Academic literature on the topic 'Bioinformatic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bioinformatic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bioinformatic"
Bottomley, S. "Bioinformatics: guide for evaluating bioinformatic software." Drug Discovery Today 4, no. 5 (May 1, 1999): 240–43. http://dx.doi.org/10.1016/s1359-6446(99)01352-5.
Full textMoreews, François, Olivier Sallou, Hervé Ménager, Yvan Le bras, Cyril Monjeaud, Christophe Blanchet, and Olivier Collin. "BioShaDock: a community driven bioinformatics shared Docker-based tools registry." F1000Research 4 (December 14, 2015): 1443. http://dx.doi.org/10.12688/f1000research.7536.1.
Full textKim, Min Cheol, Jaclyn M. Winter, Reiko Cullum, Alexander J. Smith, and William Fenical. "Expanding the Utility of Bioinformatic Data for the Full Stereostructural Assignments of Marinolides A and B, 24- and 26-Membered Macrolactones Produced by a Chemically Exceptional Marine-Derived Bacterium." Marine Drugs 21, no. 6 (June 20, 2023): 367. http://dx.doi.org/10.3390/md21060367.
Full textBrazas, M. D., J. T. Yamada, and B. F. F. Ouellette. "Evolution in bioinformatic resources: 2009 update on the Bioinformatics Links Directory." Nucleic Acids Research 37, Web Server (June 15, 2009): W3—W5. http://dx.doi.org/10.1093/nar/gkp531.
Full textSoRelle, Jeffrey A., Megan Wachsmann, and Brandi L. Cantarel. "Assembling and Validating Bioinformatic Pipelines for Next-Generation Sequencing Clinical Assays." Archives of Pathology & Laboratory Medicine 144, no. 9 (February 11, 2020): 1118–30. http://dx.doi.org/10.5858/arpa.2019-0476-ra.
Full textGarcía-García, Natalia, Javier Tamames, and Fernando Puente-Sánchez. "M&Ms: a versatile software for building microbial mock communities." Bioinformatics 38, no. 7 (January 12, 2022): 2057–59. http://dx.doi.org/10.1093/bioinformatics/btab882.
Full textHsu, Pei-Chun, Evaristus Nwulia, and Akira Sawa. "Using Bioinformatic Tools." American Journal of Psychiatry 166, no. 8 (August 2009): 854. http://dx.doi.org/10.1176/appi.ajp.2009.09060908.
Full textChen, Runsheng. "On Bioinformatic Resources." Genomics, Proteomics & Bioinformatics 13, no. 1 (February 2015): 1–3. http://dx.doi.org/10.1016/j.gpb.2015.02.002.
Full textMshvidobadze, Tinatin. "Bioinformatics as Emerging Tool and Pipeline Frameworks." Science Progress and Research 1, no. 4 (October 23, 2021): 411–15. http://dx.doi.org/10.52152/spr/2021.162.
Full textChen, Ray, Hon Wong, and Brendan Burns. "New Approaches to Detect Biosynthetic Gene Clusters in the Environment." Medicines 6, no. 1 (February 25, 2019): 32. http://dx.doi.org/10.3390/medicines6010032.
Full textDissertations / Theses on the topic "Bioinformatic"
Hedlund, Joel. "Bioinformatic protein family characterisation." Doctoral thesis, Linköpings universitet, Bioinformatik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-61754.
Full textKallberg, Yvonne. "Bioinformatic methods in protein characterization /." Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-370-8/.
Full textLi, Yvonne Yiyuan. "Bioinformatic approaches to drug repositioning." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/39934.
Full textWeinstein, Earl G. 1974. "MicroRNA cloning and bioinformatic analysis." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8390.
Full textIncludes bibliographical references.
