är provinsen med det högsta elpriset och Ningxia provinsen med det lägsta elpriset. Gaspriset i Guangdong är också hög, men högst i Guangxi och Yunnan. Det lägsta priset på gas finns i Ningxia. Del 2 diskuterar också problem med den nuvarande situationen för biogasproducenter i Kina. Investeringsstöd från staten i stället för subventioner av produkterna har lett till en situation där Kina har över 30 miljoner biogasreaktorer, men mycket lågt utbyte i reaktorerna. Den nuvarande situationen innebär få incitament för försäljning av produkterna från rötningsprocessen, bio-gödsel, bio-metan, el och värme. Den nätanslutningsgräns som finns för elproducenterna på >500 kW, begränsar antalet nätanslutna anläggningar i Kina till mindre än 10 stycken. vii
Norr, Patrik. "Analysis and assessment of biogas production potential in Sweden for 2050." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-393916.
Full textTesfaye, Tefera Tadious. "Potential for biogas production fromslaughter houses residues in Bolivia : Systematic approach and solutions to problems related to biogas production at psychrophilic temperature." Thesis, KTH, Energi och klimatstudier, ECS, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48101.
Full textMezzullo, William G. "An interdisciplinary assessment of biogas production and the bioenergy potential within the South West of England." Thesis, University of Bath, 2010. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527139.
Full textErtem, Funda Cansu. "IMPROVING BIOGAS PRODUCTION BY ANAEROBIC DIGESTION OF DIFFERENT SUBSTRATES : Calculation of Potential Energy Outcomes." Thesis, Högskolan i Halmstad, Ekologi och miljövetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-15944.
Full textGranato, Eder Fonzar [UNESP]. "Análise de viabilidade técnica e econômica da biodigestão anaeróbia da vinhaça." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/141880.
Full textApproved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-07-19T20:46:25Z (GMT) No. of bitstreams: 1 granato_ef_dr_bot.pdf: 2663771 bytes, checksum: 91f29e8fd5aa752f16fc4d9ab7721195 (MD5)
Made available in DSpace on 2016-07-19T20:46:25Z (GMT). No. of bitstreams: 1 granato_ef_dr_bot.pdf: 2663771 bytes, checksum: 91f29e8fd5aa752f16fc4d9ab7721195 (MD5) Previous issue date: 2016-05-25
O Brasil produz anualmente 30 bilhões de litros de etanol de cana de açúcar com previsão do Ministério de Minas e Energia de atingir 36 bilhões de litros em 2024. A vinhaça é o resíduo líquido, rico em potássio e matéria orgânica que resulta da destilação do etanol, na proporção de 10 a 15 litros de vinhaça para cada litro de etanol. Disposto indevidamente, pode trazer sérios riscos para o ambiente devido ao alto potencial poluidor. Os estados de São Paulo, Paraná e Mato Grosso do Sul, possuem normas específicas sobre disposição desse resíduo, mas não atingem por completo o objetivo de controlar e mitigar os problemas, pois a disposição final da vinhaça se resume unicamente na fertirrigação sem qualquer outro tratamento. No presente trabalho, realizado no Laboratório de Biomassa do Departamento de Engenharia Rural da Faculdade de Ciências Agrárias e Veterinárias da UNESP de Jaboticabal, analisou-se a biodigestão anaeróbia da vinhaça, caracterizando-se a produção de biogás e a redução do potencial poluidor. Para tanto, foram efetuados estudos de viabilidade técnica da biodigestão anaeróbia da vinhaça analisando os parâmetros: neutralização do pH da vinhaça, utilização do reciclo e estabilização da temperatura da vinhaça. Para os três parâmetros citados foram registrados e analisados dados referentes a: produção de biogás (m3), composição do biogás (% de CH4 e CO2) e redução do potencial poluidor da vinhaça após biodigestão anaeróbia (DQO). No que diz respeito a produção do biogás, os resultados considerados relevantes foram na correção do pH (aumento de 97,5%) e no aquecimento do afluente (aumento de 79%). Em relação a composição do biogás, obteve-se, aumento de 9% de metano redução de 3,6% de dióxido de carbono quando se aquece o afluente. Quando se utiliza reciclo a redução de DQO aumentou em 50% e o aquecimento do afluente permitiu aumentou a redução em 62%, demonstrando a viabilidade técnica do presente estudo. Para se determinar a viabilidade econômica foram efetuados estudos referentes a: Demonstração do Fluxo de Caixa, Valor Presente Liquido, Taxa Interna de Retorno e Payback Descontado. Em relação ao Valor Presente Liquido, o resultado obtido foi de R$ 2.179.331,76, maior que zero. A Taxa Interna de Retorno foi de 8%, maior que 7,5% (Taxa Atrativa Mínima). O retorno do investimento pelo cálculo do Payback Descontado será em 5,54 anos, provando assim que o projeto é viável economicamente.
