Dissertations / Theses on the topic 'Bioinformatic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Bioinformatic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hedlund, Joel. "Bioinformatic protein family characterisation." Doctoral thesis, Linköpings universitet, Bioinformatik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-61754.
Full textKallberg, Yvonne. "Bioinformatic methods in protein characterization /." Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-370-8/.
Full textLi, Yvonne Yiyuan. "Bioinformatic approaches to drug repositioning." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/39934.
Full textWeinstein, Earl G. 1974. "MicroRNA cloning and bioinformatic analysis." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8390.
Full textIncludes bibliographical references.
Part I. Two gene-regulatory noncoding RNAs (ncRNAs), let-7 RNA and lin-4 RNA, were previously discovered in the C. elegans genome. The let-7 gene is conserved across a wide range of genomes, suggesting that these ncRNAs represent a wider class of gene-regulatory RNAs. Both lin-4 and let-7 RNAs are generated from stem-loop precursor RNAs, and share a common biochemical signature, namely 5'-terminal phosphate and 3'-terminal hydroxyl groups. We refer to ncRNAs that share the characteristic size, biochemical signature, and precursor structures of let-7 and lin-4 as microRNAs (miRNAs). The size of this class of genes, and its prevalence in other genomes, are unknown. Therefore, we developed an experimental and bioinformatics strategy to identify novel miRNA genes. We discovered a total of 75 miRNA genes in the C. elegans genome, and orthologues for a majority of these were computationally identified in the C. briggsae, D. melanogaster or H. sapiens genomes. Northern analysis was used to confirm and analyze the expression of these miRNAs. The data set has implications for understanding miRNA gene regulation, miRNA processing, and regulation of miRNA genes. Part II. Directed molecular evolution has previously been applied to generate RNAs with novel structures and functions. This method works because nucleic acids can be selected, randomized, amplified and characterized using polymerase chain reaction (PCR)-based methods. Here we present a novel method for extending directed molecular evolution to the realm of peptide selections by linking a peptide to its encoding mRNA.
(cont.) A proof of principle selection for two different peptides indicates that this tRNA should prove useful in discovering more complex protein molecules using directed molecular evolution.
by Earl G. Weinstein.
Ph.D.
Leonardi, Emanuela. "Bioinformatic Analysis of Protein Mutations." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3426280.
Full textAlterazioni genetiche sono state identificate per molte malattie di natura genetica, ma in molti casi i meccanismi molecolari che contribuiscono all’insorgere della malattia non sono ancora chiari. Lo studio degli effetti delle mutazioni a livello della proteina permette di chiarire i processi biologici coinvolti nella malattia e il ruolo della proteina in essa. La bioinformatica può aiutare a affrontare questo problema rappresentando il punto di connessione tra diverse discipline quali la clinica, la genetica, la biologia strutturale e la biochimica. In questa tesi ho impiegato un approccio computazionale per affrontare l’analisi di alcuni esempi di proteine di interesse biomedico, integrando diverse risorse di dati e indirizzando la ricerca sperimentale e clinica. Strutture proteiche determinate sperimentalmente o mediante il modelling molecolare sono state utilizzate come base per determinare la relazione tra struttura e funzione, essenziale per ottenere informazioni sulla correlazione genotipo-fenotipo. Le proteine prese in esame sono state inoltre analizzate nel loro contesto, considerando le interazioni che avvengono con altre proteine o ligandi nei diversi compartimenti cellulari. I risultati dell’analisi bioinformatica sono stati poi utilizzati per formulare ipotesi funzionali che in alcuni casi sono state verificate e confermate sperimentalmente da altri gruppi di ricerca. Le mutazioni identificate nei geni codificanti per le proteine in esame sono state valutate per il loro impatto sulla struttura e funzione della proteina utilizzando numerosi metodi di predizione disponibili online. Le diverse applicazioni descritte in questa tesi hanno fornito l’idea per lo sviluppo di nuovi approcci computazionali per lo caratterizzazione strutturale e funzionale di proteine e dei loro mutanti. Si è visto che la predizione migliora utilizzando un ensemble dei diversi metodi di predizione disponibili. Inoltre, per la predizione degli effetti di mutazioni è stato ideato un nuovo approccio computazionale che utilizza le reti di interazione tra residui per rappresentare la struttura proteica. Questi metodi sono stati utilizzati anche nell’analisi di dati genomici originati da nuove tecnologie di sequenziamento. Questo ambito necessita di nuove strategie di indagine per l’individuazione di poche varianti causative in un’enorme quantità di varianti identificate di dubbio significato. A questo scopo viene proposta una strategia di analisi che utilizza informazioni derivanti dalle reti di interazioni proteiche. I nuovi approcci formulati in questa tesi sono stati applicati e valutati ad un nuovo esperimento internazionale, chiamato Critical Assessment of Genome Interpretation (CAGI), fornendo in alcuni casi ottimi risultati
Bertoldi, Loris. "Bioinformatics for personal genomics: development and application of bioinformatic procedures for the analysis of genomic data." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3421950.