Part I. Two gene-regulatory noncoding RNAs (ncRNAs), let-7 RNA and lin-4 RNA, were previously discovered in the C. elegans genome. The let-7 gene is conserved across a wide range of genomes, suggesting that these ncRNAs represent a wider class of gene-regulatory RNAs. Both lin-4 and let-7 RNAs are generated from stem-loop precursor RNAs, and share a common biochemical signature, namely 5'-terminal phosphate and 3'-terminal hydroxyl groups. We refer to ncRNAs that share the characteristic size, biochemical signature, and precursor structures of let-7 and lin-4 as microRNAs (miRNAs). The size of this class of genes, and its prevalence in other genomes, are unknown. Therefore, we developed an experimental and bioinformatics strategy to identify novel miRNA genes. We discovered a total of 75 miRNA genes in the C. elegans genome, and orthologues for a majority of these were computationally identified in the C. briggsae, D. melanogaster or H. sapiens genomes. Northern analysis was used to confirm and analyze the expression of these miRNAs. The data set has implications for understanding miRNA gene regulation, miRNA processing, and regulation of miRNA genes. Part II. Directed molecular evolution has previously been applied to generate RNAs with novel structures and functions. This method works because nucleic acids can be selected, randomized, amplified and characterized using polymerase chain reaction (PCR)-based methods. Here we present a novel method for extending directed molecular evolution to the realm of peptide selections by linking a peptide to its encoding mRNA.
(cont.) A proof of principle selection for two different peptides indicates that this tRNA should prove useful in discovering more complex protein molecules using directed molecular evolution.
by Earl G. Weinstein.
Ph.D.
Leonardi, Emanuela. "Bioinformatic Analysis of Protein Mutations." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3426280.
Full textAlterazioni genetiche sono state identificate per molte malattie di natura genetica, ma in molti casi i meccanismi molecolari che contribuiscono all’insorgere della malattia non sono ancora chiari. Lo studio degli effetti delle mutazioni a livello della proteina permette di chiarire i processi biologici coinvolti nella malattia e il ruolo della proteina in essa. La bioinformatica può aiutare a affrontare questo problema rappresentando il punto di connessione tra diverse discipline quali la clinica, la genetica, la biologia strutturale e la biochimica. In questa tesi ho impiegato un approccio computazionale per affrontare l’analisi di alcuni esempi di proteine di interesse biomedico, integrando diverse risorse di dati e indirizzando la ricerca sperimentale e clinica. Strutture proteiche determinate sperimentalmente o mediante il modelling molecolare sono state utilizzate come base per determinare la relazione tra struttura e funzione, essenziale per ottenere informazioni sulla correlazione genotipo-fenotipo. Le proteine prese in esame sono state inoltre analizzate nel loro contesto, considerando le interazioni che avvengono con altre proteine o ligandi nei diversi compartimenti cellulari. I risultati dell’analisi bioinformatica sono stati poi utilizzati per formulare ipotesi funzionali che in alcuni casi sono state verificate e confermate sperimentalmente da altri gruppi di ricerca. Le mutazioni identificate nei geni codificanti per le proteine in esame sono state valutate per il loro impatto sulla struttura e funzione della proteina utilizzando numerosi metodi di predizione disponibili online. Le diverse applicazioni descritte in questa tesi hanno fornito l’idea per lo sviluppo di nuovi approcci computazionali per lo caratterizzazione strutturale e funzionale di proteine e dei loro mutanti. Si è visto che la predizione migliora utilizzando un ensemble dei diversi metodi di predizione disponibili. Inoltre, per la predizione degli effetti di mutazioni è stato ideato un nuovo approccio computazionale che utilizza le reti di interazione tra residui per rappresentare la struttura proteica. Questi metodi sono stati utilizzati anche nell’analisi di dati genomici originati da nuove tecnologie di sequenziamento. Questo ambito necessita di nuove strategie di indagine per l’individuazione di poche varianti causative in un’enorme quantità di varianti identificate di dubbio significato. A questo scopo viene proposta una strategia di analisi che utilizza informazioni derivanti dalle reti di interazioni proteiche. I nuovi approcci formulati in questa tesi sono stati applicati e valutati ad un nuovo esperimento internazionale, chiamato Critical Assessment of Genome Interpretation (CAGI), fornendo in alcuni casi ottimi risultati
Bertoldi, Loris. "Bioinformatics for personal genomics: development and application of bioinformatic procedures for the analysis of genomic data." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3421950.