The Brazil annually produces 30 billion liters of ethanol from sugar cane with the Ministry of Mines and Energy forecast to reach 36 billion liters in 2024. The stillage is the liquid waste, rich in potassium and organic matter resulting from the distillation of ethanol in the proportion of 10 to 15 liters of vinasse per liter of ethanol. Willing improperly, can pose serious risks to the environment due to the high pollution potential. The states of São Paulo, Paraná and Mato Grosso do Sul, have specific rules on disposal of this waste, but do not reach completely in order to control and mitigate the problems because the final disposal of vinasse comes down solely in fertigation without any other treatment . In this study, conducted at the Laboratory of Biomass Department of Rural Engineering of the Faculty of Agricultural and Veterinary Sciences of Jaboticabal UNESP, analyzed the anaerobic digestion of vinasse, characterizing the production of biogas and reduce the pollution potential. Therefore, technical feasibility studies of anaerobic digestion of vinasse were made by analyzing the parameters: pH neutralization of vinasse, use of recycling and stabilization of vinasse temperature. For the three mentioned parameters were recorded and analyzed data for: biogas production (m3), biogas composition (% CH4 and CO2) and reduced pollution potential of vinasse after anaerobic digestion (COD). As regards the production of biogas, the results were considered significant at pH correction (increase of 97.5%) and heating the influent (79% increase). For biogas composition was obtained, an increase of 9% methane 3.6% reduction of carbon dioxide when heated affluent. When COD reduction using recycled increased by 50% and heating affluent allowed increased the reduction by 62%, demonstrating the technical feasibility of this study. To determine the economic feasibility studies were made regarding: Cash Flow Statement, Net Present Value, Internal Rate of Return and Discounted Payback. Regarding the Net Present Value, the result was of R$ 2,179,331.76, greater than zero. The internal rate of return was 8%, higher than 7.5% (rate Attractive Minimum). The return on investment by calculating the Discounted Payback will be 5.54 years, thus proving that the project is economically viable.
Books on the topic "Biogas production potential"
Rommer, Thomas E. World biofuels production potential. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textRice, Bernard. Potential for energy production from agricultural and forest biomass in Ireland. Dublin: Teagasc, 1997.
Find full textHelynen, Satu. Production and consumption potentials for bioenergy in Finland to the year 2010. Espoo [Finland]: Technical Research Centre of Finland, 1999.
Find full textMuller, M. S. Further characterization of CELSS wastes: A review of solid wastes present to support potential secondary biomass production. Kennedy Space Center, Fla: National Aeronautics and Space Administration, John F. Kennedy Space Center, 1996.
Find full textDiscover the production and uses of biogas: How 4 organic wastes are being successfully converted to biogas, thus providing the potential for energy savings and increased profits. Ottawa: Natural Resources Canada, 2002.
Find full textWillie, Buchanan, Bradford Billy N, Tennessee Valley Authority. Office of Agricultural and Chemical Development., and National Fertilizer Development Center (U.S.), eds. Fuel production potential of several agricultural crops. Muscle Shoals, Ala: Tennessee Valley Authority, National Fertilizer Development Center, Office of Agricultural and Chemical Development, 1986.
Find full textEthanol and biofuels: Production, standards and potential. New York: Nova Science Publishers, 2009.
Find full textP, Leland Wesley, ed. Ethanol and biofuels: Production, standards and potential. New York: Nova Science Publishers, 2009.
Find full textUnited States. Congress. Office of Technology Assessment., ed. Potential environmental impacts of bioenergy crop production. Washington, DC: Office of Technology Assessment, U.S. Congress, 1993.
Find full textAldon, E. F. Natural production potential of some Rio Puerco soils in New Mexico. 1988.
Find full textBook chapters on the topic "Biogas production potential"
Singh, Richa, Meenu Hans, Sachin Kumar, and Yogender Kumar Yadav. "Potential Feedstock for Sustainable Biogas Production and its Supply Chain Management." In Biogas Production, 147–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58827-4_8.
Full textSawale, Shaileshkumar, Deepak Patil, Chaitanya Joshi, Basavaraj Rachappanavar, Debadatta Mishra, and Aarohi Kulkarni. "Biogas Commercialization: Commercial Players, Key Business Drivers, Potential Market, and Fostering Investment." In Biogas Production, 343–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58827-4_16.
Full textSurroop, Dinesh, and Osman Dina Bégué. "Original Research: Investigating the Potential of Using Biogas in Cooking Stove in Rodrigues." In Biogas Production, 229–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118404089.ch9.
Full textDollhofer, Veronika, Sabine Marie Podmirseg, Tony Martin Callaghan, Gareth Wyn Griffith, and Kateřina Fliegerová. "Anaerobic Fungi and Their Potential for Biogas Production." In Biogas Science and Technology, 41–61. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21993-6_2.
Full textPottipati, Suryateja, K. D. Yadav, and A. S. Kalamdhad. "The Potential of Biogas Production from Water Hyacinth by Using Floating Drum Biogas Reactor." In Integrated Approaches Towards Solid Waste Management, 215–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70463-6_20.