Full textNell’ultimo decennio, l’enorme diminuzione del costo del sequenziamento dovuto allo sviluppo di tecnologie ad alto rendimento ha completamente rivoluzionato il modo di approcciare i problemi genetici. In particolare, il sequenziamento dell’intero esoma e dell’intero genoma stanno contribuendo ad un progresso straordinario nello studio delle varianti genetiche umane, aprendo nuove prospettive nella medicina personalizzata. Essendo un campo relativamente nuovo e in rapido sviluppo, strumenti appropriati e conoscenze specializzate sono richieste per un’efficiente produzione e analisi dei dati. Per rimanere al passo con i tempi, nel 2014, l’Università degli Studi di Padova ha finanziato il progetto strategico BioInfoGen con l’obiettivo di sviluppare tecnologie e competenze nella bioinformatica e nella biologia molecolare applicate alla genomica personalizzata. Lo scopo del mio dottorato è stato quello di contribuire a questa sfida, implementando una serie di strumenti innovativi, al fine di applicarli per investigare e possibilmente risolvere i casi studio inclusi all’interno del progetto. Inizialmente ho sviluppato una pipeline per analizzare i dati Illumina, capace di eseguire in sequenza tutti i processi necessari per passare dai dati grezzi alla scoperta delle varianti sia germinali che somatiche. Le prestazioni del sistema sono state testate mediante controlli interni e tramite la sua applicazione su un gruppo di pazienti affetti da tumore gastrico, ottenendo risultati interessanti. Dopo essere state chiamate, le varianti devono essere annotate al fine di definire alcune loro proprietà come la posizione a livello del trascritto e della proteina, l’impatto sulla sequenza proteica, la patogenicità, ecc. Poiché la maggior parte degli annotatori disponibili presentavano errori sistematici che causavano una bassa coerenza nell’annotazione finale, ho implementato VarPred, un nuovo strumento per l’annotazione delle varianti, che garantisce la migliore accuratezza (>99%) comparato con lo stato dell’arte, mostrando allo stesso tempo buoni tempi di esecuzione. Per facilitare l’utilizzo di VarPred, ho sviluppato un’interfaccia web molto intuitiva, che permette non solo la visualizzazione grafica dei risultati, ma anche una semplice strategia di filtraggio. Inoltre, per un’efficace prioritizzazione mediata dall’utente delle varianti umane, ho sviluppato QueryOR, una piattaforma web adatta alla ricerca all’interno dei geni causativi, ma utile anche per trovare nuove associazioni gene-malattia. QueryOR combina svariate caratteristiche innovative che lo rendono comprensivo, flessibile e facile da usare. La prioritizzazione è raggiunta tramite un processo di selezione positiva che fa emergere le varianti maggiormente significative, piuttosto che filtrare quelle che non soddisfano i criteri imposti. QueryOR è stato usato per analizzare i due casi studio inclusi all’interno del progetto BioInfoGen. In particolare, ha permesso di scoprire le varianti causative dei pazienti affetti da malattie da accumulo lisosomiale, evidenziando inoltre l’efficacia del pannello di sequenziamento sviluppato. Dall’altro lato invece QueryOR ha semplificato l’individuazione del gene LRP2 come possibile candidato per spiegare i soggetti con un fenotipo simile alla malattia di Dent, ma senza alcuna mutazione nei due geni precedentemente descritti come causativi, CLCN5 e OCRL. Come corollario finale, è stata effettuata un’analisi estensiva su varianti esomiche ricorrenti, mostrando come la loro origine possa essere principalmente spiegata da imprecisioni nel genoma di riferimento, tra cui regioni mal assemblate e basi non corrette, piuttosto che da errori piattaforma-specifici.
Markstedt, Olof. "Kubernetes as an approach for solving bioinformatic problems." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330217.
Full textHull, Duncan. "Semantic matching of bioinformatic web services." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497578.
Full textCova, Marta Alexandra Mendonça Nóbrega. "Bioinformatic analysis of the neuronal phosphoproteome." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11623.
Full textA fosforilação anormal de proteínas é uma das características chave da Doença de Alzheimer (DA) que pode estar envolvida tanto na patogénese como na progressão da doença. A fosforilação reversível de proteínas representa um importante mecanismo regulador que envolve a atividade de fosfoproteínas fosfatases (FPF) e proteínas cinases (PC). Um desequilíbrio intracelular entre a actividade de FPF e PC pode alterar a atividade, localização subcelular e interacções de proteínas, contribuindo para a desregulação da função e sinalização neuronal e, consequentemente para a neurodegeneração. Assim, o estudo do fosfoproteoma neuronal da DA tornase relevante tanto do ponto de vista fisiológico como patológico. Culturas primárias corticais foram expostas ao ácido ocadáico (AO, um inibidor de PPP) ou ao péptido β amilóide (Aβ) para mimetizar as condições da DA. Os lisados celulares foram aplicados numa coluna de afinidade para fosfoproteínas. As frações enriquecidas em fosfoproteínas foram analisadas por espetrometria de massa tendo sido desenvolvido um script em linguagem python (http://sourceforge.net/projects/protdb/) para análise das proteínas identificadas. Os resultados provenientes das condições Controlo vs AO indicam que o tratamento com este inibidor de FPF leva a um aumento do número de fosfoproteínas (174 vs 242 proteínas totais e 32 vs 100 proteínas exclusivas). Os resultados do tratamento com Aβ indicam uma alteração qualitativa do fosfoproteoma neuronal (174 vs 166 proteínas totais) com um número considerável de proteínas exclusivas (42 vs 34 proteínas exclusivas). Subsequentemente, para a obtenção de informação detalhada e caracterização das proteínas identificadas em cada condição, foi realizada uma análise exploratória das fosfoproteínas organizando-as por classe proteica, processos biológicos, localização subcelular e funções moleculares. Os tratamentos com AO e Aβ levam a alterações em proteínas envolvidas em processos celulares que se encontram comprometidos na DA, tais como a actividade das PC e FPF, degradação proteica, stress oxidativo, folding proteico, dinâmica do citoesqueleto, síntese proteica e apoptose. A caracterização do fosfoproteoma neuronal da DA pode revelar ou elucidar os mecanismos moleculares subjacentes à transdução de sinais anormal associada com a patogénese da doença. A análise das fosfoproteínas exclusivas poderá, também, contribuir para a identificação de potenciais novos biomarcadores ou alvos terapêuticos para a DA.