Full textNell’ultimo decennio, l’enorme diminuzione del costo del sequenziamento dovuto allo sviluppo di tecnologie ad alto rendimento ha completamente rivoluzionato il modo di approcciare i problemi genetici. In particolare, il sequenziamento dell’intero esoma e dell’intero genoma stanno contribuendo ad un progresso straordinario nello studio delle varianti genetiche umane, aprendo nuove prospettive nella medicina personalizzata. Essendo un campo relativamente nuovo e in rapido sviluppo, strumenti appropriati e conoscenze specializzate sono richieste per un’efficiente produzione e analisi dei dati. Per rimanere al passo con i tempi, nel 2014, l’Università degli Studi di Padova ha finanziato il progetto strategico BioInfoGen con l’obiettivo di sviluppare tecnologie e competenze nella bioinformatica e nella biologia molecolare applicate alla genomica personalizzata. Lo scopo del mio dottorato è stato quello di contribuire a questa sfida, implementando una serie di strumenti innovativi, al fine di applicarli per investigare e possibilmente risolvere i casi studio inclusi all’interno del progetto. Inizialmente ho sviluppato una pipeline per analizzare i dati Illumina, capace di eseguire in sequenza tutti i processi necessari per passare dai dati grezzi alla scoperta delle varianti sia germinali che somatiche. Le prestazioni del sistema sono state testate mediante controlli interni e tramite la sua applicazione su un gruppo di pazienti affetti da tumore gastrico, ottenendo risultati interessanti. Dopo essere state chiamate, le varianti devono essere annotate al fine di definire alcune loro proprietà come la posizione a livello del trascritto e della proteina, l’impatto sulla sequenza proteica, la patogenicità, ecc. Poiché la maggior parte degli annotatori disponibili presentavano errori sistematici che causavano una bassa coerenza nell’annotazione finale, ho implementato VarPred, un nuovo strumento per l’annotazione delle varianti, che garantisce la migliore accuratezza (>99%) comparato con lo stato dell’arte, mostrando allo stesso tempo buoni tempi di esecuzione. Per facilitare l’utilizzo di VarPred, ho sviluppato un’interfaccia web molto intuitiva, che permette non solo la visualizzazione grafica dei risultati, ma anche una semplice strategia di filtraggio. Inoltre, per un’efficace prioritizzazione mediata dall’utente delle varianti umane, ho sviluppato QueryOR, una piattaforma web adatta alla ricerca all’interno dei geni causativi, ma utile anche per trovare nuove associazioni gene-malattia. QueryOR combina svariate caratteristiche innovative che lo rendono comprensivo, flessibile e facile da usare. La prioritizzazione è raggiunta tramite un processo di selezione positiva che fa emergere le varianti maggiormente significative, piuttosto che filtrare quelle che non soddisfano i criteri imposti. QueryOR è stato usato per analizzare i due casi studio inclusi all’interno del progetto BioInfoGen. In particolare, ha permesso di scoprire le varianti causative dei pazienti affetti da malattie da accumulo lisosomiale, evidenziando inoltre l’efficacia del pannello di sequenziamento sviluppato. Dall’altro lato invece QueryOR ha semplificato l’individuazione del gene LRP2 come possibile candidato per spiegare i soggetti con un fenotipo simile alla malattia di Dent, ma senza alcuna mutazione nei due geni precedentemente descritti come causativi, CLCN5 e OCRL. Come corollario finale, è stata effettuata un’analisi estensiva su varianti esomiche ricorrenti, mostrando come la loro origine possa essere principalmente spiegata da imprecisioni nel genoma di riferimento, tra cui regioni mal assemblate e basi non corrette, piuttosto che da errori piattaforma-specifici.
Markstedt, Olof. "Kubernetes as an approach for solving bioinformatic problems." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330217.
Full textHull, Duncan. "Semantic matching of bioinformatic web services." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497578.
Full textCova, Marta Alexandra Mendonça Nóbrega. "Bioinformatic analysis of the neuronal phosphoproteome." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11623.