Full textLourinho, G., P. S. D. Brito, and L. F. T. G. Rodrigues. "Experimental Biogas Production and Biomethane Potential of Swine Wastewater Among Different Production Stages." In Innovation, Engineering and Entrepreneurship, 675–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91334-6_92.
Full textKolchakov, Viktor, Vera Petrova, Totka Mitova, Plamen Ivanov, and Svetla Marinova. "Possibilities for Biogas Production from Waste—Potential, Barriers, and Legal Notices." In Lecture Notes in Energy, 181–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26950-4_8.
Full textDelaide, Boris, Hendrik Monsees, Amit Gross, and Simon Goddek. "Aerobic and Anaerobic Treatments for Aquaponic Sludge Reduction and Mineralisation." In Aquaponics Food Production Systems, 247–66. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_10.
Full textAbidi, Samira, Gmar BenSidhom, Sana Amdouni, Mohamed Hechmi Aissaoui, and Aïda Ben Hassen Trabelsi. "Evaluation of the Methanogenic Potential of Tunisian Vegetables and Fruit Wastes: Biogas Production and Characterizations." In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (2nd Edition), 1739–44. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51210-1_275.
Full textMontañez-Hernández, Lilia E., Inty Omar Hernández-De Lira, Gregorio Rafael-Galindo, María de Lourdes Froto Madariaga, and Nagamani Balagurusamy. "Sustainable Production of Biogas from Renewable Sources: Global Overview, Scale Up Opportunities and Potential Market Trends." In Sustainable Biotechnology- Enzymatic Resources of Renewable Energy, 325–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95480-6_13.
Full textConference papers on the topic "Biogas production potential"
Bielski, Stanislaw. "THE POTENTIAL FOR AGRICULTURAL BIOGAS PRODUCTION IN POLAND." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b41/s17.075.
Full textDubrovskis, Vilis, Imants Plume, and Indulis Straume. "Investigations of biogas production potential from grass hay pellets." In 17th International Scientific Conference Engineering for Rural Development. Latvia University of Agriculture, 2018. http://dx.doi.org/10.22616/erdev2018.17.n413.
Full textUlusoy, Yahya, and Ayse Hilal Ulukardesler. "Biogas production potential of olive-mill wastes in Turkey." In 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2017. http://dx.doi.org/10.1109/icrera.2017.8191143.
Full textKhelidj, B., B. Abderezzak, and A. Kellaci. "Biogas production potential in Algeria: Waste to energy opportunities." In 2012 International Conference on Renewable Energies for Developing Countries (REDEC). IEEE, 2012. http://dx.doi.org/10.1109/redec.2012.6416703.
Full textKhotmanee, Saran, and Unnat Pinsopon. "A Study on Biogas Production Potential in Thailand 2019." In 2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST). IEEE, 2021. http://dx.doi.org/10.1109/iceast52143.2021.9426287.
Full textEćim Đurić, Olivera, Dragan Kreculj, Danijela Živojinović, and Miloš Vorkapić. "Potential of agricultural biomass in biogas production systems in the Republic of Serbia." In 8th International Conference on Renewable Electrical Power Sources. SMEITS, 2020. http://dx.doi.org/10.24094/mkoiee.020.8.1.63.
Full textQiuxia, Wang, Xu Rui, Li Jianchang, Duan Huanyun, Yuan Yage, and Han Jiahong. "One study on biogas production potential character of coffee husks." In 2013 International Conference on Materials for Renewable Energy and Environment (ICMREE). IEEE, 2013. http://dx.doi.org/10.1109/icmree.2013.6893644.
Full textWalter, Gary Robert, Roland Benke, and David Pickett. "Potential Radon Emissions Due to Biogas Generation at TENORM Land Disposal Sites." In SPE/EPA/DOE Exploration and Production Environmental Conference. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/93934-ms.
Full textVargas-Salgado, Carlos, Jesús Aguila-León, Cristian Chiñas-Palacios, and Lina Montuori. "Potential of landfill biogas production for power generation in the Valencian Region (Spain)." In CARPE Conference 2019: Horizon Europe and beyond. Valencia: Universitat Politècnica València, 2019. http://dx.doi.org/10.4995/carpe2019.2019.10201.
Full textRUSANOWSKA, Paulina, Magda DUDEK, Marcin ZIELIŃSKI, and Marcin DĘBOWSKI. "BIOGAS POTENTIAL OF DIGESTATE AFTER FERMENTATION OF SIDA HERMAPHRODITA SILAGE." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.194.
Full textReports on the topic "Biogas production potential"
Charles Sink, Chugachmiut, and EERC Keeryanne Leroux. The Potential for Biomass District Energy Production in Port Graham, Alaska. Office of Scientific and Technical Information (OSTI), May 2008. http://dx.doi.org/10.2172/927962.
Full textClippinger, Jennifer N., and Ryan E. Davis. Techno-Economic Analysis for the Production of Algal Biomass via Closed Photobioreactors: Future Cost Potential Evaluated Across a Range of Cultivation System Designs. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1566806.
Full text