Abnormal protein phosphorylation is a characteristic hallmark of Alzheimer’s disease (AD) and may be implicated both in pathogenesis or disease progression. Reversible protein phosphorylation represents a key regulatory mechanism involving the activity of protein phosphatases (PPP) and protein kinases (PK). Imbalanced PPP and PK activity can alter protein action, subcellular localization and protein interactions, thus contributing to abnormal neuronal function and signaling and consequently to neurodegeneration. Hence, the study of the AD neuronal phosphoproteome is of physiological and pathological relevance. Primary cortical cultures were exposed to okadaic acid (OA, a PPP inhibitor) or amyloid-β peptide (Aβ), in order to mimic AD conditions. Cell lysates were applied to a phosphoprotein affinity column and phosphoprotein enriched fractions analyzed by mass spectrometry. A protein database management framework (http://sourceforge.net/projects/protdb/) was set up allowing for the development of a script to analyze the identified proteins. Data from Control vs OA conditions indicates that OA treatment leads to an increase in phosphoproteins (174 vs 242 proteins and 32 vs 100 exclusive proteins). Data indicates that Aβ treatment leads to a shift in neuronal phosphoproteome pool (174 vs 166 proteins) with noteworthy alterations in the exclusive neurophosphoproteome (42 vs 34 exclusive proteins). Subsequently, analysis of the protein classes, biological processes, subcellular localization and molecular functions allowed for detailed information regarding the proteins obtained in the different groups. Upon treatments an alteration in the proteins involved in critical processes impaired in AD such as PK and PPP activities, protein degradation, oxidative stress, protein folding, cytoskeleton network dynamics, protein synthesis and apoptosis was observed. The characterization of AD neuronal phosphoproteome may reveal or elucidate the molecular mechanisms underlying abnormal signal transduction associated with AD pathogenesis. Further, by analyzing the pool of exclusive proteins, this work may also contribute to identify potential novel biomarker candidates or AD targets for therapeutic intervention.
Atkinson, Samantha Nicole. "Bioinformatic assessment of disrupted microbial communities." Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/6696.
Full textFronza, Raffaele <1971>. "Bioinformatic methods in applied genomic research." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3567/1/fronza_raffaele_tesi.pdf.
Full textFronza, Raffaele <1971>. "Bioinformatic methods in applied genomic research." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3567/.
Full textChiara, M. "BIOINFORMATIC TOOLS FOR NEXT GENERATION GENOMICS." Doctoral thesis, Università degli Studi di Milano, 2012. http://hdl.handle.net/2434/173424.
Full textPrazzoli, G. M. "BIOINFORMATIC TOOLS FOR NEXT GENERATION TRANSCRIPTOMICS." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/275276.
Full textFagerberg, Linn. "Mapping the human proteome using bioinformatic methods." Doctoral thesis, KTH, Proteomik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-31477.
Full textQC 20110317
The Human Protein Atlas project
Casteleijn, M. G. (Marinus G. ). "Towards new enzymes:protein engineering versus bioinformatic studies." Doctoral thesis, University of Oulu, 2010. http://urn.fi/urn:isbn:9789514260995.
Full textMorrissy, Anca Sorana. "Bioinformatic analysis of cis-encoded antisense transcription." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/30509.
Full textJones, Katy June. "Bioinformatic analysis of biotechnologically important microbial communities." Thesis, University of Exeter, 2018. http://hdl.handle.net/10871/34543.
Full textMoreno, Cortez Pablo Andres. "Bioinformatic methods for species-specific metabolome inference." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607925.
Full textWagstaff, John Francis. "Generating bioinformatic resources for L1-dependent retrotransposons." Thesis, University of Leicester, 2014. http://hdl.handle.net/2381/29050.
Full textCui, Chenming. "Integrating bioinformatic approaches to promote crop resilience." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/94424.
Full textDoctor of Philosophy
Meeting the food production demands of a burgeoning population in a changing environment, means adapting crop plants to become more resilient to environmental stress. One of the greatest barriers to understanding and predicting crop responses to future environmental change is our poor understanding of the functional and genomic basis of stress resistance traits for contemporary crops. This impediment presents a barrier for rapid crop improvement technologies, such as, gene editing or genomic selection, that is only partially overcome by generating large amounts of sequencing data. Here we need tools that allow us to process and evaluate huge amounts of data generated from next generation sequencing studies to help identify genomic regions associated with agronomic traits. We also need technical approaches that allow us to disentangle the complex genetic interactions that drive plant stress responses. Here we present work that used statistical analysis and recent advances of artificial intelligence to develop a bioinformatic approach to evaluate genomic sequencing data prior to downstream analyses. Secondly, we used a reductionist approach to filter thousands of genes to key genes associated with combined stress responses (herbivory and drought), in the most widely used vegetable in the world, tomato. Finally, we developed a method for generating whole genome sequences that is low-cost and time sensitive and tested it using a well-known plant pathogen genome, wherein we unraveled significant hidden complexity. Overall this work provides community-wide genomic tools and information to promote crop resilience.
Wooton, Jesse Meredith. "A bioinformatic analysis of the Alp8 family." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p1469264.
Full textTitle from first page of PDF file (viewed Oct. 7, 2009). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 54-56).
Al, Haj Baddar Nour W. "BIOINFORMATIC AND EXPERIMENTAL ANALYSES OF AXOLOTL REGENERATION." UKnowledge, 2019. https://uknowledge.uky.edu/biology_etds/61.
Full textPerner, Juliane [Verfasser]. "Bioinformatic approaches for understanding chromatin regulation / Juliane Perner." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1077007221/34.
Full textColl, I. Cerezo F. "Bioinformatic analysis of Mycobacterium tuberculosis whole genome data." Thesis, London School of Hygiene and Tropical Medicine (University of London), 2015. http://researchonline.lshtm.ac.uk/2124343/.
Full textHossain, Muhammad Maqsud. "Bioinformatic analysis of Streptococcus uberis genes and genomes." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/37355/.
Full textAksamit, Matthew Stephen. "Bioinformatic analysis of pea aphid salivary gland transcripts." Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/32836.