Full textA fosforilação anormal de proteínas é uma das características chave da Doença de Alzheimer (DA) que pode estar envolvida tanto na patogénese como na progressão da doença. A fosforilação reversível de proteínas representa um importante mecanismo regulador que envolve a atividade de fosfoproteínas fosfatases (FPF) e proteínas cinases (PC). Um desequilíbrio intracelular entre a actividade de FPF e PC pode alterar a atividade, localização subcelular e interacções de proteínas, contribuindo para a desregulação da função e sinalização neuronal e, consequentemente para a neurodegeneração. Assim, o estudo do fosfoproteoma neuronal da DA tornase relevante tanto do ponto de vista fisiológico como patológico. Culturas primárias corticais foram expostas ao ácido ocadáico (AO, um inibidor de PPP) ou ao péptido β amilóide (Aβ) para mimetizar as condições da DA. Os lisados celulares foram aplicados numa coluna de afinidade para fosfoproteínas. As frações enriquecidas em fosfoproteínas foram analisadas por espetrometria de massa tendo sido desenvolvido um script em linguagem python (http://sourceforge.net/projects/protdb/) para análise das proteínas identificadas. Os resultados provenientes das condições Controlo vs AO indicam que o tratamento com este inibidor de FPF leva a um aumento do número de fosfoproteínas (174 vs 242 proteínas totais e 32 vs 100 proteínas exclusivas). Os resultados do tratamento com Aβ indicam uma alteração qualitativa do fosfoproteoma neuronal (174 vs 166 proteínas totais) com um número considerável de proteínas exclusivas (42 vs 34 proteínas exclusivas). Subsequentemente, para a obtenção de informação detalhada e caracterização das proteínas identificadas em cada condição, foi realizada uma análise exploratória das fosfoproteínas organizando-as por classe proteica, processos biológicos, localização subcelular e funções moleculares. Os tratamentos com AO e Aβ levam a alterações em proteínas envolvidas em processos celulares que se encontram comprometidos na DA, tais como a actividade das PC e FPF, degradação proteica, stress oxidativo, folding proteico, dinâmica do citoesqueleto, síntese proteica e apoptose. A caracterização do fosfoproteoma neuronal da DA pode revelar ou elucidar os mecanismos moleculares subjacentes à transdução de sinais anormal associada com a patogénese da doença. A análise das fosfoproteínas exclusivas poderá, também, contribuir para a identificação de potenciais novos biomarcadores ou alvos terapêuticos para a DA.
Abnormal protein phosphorylation is a characteristic hallmark of Alzheimer’s disease (AD) and may be implicated both in pathogenesis or disease progression. Reversible protein phosphorylation represents a key regulatory mechanism involving the activity of protein phosphatases (PPP) and protein kinases (PK). Imbalanced PPP and PK activity can alter protein action, subcellular localization and protein interactions, thus contributing to abnormal neuronal function and signaling and consequently to neurodegeneration. Hence, the study of the AD neuronal phosphoproteome is of physiological and pathological relevance. Primary cortical cultures were exposed to okadaic acid (OA, a PPP inhibitor) or amyloid-β peptide (Aβ), in order to mimic AD conditions. Cell lysates were applied to a phosphoprotein affinity column and phosphoprotein enriched fractions analyzed by mass spectrometry. A protein database management framework (http://sourceforge.net/projects/protdb/) was set up allowing for the development of a script to analyze the identified proteins. Data from Control vs OA conditions indicates that OA treatment leads to an increase in phosphoproteins (174 vs 242 proteins and 32 vs 100 exclusive proteins). Data indicates that Aβ treatment leads to a shift in neuronal phosphoproteome pool (174 vs 166 proteins) with noteworthy alterations in the exclusive neurophosphoproteome (42 vs 34 exclusive proteins). Subsequently, analysis of the protein classes, biological processes, subcellular localization and molecular functions allowed for detailed information regarding the proteins obtained in the different groups. Upon treatments an alteration in the proteins involved in critical processes impaired in AD such as PK and PPP activities, protein degradation, oxidative stress, protein folding, cytoskeleton network dynamics, protein synthesis and apoptosis was observed. The characterization of AD neuronal phosphoproteome may reveal or elucidate the molecular mechanisms underlying abnormal signal transduction associated with AD pathogenesis. Further, by analyzing the pool of exclusive proteins, this work may also contribute to identify potential novel biomarker candidates or AD targets for therapeutic intervention.
Atkinson, Samantha Nicole. "Bioinformatic assessment of disrupted microbial communities." Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/6696.