Full textBiochemistry and Molecular Biophysics Interdepartmental Program
Gerald Reeck
Pea aphids (Acyrthosiphon pisum) are sap-sucking insects that feed on the phloem sap of some plants of the family Fabaceae (legumes). Aphids feed on host plants by inserting their stylets between plant cells to feed from phloem sap in sieve elements. Their feeding is of major agronomical importance, as aphids cause hundreds of millions of dollars in crop damage worldwide, annually. Salivary gland transcripts from plant-fed and diet-fed pea aphids were studied by RNASeq to analyze their expression. Most transcripts had higher expression in plant-fed pea aphids, likely due to the need for saliva protein in the aphid/plant interaction. Numerous salivary gland transcripts and saliva proteins have been identified in aphids, including a glutathione peroxidase. Glutathione peroxidases are a group of enzymes with the purpose of protecting organisms from oxidative damage. Here, I present a bioinformatic analysis of pea aphid expressed sequence tag libraries that identified four unique glutathione peroxidases in pea aphids. One glutathione peroxidase, ApGPx1 has high expression in the pea aphid salivary gland. Two glutathione peroxidase genes are present in the current annotation of the pea aphid genome. My work indicates that the two genes need to be revised.
Furió, Tarí Pedro. "Development of bioinformatic tools for massive sequencing analysis." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/152485.
Full text[ES] La transcriptómica es una de las áreas más importantes y destacadas en bioinformática, ya que permite ver qué genes están expresados en un momento dado para poder explorar la relación existente entre genotipo y fenotipo. El análisis transcriptómico se ha realizado históricamente mediante el uso de microarrays hasta que, en el año 2008, la secuenciación masiva de ARN (RNA-Seq) fue lanzada al mercado y comenzó a desplazar poco a poco su uso. Sin embargo, a pesar de las ventajas evidentes frente a los microarrays, resultaba necesario entender factores como la calidad de los datos, reproducibilidad y replicabilidad de los análisis así como los potenciales sesgos. La primera parte de la tesis aborda precisamente estos estudios. En primer lugar, se desarrolla un paquete de R llamado NOISeq, publicado en el repositorio público "Bioconductor", el cual incluye un conjunto de herramientas para entender la calidad de datos de RNA-Seq, herramientas de procesado para minimizar el impacto del ruido en posteriores análisis y dos nuevas metodologías (NOISeq y NOISeqBio) para abordar la problemática de la comparación entre dos grupos (expresión diferencial). Por otro lado, presento nuestra contribución al proyecto Sequencing Quality Control (SEQC), una continuación del proyecto Microarray Quality Control (MAQC) liderado por la US Food and Drug Administration (FDA) que pretende evaluar precisamente la reproducibilidad y replicabilidad de los análisis realizados sobre datos de RNA-Seq. Una de las estrategias más efectivas para entender los diferentes factores que influyen en la regulación de la expresión génica, como puede ser el efecto sinérgico de los factores de transcripción, eventos de metilación y accesibilidad de la cromatina, es la integración de la transcriptómica con otros datos ómicos. Para ello se necesita generar un fichero que indique las posiciones cromosómicas donde se producen estos eventos. Por este motivo, en el segundo capítulo de la tesis presentamos una nueva herramienta (RGmatch) altamente customizable que permite asociar estas posiciones cromosómicas a los posibles genes, transcritos o exones a los que podría estar regulando cada uno de estos eventos. Otro de los aspectos de gran interés en este campo es el estudio de los genes no codificantes, especialmente los ARN largos no codificantes (lncRNAs). Hasta no hace mucho, se pensaba que estos genes no jugaban ningún papel fundamental y se consideraban como simple ruido transcripcional. Sin embargo, suponen un alto porcentaje de los genes del ser humano y se ha demostrado que juegan un papel crucial en la regulación de otros genes. Por este motivo, en el último capítulo nos centramos, en un primer lugar, en intentar obtener una metodología que permita averiguar las funciones generales de cada lncRNA haciendo uso de datos ya publicados y, en segundo lugar, generamos una nueva herramienta (spongeScan) que permite predecir qué lncRNAs podrían estar secuestrando determinados micro-RNAs (miRNAs), alterando así la regulación llevada a cabo por estos últimos.
[CA] La transcriptòmica és una de les àrees més importants i destacades en bioinformàtica, ja que permet veure quins gens s'expressen en un moment donat per a poder explorar la relació existent entre genotip i fenotip. L'anàlisi transcriptòmic s'ha fet històricament per mitjà de l'ús de microarrays fins l'any 2008 quan la tècnica de seqüenciació massiva d'ARN (RNA-Seq) es va fer pública i va començar a desplaçar a poc a poc el seu ús. No obstant això, a pesar dels avantatges evidents enfront dels microarrays, resultava necessari entendre factors com la qualitat de les dades, reproducibilitat i replicabilitat dels anàlisis, així com els possibles caires introduïts. La primera part de la tesi aborda precisament estos estudis. En primer lloc, es va programar un paquet de R anomenat NOISeq publicat al repositori públic "Bioconductor", el qual inclou un conjunt d'eines per a entendre la qualitat de les dades de RNA-Seq, eines de processat per a minimitzar l'impact del soroll en anàlisis posteriors i dos noves metodologies (NOISeq i NOISeqBio) per a abordar la problemàtica de la comparació entre dos grups (expressió diferencial). D'altra banda, presente la nostra contribució al projecte Sequencing Quality Control (SEQC), una continuació del projecte Microarray Quality Control (MAQC) liderat per la US Food and Drug Administration (FDA) que pretén avaluar precisament la reproducibilitat i replicabilitat dels anàlisis realitzats sobre dades de RNA-Seq. Una de les estratègies més efectives per a entendre els diferents factors que influïxen a la regulació de l'expressió gènica, com pot ser l'efecte sinèrgic dels factors de transcripció, esdeveniments de metilació i accessibilitat de la cromatina, és la integració de la transcriptómica amb altres dades ómiques. Per això es necessita generar un fitxer que indique les posicions cromosòmiques on es produïxen aquests esdeveniments. Per aquest motiu, en el segon capítol de la tesi presentem una nova eina (RGmatch) altament customizable que permet associar aquestes posicions cromosòmiques als possibles gens, transcrits o exons als que podria estar regulant cada un d'aquests esdeveniments regulatoris. Altre dels aspectes de gran interés en aquest camp és l'estudi dels genes no codificants, especialment dels ARN llargs no codificants (lncRNAs). Fins no fa molt, encara es pensava que aquests gens no jugaven cap paper fonamental i es consideraven com a simple soroll transcripcional. No obstant això, suposen un alt percentatge dels gens de l'ésser humà i s'ha demostrat que juguen un paper crucial en la regulació d'altres gens. Per aquest motiu, en l'últim capítol ens centrem, en un primer lloc, en intentar obtenir una metodologia que permeta esbrinar les funcions generals de cada lncRNA fent ús de dades ja publicades i, en segon lloc, presentem una nova eina (spongeScan) que permet predeir quins lncRNAs podríen estar segrestant determinats micro-RNAs (miRNAs), alterant així la regulació duta a terme per aquests últims.