Full textBooks on the topic "Bioinformatic"
1950-, Tsigelny Igor F., ed. Protein structure prediction: Bioinformatic approach. La Jolla, Calif: International University Line, 2002.
Find full textXia, Yinglin, and Jun Sun. Bioinformatic and Statistical Analysis of Microbiome Data. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21391-5.
Full textRoy, Kunal, ed. Multi-Target Drug Design Using Chem-Bioinformatic Approaches. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8733-7.
Full textGorodkin, Jan, and Walter L. Ruzzo, eds. RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-709-9.
Full textBock, Gregory, and Jamie Goode, eds. Immunoinformatics: Bioinformatic Strategies for Better Understanding of Immune Function. Chichester, UK: John Wiley & Sons, Ltd, 2003. http://dx.doi.org/10.1002/0470090766.
Full textRNA sequence, structure, and function: Computational and bioinformatic methods. New York: Humana Press, 2014.
Find full textMcMeekin, Andrew. The formation of bioinformatic knowledge markets: An 'economies of knowledge' approach. Manchester: Centre for Research on Innovation and Competition, 2002.
Find full textIgnacimuthu, S. Basic bioinformatics. Harrow, U.K: Alpha Science International, 2005.
Find full textJana, Sperschneider, and Scheubert Lena, eds. Bioinformatics: Problem solving paradigms. Berlin: Springer, 2008.
Find full textAndrew, French, and Westhead David R, eds. Bioinformatics. 2nd ed. Milton Park, Abingdon [Oxon]: Taylor & Francis, 2010.
Find full textBook chapters on the topic "Bioinformatic"
Ötleş, Semih, Bahar Bakar, and Burcu Kaplan Türköz. "Bioinformatic Analysis." In Bioactive Peptides from Food, 321–46. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003106524-20.
Full textGarfias-Gallegos, Diego, Claudia Zirión-Martínez, Edder D. Bustos-Díaz, Tania Vanessa Arellano-Fernández, José Abel Lovaco-Flores, Aarón Espinosa-Jaime, J. Abraham Avelar-Rivas, and Nelly Sélem-Mójica. "Metagenomics Bioinformatic Pipeline." In Methods in Molecular Biology, 153–79. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2429-6_10.
Full textDailey, Allyson L. "Metabolomic Bioinformatic Analysis." In Methods in Molecular Biology, 341–52. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6990-6_22.
Full textMeshram, B. B. "Building Bioinformatic Database Systems." In Bioinformatics: Applications in Life and Environmental Sciences, 44–61. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8880-3_6.
Full textHolstein, Tanja, and Thilo Muth. "Bioinformatic Workflows for Metaproteomics." In Methods in Molecular Biology, 187–213. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3910-8_16.
Full textBilal, A. Mir, H. Mir Sajjad, Inho Choi, and Yoon-Bo Shim. "Bioinformatic Techniques on Marine Genomics." In Hb25_Springer Handbook of Marine Biotechnology, 295–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-53971-8_10.
Full textAdams, Josephine C., and Juergen Engel. "Bioinformatic Analysis of Adhesion Proteins." In Adhesion Protein Protocols, 147–71. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-353-0_12.
Full textDe Filippis, L. F. "Bioinformatic Tools in Crop Improvement." In Crop Improvement, 49–122. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-7028-1_2.
Full textZhang, Zhaiyi, and Stefan Stamm. "Bioinformatic Analysis of Splicing Events." In Alternative pre-mRNA Splicing, 566–73. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527636778.ch52.
Full textFernández, José M., and Alfonso Valencia. "Bioinformatic Software Developments in Spain." In Bioinformatics for Personalized Medicine, 108–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28062-7_13.
Full textConference papers on the topic "Bioinformatic"
Hiew, Hong Liang, Matthew Bellgard, Tuan D. Pham, and Xiaobo Zhou. "A Bioinformatics Reference Model: Towards a Framework for Developing and Organising Bioinformatic Resources." In COMPUTATIONAL MODELS FOR LIFE SCIENCES/CMLS '07. AIP, 2007. http://dx.doi.org/10.1063/1.2816640.
Full textFando, Roman. "The history of bioinformatic in Russia." In 2020 International Conference Engineering Technologies and Computer Science (EnT). IEEE, 2020. http://dx.doi.org/10.1109/ent48576.2020.00022.
Full textGrewal, H. K., Parvinder Sandhu, and Manpreet Singh. "A Bioinformatic Approach to Genetic Diversity." In 2006 International Conference on Emerging Technologies. IEEE, 2006. http://dx.doi.org/10.1109/icet.2006.335940.
Full textHavre, S. L., B. J. Webb-Robertson, A. Shah, C. Posse, B. Gopalan, and F. J. Brockma. "Bioinformatic insights from metagenomics through visualization." In 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05). IEEE, 2005. http://dx.doi.org/10.1109/csb.2005.19.
Full textWang, Xiran, Jiangang He, and Haoru Tang. "Bioinformatic Analysis of Strawberry Rbsc Gene." In 2018 International Workshop on Bioinformatics, Biochemistry, Biomedical Sciences (BBBS 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/bbbs-18.2018.33.
Full textWang, Xiran, Jiangang He, and Haoru Tang. "Bioinformatic Analysis of Strawberry PGR5 Gene." In 2018 International Workshop on Bioinformatics, Biochemistry, Biomedical Sciences (BBBS 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/bbbs-18.2018.49.
Full textWang, Xiran, Jiangang He, and Haoru Tang. "Bioinformatic Analysis of Strawberry PTOX Gene." In 2018 International Workshop on Bioinformatics, Biochemistry, Biomedical Sciences (BBBS 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/bbbs-18.2018.7.
Full textFang, Hao, Cheng Shi, and Chi-Hua Chen. "BioExpDNN: Bioinformatic Explainable Deep Neural Network." In 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2020. http://dx.doi.org/10.1109/bibm49941.2020.9313113.
Full textSeo, Jiwon. "Datalog Extensions for Bioinformatic Data Analysis." In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8512571.
Full textShchyogolev, S. Yu, G. L. Burygin, and M. G. Pyatibratov. "Prokaryotic cell surface biopolymers: bioinformatic analysis." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.221.
Full textReports on the topic "Bioinformatic"
Robinson, Aaron. Fungal Research at LANL and Bioinformatic Resources. Office of Scientific and Technical Information (OSTI), October 2023. http://dx.doi.org/10.2172/2202600.
Full textRodriguez Muxica, Natalia. Open configuration options Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources. Inter-American Development Bank, February 2022. http://dx.doi.org/10.18235/0003982.
Full textLawrence, Charles E., and Lee Ann McCue. Development of Bioinformatic and Experimental Technologies for Identification of Prokaryotic Regulatory Networks. Office of Scientific and Technical Information (OSTI), July 2008. http://dx.doi.org/10.2172/935264.
Full textBeckstrom-Sternberg, Stephen. Bioinformatic Tools for Metagenomic Analysis of Pathogen Backgrounds and Human Microbial Communities. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada581677.
Full textZhang, Dan, Jingting Liu, Mengxia zheng, Chunyan Meng, and Jianhua Liao. Prognostic and Clinicopathological significance of CD155 Expression in Cancer Patients: A Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, September 2022. http://dx.doi.org/10.37766/inplasy2022.9.0087.
Full textDavenport, Karen Walston, Chien-Chi Lo, Po-E. Li, Migun Shakya, and Patrick Sam Guy Chain. EDGE Bioinformatics. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1503175.
Full textBerube, Paul M., Scott M. Gifford, Bonnie Hurwitz, Bethany Jenkins, Adrian Marchetti, and Alyson E. Santoro. Roadmap Towards Communitywide Intercalibration and Standardization of Ocean Nucleic Acids ‘Omics Measurements. Woods Hole Oceanographic Institution, March 2022. http://dx.doi.org/10.1575/1912/28054.
Full textCarr, Peter A., Darrell O. Ricke, and Anna Shcherbina. Bioinformatics Challenge Days. Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada591640.
Full textGary J. Olsen. Bioinformatics for Genome Analysis. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/956994.
Full textHolm, Bruce. NYS Center of Excellence in Bioinformatics. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada441201.
Full text