Furió Tarí, P. (2020). Development of bioinformatic tools for massive sequencing analysis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/152485
TESIS
Bălan, Mirela. "Integrative bioinformatic analysis of SARs-CoV-2 data." Thesis, Uppsala universitet, Institutionen för cell- och molekylärbiologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-450821.
Full textWei, Ran. "Peptidomic and bioinformatic studies on neuroendocrine tumour cells." Thesis, Queen's University Belfast, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.696333.
Full textOliver, Jeffrey C. "Bioinformatic training needs at a health sciences campus." PUBLIC LIBRARY SCIENCE, 2017. http://hdl.handle.net/10150/624680.
Full textAcoca, Stephane. "Bioinformatic approaches to the discovery of apoptotic proteins." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81582.
Full textSchüler, Markus [Verfasser]. "Bioinformatic analysis of cardiac transcription networks / Markus Schüler." Berlin : Freie Universität Berlin, 2011. http://d-nb.info/102593928X/34.
Full textRoberts, Rick Lee. "Structural and bioinformatic analysis of ethylmalonyl-CoA decarboxylase." Thesis, State University of New York at Buffalo, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1600817.
Full textMany enzymes of the major metabolic pathways are categorized into superfamilies which share common folds. Current models postulate these superfamilies are the result of gene duplications coupled with mutations that result in the acquisition of new functions. Some of these new functions are considered advantageous and selected for, while others may simply be tolerated. The latter can result in metabolites being produced at low rates that are of no known use by the cell, and can become toxic when accumulated. Concurrent with the evolution of this tolerable or potentially detrimental metabolism, organisms are selected to evolve a means of correcting or “proofreading” these non-canonical metabolites to counterbalance their detrimental effects. Metabolite proofreading is a process of intermediary metabolism analogous to DNA proof reading that acts on these abnormal metabolites to prevent their accumulation and toxic effects.
Here we structurally characterize ethylmalonyl-CoA decarboxylase (EMCD), a member of the family of enoyl-CoA hydratases within the crotonase superfamily of proteins, which is coded by the ECHDC1 (enoyl-CoA hydratase domain containing 1) gene. EMCD has been shown to have a metabolic proofreading property, acting on the metabolic byproduct ethylmalonyl-CoA to prevent its accumulation which could result in oxidative damage. We use the complimentary methods of in situ crystallography, small angle X-ray scattering, and single crystal X-ray crystallography to structurally characterize EMCD, followed by homology analysis in order to propose a mechanism of action. This represents the first structure of a crotonase superfamily member thought to function as a metabolite proof reading enzyme.
MANDREOLI, PIETRO. "DEVELOPMENT AND IMPLEMENTATION OF CLOUD-ORIENTED BIOINFORMATIC SERVICES." Doctoral thesis, Università degli Studi di Milano, 2022. https://hdl.handle.net/2434/947848.
Full textMuñoz, Torres Pau Marc. "Bioinformatic Study of Antigen Presentation by HLA class II." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/129336.
Full textUnderstanding how peptides are selectively bound and presented by major histocompatibility complex class II molecules (MHC class II or HLA class II in humans) is of outmost importance for its broad implications in human health, from infection to autoimmunity or cancer. The aim of this thesis was to develop a computational strategy to identify HLA class II binding patterns for a variety of alleles and use this knowledge to predict their capacity to bind specific peptide sequences. To make an effective use of the prediction algorithm, a web-based platform for the analysis of large peptide or protein sets, including various functionalities, was also devised. In order to accomplish these objectives, the work was divided into three different stages. The first stage consisted in the construction of a postgresql relational database to store all the information required for and generated by the algorithms developed. The required, uploaded information (subject to updates) consisted of known HLA class II epitopes and the translated genomes of a list of pathogenic bacterial species and human. In addition, the database was designed to include a private section for the upload of user-owned epitope information, which the owner may use in combination with the public data. In a second stage two predictors were developed, one using position-specific scoring matrices (PSSMs) and the other one using a support vector machine (SVM). PSSM development was performed using an iterative optimisation protocol, starting from the alignment of known epitopes to identify HLA class II binding cores (9-residue segments) and incorporating additional information such as allele conservation and non-binders at different phases of the refinement. For SVM construction, the epitope core was defined using the corresponding PSSM and the parameters for the SVM with a radial-basis-function (RBF) kernel were set up individually for each molecule to get the best performance. In the third stage, two web pages were constructed, one for each predictor. The servers share a common part in which the user can introduce peptide or protein sequences in Fasta format to perform an analysis that delivers both putative epitopes and their localization in a selected proteome. In addition, the PSSM-based server allows the user to upload his/her own sequences to elucidate new HLA class II binding patterns and perform predictions with them.
Harris, Justin Clay. "NEW BIOINFORMATIC TECHNIQUES FOR THE ANALYSIS OF LARGE DATASETS." UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_diss/544.
Full textMefford, Megan. "Molecular and Bioinformatic Analysis of Neurotropic HIV Envelope Glycoproteins." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10173.
Full textTreepong, Panisa. "Bioinformatic analysis of the genomes of epidemic pseudomonas aeruginosa." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD065/document.
Full textPseudomonas aeruginosa is a major nosocomial pathogen with ST235 being the most prevalent of the so-called ‘international’ or ‘high-risk’ clones. This clone is associated with poor clinical outcomes in part due to multi- and high-level antibiotic resistance. Despite its clinical importance, the molecular basis for the success of the ST235 clone is poorly understood. Thus this thesis aimed to understand the origin of ST235 and the molecular basis for its success, including the design of bioinformatics tools for finding insertion sequences (IS) of bacterial genomes.To fulfill these objectives, this thesis was divided into 2 parts.First, the genomes of 79 P. aeruginosa ST235 isolates collected worldwide over a 27-year period were examined. A phylogenetic network was built using Hamming distance-based method, namely the NeighborNet. Then we have found the Time to the Most Recent Common Ancestor (TMRCA) by applying a Bayesian approach. Additionally, we have identified antibiotic resistance determinants, CRISPR-Cas systems, and ST235-specific genes profiles. The results suggested that the ST235 sublineage emerged in Europe around 1984, coinciding with the introduction of fluoroquinolones as an antipseudomonal treatment. The ST235 sublineage seemingly spreads from Europe via two independent clones. ST235 isolates then appeared to acquire resistance determinants to aminoglycosides, β-lactams, and carbapenems locally. Additionally, all the ST235 genomes contained the exoU-encoded exotoxin and identified 22 ST235-specific genes clustering in blocks and implicated in transmembrane efflux, DNA processing and bacterial transformation. These unique genes may have contributed to the poor outcome associated with P. aeruginosa ST235 infections and increased the ability of this international clone to acquire mobile resistance elements.The second part was to design a new Insertion Sequence (IS) searching tool on next-generation sequencing data, named panISa. This tool identifies the IS position, direct target repeats (DR) and inverted repeats (IR) from short read data (.bam/.sam) by investigating only the reference genome (without any IS database). To validate our proposal, we used simulated reads from 5 species: Escherichia coli, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus, and Vibrio cholerae with 30 random ISs. The experiment set is constituted by reads of various lengths (100, 150, and 300 nucleotides) and coverage of simulated reads at 20x, 40x, 60x, 80x, and 100x. We performed sensitivity and precision analyses to evaluate panISa and found that the sensitivity of IS position is not significantly different when the read length is changed, while the modifications become significant depending on species and read coverage. When focusing on the different read coverage, we found a significant difference only at 20x. For the other situations (40x-100x) we obtained a very good mean of sensitivity equal to 98% (95%CI: 97.9%-98.2%). Similarly, the mean of DR sensitivity of DR identification is high: 99.98% (95%CI: 99.957%-99.998%), but the mean of IR sensitivity is 73.99% (95%CI: 71.162%-76.826%), which should be improved. Focusing on precision instead of sensibility, the precision of IS position is significantly different when changing the species, read coverage, or read length. However, the mean of each precision value is larger than 95%, which is very good.In conclusion, P. aeruginosa ST235 (i) has become prevalent across the globe potentially due to the selective pressure of fluoroquinolones and (ii) readily became resistant to aminoglycosides, β-lactams, and carbapenems through mutation and acquisition of resistance elements among local populations. Concerning the second point, our panISa proposal is a sensitive and highly precise tool for identifying insertion sequences from short reads of bacterial data, which will be useful to study the epidemiology or bacterial evolution
Stahl, Morgan A. "The Perilipin Family of Proteins: Structural and Bioinformatic Analysis." Otterbein University Honors Theses / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=otbnhonors1620460421392971.
Full textPoluri, Raghavendra Tejo Karthik. "Using bioinformatic analyses to understand prostate cancer cell biology." Master's thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/66803.
Full textProstate Cancer (PCa) affects 1 in 7 men in their lifetime and is the number one diagnosed cancer in men. It is the 4th most common cancer in Canada. PCa is a hormone-dependent disease diagnosed in men. Androgens play a vital role in the disease progression. The standard of care to treat PCa, following surgery or radiation therapy, is the androgen deprivation therapy (ADT). In spite of initial positive response to androgen inhibition, the progression of the disease to castration-resistant prostate cancer (CRPC) is almost inevitable. Across the various stages of PCa, the androgen receptor (AR) plays a major role. This thesis portrays the methods developed and used to understand PCa biology. The work demonstrated in this thesis majorly consists of bioinformatic analyses performed on publicly available data sets and a pipeline built to analyse RNA-Seq data. An RNA-Seq pipeline has been developed to understand the impact of androgens and the genes regulated upon androgen treatment in PCa cell models. This bioinformatic pipeline consists of various tools which have been described below in chapter 1. The major goal of this project was to develop a pipeline to analyse the RNA-Seq data which helps to understand and define the metabolic pathways and genes regulated by androgens which play an important role in PCa disease progression. The experimental workflow consisted of two androgen receptor positive cell lines LNCaP and LAPC4. All the data used in this project has been made publicly available for the research community to perform various other comparative studies and analyses to understand the functions of androgens in a much deeper sense to develop novel therapies to treat PCa. In another project described in chapter 2, bioinformatic analyses have been performed on publicly available data to understand the loss and genomic alteration frequency of the gene PTEN occurring at 10q23. These analyses highlighted that the genomic alteration frequency of PTEN is much higher in CRPC than in localised PCa, and also helped in identifying other genes which are lost along with PTEN. The lost genes have not been studied much in literature, but few studies demonstrated that they might possess tumor suppressor characteristics. These results might be a good start for further deeper analyses regarding the lost of genes. Understanding the functions of AR and the deletion of PTEN will help for the development of novel strategies and approaches to diagnose and treat PCa. Integration of bioinformatic analyses with clinical research open up a new perspective in the PCa research domain.
Mthombeni, Jabulani S. "A comparative bioinformatic analysis of zinc binuclear cluster proteins." Thesis, Rhodes University, 2005. http://hdl.handle.net/10962/d1004064.
Full textWong, Io Nam. "Bioinformatic and biochemical characterization of helicases from bacteriophage T5." Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/2333/.
Full textThorpe, Peter. "Bioinformatic and functional characterisation of Globodera pallida effector genes." Thesis, University of Leeds, 2012. http://etheses.whiterose.ac.uk/4568/.
Full textMilani, Adelaide. "Genomic and bioinformatic approach to avian influenza virus evolution." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424357.
Full textI virus zoonotici, cioè in grado di infettare l’uomo e alcune specie animali, hanno un impatto significativo e costituiscono una costante, potenziale minaccia sia per la salute pubblica umana che per quella animale. Ecosistemi dagli equilibri modificati, una crescente urbanizzazione e connessioni facilitate hanno influenzato sempre piu' il rapporto tra patogeni e specie ospiti affini. Negli ultimi anni la fonte della maggior parte dei virus potenzialmente pericolosi e in grado di causare malattie emergenti sembra derivi da ospiti di origine animale; si tratta prevalentemente di virus a RNA che, grazie alla possibilità di moltiplicarsi in breve tempo all'interno di una popolazione ampia ed all'alto tasso di mutazione, permettono una rapida evoluzione, un'elevata variabilità genetica e la selezione di nuove varianti. Un adeguato e costante programma di sorveglianza, la condivisione di conoscenze e una collaborazione tra diverse competenze professionali sono fondamentali e necessarie per seguire l'evoluzione virale e per formulare politiche di sanità pubblica efficienti (Howard e Fletcher, 2012). L' Influenza virus di tipo A è considerato uno dei virus a RNA più importanti, tanto per il suo potenziale ruolo zoonotico nell'interfaccia animale-umano, quanto per la salute globale e l'impatto economico. Quasi ogni anno epidemie di influenza provocano morbilità e mortalità nell'uomo e talvolta gli stessi virus possono essere associati a pandemie. Il serbatoio naturale dei virus influenzali di tipo A è rappresentato dagli uccelli, sia selvatici che domestici (influenza aviaria) (http://www.cdc.gov/flu/about/viruses/transmission.htm); in particolare gli uccelli selvatici sembrano costituire la fonte dell'influenza A virus tutte le altre specie animali. Diverse tecniche sono disponibili per studiare i virus e caratterizzarli geneticamente al fine di capirne il loro comportamento, le dinamiche evolutive, il loro rapporto con l'ospite e la loro origine e per sviluppare profilassi e terapie adeguate creando un valido supporto durante la fasi di sorveglianza e diagnosi di un'eventuale epidemia . Nell'ambito del mio dottorato è stato utilizzato un approccio integrato, sia genomico che strutturale, per studiare l'evoluzione dell'influenza aviaria; particolare interesse è stato rivolto allo studio dell'emoagglutinina virale, la principale glicoproteina di superficie, appartenente ai sottotipi H5, H7 e H9 (i principali sottotipi “aviari” responsabili di infezione nell’uomo). Le analisi mediante Next Generation Sequencing (NGS) hanno favorito lo studio e la caratterizzazione della complessità nella popolazione virale, consentendo di monitorare finemente l'evoluzione delle varianti geneticamente correlate presenti all'interno della popolazione virale tramite l'identificazione delle mutazioni a bassa frequenza. Per confrontare ed analizzare i dati genetici, l'approccio filogenetico si è rivelato un utile strumento per l'analisi dell'evoluzione virale; è stato usato per spiegare l'epidemiologia molecolare, la trasmissione e l'evoluzione virale. Al fine di ottenere una visione più completa in termini di 'evoluzione funzionale', l'analisi filogenetica è stata integrata con le informazioni provenienti dal confronto strutturale. L'approccio strutturale, considerando lo spazio tridimensionale dell’emoagglutinina, ha dimostrato di poter essere uno strumento utile per evidenziare eventuali somiglianze e per ispezionare e valutare quei motivi il cui ruolo non può essere correttamente interpretato utilizzando le sole sequenze primarie. Infatti, nelle sequenze primarie il peso delle mutazioni non tiene conto dell'effetto sul fold o sulle proprietà di superficie, mentre nelle strutture tridimensionali, quanto ciascuna mutazione sia in grado di influenzare le caratteristiche strutturali e le interazioni, è direttamente rilevabile. Questo approccio ha inoltre portato un ulteriore contributo all'analisi filogenetica. In particolare lo studio si è concentrato sull'analisi delle dinamiche evolutive e delle strategie adattative dei sottotipi H7N1 ed H7N3 dell'influenza aviaria circolanti nel Nord Italia per periodi di tempo analoghi e in condizioni epidemiologiche simili. Inoltre è stato utilizzato il deep sequencing per studiare le dinamiche evolutive e di trasmissione intra- e inter-ospiti del virus aviario sottotipo H7N7 che colpì alcuni allevamenti italiani nel 2013. L'analisi NGS è stata utilizzata per caratterizzare la complessità della popolazione virale in due gruppi di animali sperimentalmente infetti con lo stesso virus ad alta patogenicità (HPAI) H5N1 ed immunizzati con distinti vaccini. E' stato inoltre eseguito un ampio confronto strutturale su domini e sub-regioni dell'emoagglutinina di diversi sottotipi del virus dell'influenza, con particolare interesse per i diversi clades di HPAI H5N1 circolanti in Egitto (ove l’influenza aviaria è endemica nei volatili), per indagare eventuali variazioni dominio-specifiche. I virus influenzali del sottotipo H9 sono stati analizzati da un punto di vista sia filogenetico che strutturale, per rilevare caratteristiche tipo specifiche e verificare se la variazione delle proprietà di superficie possa essere un marcatore di 'evoluzione funzionale' dei determinanti di superficie virali, come dimostrato nel sottotipo H5N1. Questo lavoro suggerisce che il confronto e l'integrazione tra analisi genomica, filogenetica e strutturale può aiutare a capire l' 'evoluzione funzionale' del virus dell'influenza aviaria di tipo A.
Rossini, Roberto. "Development and validation of bioinformatic methods for GRC assembly and annotation." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414739.
Full textMayol, Escuer Eduardo. "Development of bioinformatic tools for the study of membrane proteins." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667335.
Full textMembrane proteins are fundamental elements for every known cell, accounting for a quarter of genes in the Human genome, they play essential roles in cell biology. About 50% of currently marketed drugs have a membrane protein as target, and around a third of them target G-protein-coupled receptors (GPCRs). The current difficulties and limitations in the experimental work necessary for microscopic studies of the membrane as well as membrane proteins urged the use of computational methods. The scope of this thesis is to develop new bioinformatic tools for the study of membrane proteins and also for GPCRs in particular that help to characterize their structural features and understand their function. In regard to membrane proteins, a cornerstone of this thesis has been the creation of two databases for the main classes of membrane proteins: one for α-helical proteins (TMalphaDB) and another for β-barrel proteins (TMbetaDB). These databases are used by a newly developed tool to find structural distortions induced by specific amino acid sequence motifs (http://lmc.uab.cat/tmalphadb and http://lmc.uab.cat/tmbetadb) and in the characterization of inter-residue interactions that occur in the transmembrane region of membrane proteins aimed to understand the complexity and differential features of these proteins. Interactions involving Phe and Leu residues were found to be the main responsible for the stabilization of the transmembrane region. Moreover, the energetic contribution of interactions between sulfur-containing amino acids (Met and Cys) and aliphatic or aromatic residues were analyzed. These interactions are often not considered despite they can form stronger interactions than aromatic-aromatic or aromatic-aliphatic interactions. Additionally, G-protein coupled receptor family, the most important family of membrane proteins, have been the focus of two web applications tools dedicated to the analysis of conservation of amino acids or sequence motifs and pair correlation (GPCR-SAS, http://lmc.uab.cat/gpcrsas) and to allocate internal water molecules in receptor structures (HomolWat, http://lmc.uab.cat/HW). These web applications are pilot studies that can be extended to other membrane proteins families in future projects. All these tools and analysis may help in the development of better structural models and contribute to the understanding of membrane proteins.
González, Ramírez Mar 1991. "Bioinformatic analysis of epigenetic regulatory mechanisms in development and disease." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/671370.
Full textUna regulació apropiada de l’expressió gènica és necessària per a un correcte desenvolupament i homeòstasi dels organismes. Els mecanismes epigenètics representen una informació addicional, a més de la seqüència genètica, crucial per al correcte funcionament de cada cèl·lula. Les modificacions d’histones, que modulen i s’associen a activació o repressió transcripcionals, són una característica epigenètica important. Gràcies al modelatge predictiu, hem estudiat quines modificacions d’histones es relacionen millor amb la funció dels enhancers o promotors en cèl·lules mare embrionàries de ratolí, durant la diferenciació i en el desenvolupament animal. Hem trobat que modificacions d’histones diferents es relacionen millor amb enhancers o promotors, respectivament. Hem estudiat el rol dels poised enhancers durant la diferenciació i el desenvolupament. Hem vist que l’activació dels poised enhancers no és exclusiva del llinatge neural, sinó un mecanisme implicat en la diferenciació de tot tipus cel·lular. Hem caracteritzat el paisatge epigenètic de la síndrome de Cushing. Hem trobat alteracions epigenètiques i transcripcionals després d’una remissió de la malaltia a llarg termini, relacionades amb una profunda alteració del ritme circadiari. Aquestes troballes prometen ser rellevants per a futurs avenços terapèutics.
Thorburn, Henrik. "Applying Bioinformatic Techniques to Identify Cold-associated Genes in Oat." Thesis, University of Skövde, Department of Computer Science, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-728.
Full textAs the interest in biological sequence analysis increases, more efficient techniques to sequence, map and analyse genome data are needed. One frequently used technique is EST sequencing, which has proven to be a fast and cheap method to extract genome data. An EST sequencing generates large numbers of low-quality sequences which have to be managed and analysed further.
Performing complete searches and finding guaranteed results are very time consuming. This dissertation project presents a method that can be used to perform rapid gene prediction of function-specific genes in EST data, as well as the results and an estimation of the accuracy of the method.
This dissertation project applies various methods and techniques on actual data, attempting to identify genes involved in cold-associative processes in plants. The presented method consists of three steps. First, a database with genes known to have cold-associated properties is assembled. These genes are extracted from other, already sequenced and analysed organisms. Secondly, this database is used to identify homologues in an unanalysed EST dataset, generating a candidate-list of cold-associated genes. Last, each of the identified candidate cold-associative genes are verified, both to estimate the accuracy of the rapid gene prediction and also to support the removal of candidates which are not cold-associative.
The method was applied to a previously unanalysed Avena sativa EST dataset, and was able to identify 135 candidate genes from approximately 9500 EST's. Out of these, 103 were verified as cold-associated genes.
Barrenäs, Fredrik. "Bioinformatic identification of disease associated pathways by network based analysis." Doctoral thesis, Linköpings universitet, Institutionen för klinisk och experimentell medicin, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81898.
Full text