Journal articles on the topic 'Bioisosterie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Bioisosterie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Siebert, Carsten D. "Das Bioisosterie-Konzept: Arzneistoffentwicklung." Chemie in unserer Zeit 38, no. 5 (October 2004): 320–24. http://dx.doi.org/10.1002/ciuz.200400331.
Full textVink, Guillaume, Jean-Christophe Nebel, and Stephen P. Wren. "In silico design of bioisosteric modifications of drugs for the treatment of diabetes." Future Medicinal Chemistry 13, no. 8 (April 2021): 691–700. http://dx.doi.org/10.4155/fmc-2020-0374.
Full textHao, Xin, Xiangyu Qin, Xin Zhang, Bing Ma, Gang Qi, Taiming Yu, Zhongfei Han, and Changjin Zhu. "Identification of quinoxalin-2(1H)-one derivatives as a novel class of multifunctional aldose reductase inhibitors." Future Medicinal Chemistry 11, no. 23 (December 2019): 2989–3004. http://dx.doi.org/10.4155/fmc-2019-0194.
Full textOebbeke, Matthias, Christof Siefker, Björn Wagner, Andreas Heine, and Gerhard Klebe. "Fragment‐Bindung an die Kinase‐Scharnier‐Region: Wenn Ladungsverteilung und lokale p K a ‐Verschiebungen etablierte Bioisosterie‐Konzepte fehlleiten." Angewandte Chemie 133, no. 1 (October 29, 2020): 256–62. http://dx.doi.org/10.1002/ange.202011295.
Full textAgouram, Naima, El Mestafa El Hadrami, and Abdeslem Bentama. "1,2,3-Triazoles as Biomimetics in Peptide Science." Molecules 26, no. 10 (May 14, 2021): 2937. http://dx.doi.org/10.3390/molecules26102937.
Full textChen, Guanglin, Ziran Jiang, Qiang Zhang, Guangdi Wang, and Qiao-Hong Chen. "New Zampanolide Mimics: Design, Synthesis, and Antiproliferative Evaluation." Molecules 25, no. 2 (January 15, 2020): 362. http://dx.doi.org/10.3390/molecules25020362.
Full textYous, Said, Patrick Depreux, and Pierre Renard. "Synthesis of the Naphthalenic Bioisostere of Indorenate. Synthese des Naphthalin-Bioisosters von Indorenat." Archiv der Pharmazie 326, no. 2 (1993): 119–20. http://dx.doi.org/10.1002/ardp.19933260210.
Full textQiu, Jian, Scott H. Stevenson, Michael J. O'Beirn, and Richard B. Silverman. "2,6-Difluorophenol as a Bioisostere of a Carboxylic Acid: Bioisosteric Analogues of γ-Aminobutyric Acid." Journal of Medicinal Chemistry 42, no. 2 (January 1999): 329–32. http://dx.doi.org/10.1021/jm980435l.
Full textQiu, Jian, Scott H. Stevenseon, Michael J. O'Beirne, and Richard B. Silverman. "ChemInform Abstract: 2,6-Difluorophenol as a Bioisostere of a Carboxylic Acid: Bioisosteric Analogues of γ-Aminobutyric Acid." ChemInform 30, no. 23 (June 15, 2010): no. http://dx.doi.org/10.1002/chin.199923107.
Full textDick, Alexej, and Simon Cocklin. "Bioisosteric Replacement as a Tool in Anti-HIV Drug Design." Pharmaceuticals 13, no. 3 (February 28, 2020): 36. http://dx.doi.org/10.3390/ph13030036.
Full textShan, Jinwen, and Changge Ji. "MolOpt: A Web Server for Drug Design using Bioisosteric Transformation." Current Computer-Aided Drug Design 16, no. 4 (September 3, 2020): 460–66. http://dx.doi.org/10.2174/1573409915666190704093400.
Full textBiot, Christophe, Holger Bauer, R. Heiner Schirmer, and Elisabeth Davioud-Charvet. "5-Substituted Tetrazoles as Bioisosteres of Carboxylic Acids. Bioisosterism and Mechanistic Studies on Glutathione Reductase Inhibitors as Antimalarials." Journal of Medicinal Chemistry 47, no. 24 (November 2004): 5972–83. http://dx.doi.org/10.1021/jm0497545.
Full textBathula, Chandramohan, Rajinikanth Mamidala, Chiranjeevi Thulluri, Rahul Agarwal, Kunal Kumar Jha, Parthapratim Munshi, Uma Adepally, Ashutosh Singh, M. Thirumala Chary, and Subhabrata Sen. "Substituted furopyridinediones as novel inhibitors of α-glucosidase." RSC Advances 5, no. 110 (2015): 90374–85. http://dx.doi.org/10.1039/c5ra19255b.
Full textZhao, Qian, Annemilaï Tijeras-Raballand, Armand de Gramont, Eric Raymond, and Laurent Désaubry. "Bioisosteric modification of flavaglines." Tetrahedron Letters 57, no. 26 (June 2016): 2943–44. http://dx.doi.org/10.1016/j.tetlet.2016.05.089.
Full textWassermann, Anne Mai, and Jürgen Bajorath. "Identification of target family directed bioisosteric replacements." MedChemComm 2, no. 7 (2011): 601–6. http://dx.doi.org/10.1039/c1md00066g.
Full textSaha, Abhishek, Subhankar Panda, Saurav Paul, and Debasis Manna. "Phosphate bioisostere containing amphiphiles: a novel class of squaramide-based lipids." Chemical Communications 52, no. 60 (2016): 9438–41. http://dx.doi.org/10.1039/c6cc04089f.
Full textAdams, Muneebah, Tameryn Stringer, Carmen de Kock, Peter J. Smith, Kirkwood M. Land, Nicole Liu, Christina Tam, et al. "Bioisosteric ferrocenyl-containing quinolines with antiplasmodial and antitrichomonal properties." Dalton Transactions 45, no. 47 (2016): 19086–95. http://dx.doi.org/10.1039/c6dt03175g.
Full textBathula, Chandramohan, Shreemoyee Ghosh, Santanu Hati, Sayantan Tripathy, Shailja Singh, Saikat Chakrabarti, and Subhabrata Sen. "Bioisosteric modification of known fucosidase inhibitors to discover a novel inhibitor of α-l-fucosidase." RSC Advances 7, no. 6 (2017): 3563–72. http://dx.doi.org/10.1039/c6ra24939f.
Full textStaroń, Jakub, Dawid Warszycki, Justyna Kalinowska-Tłuścik, Grzegorz Satała, and Andrzej J. Bojarski. "Rational design of 5-HT6R ligands using a bioisosteric strategy: synthesis, biological evaluation and molecular modelling." RSC Advances 5, no. 33 (2015): 25806–15. http://dx.doi.org/10.1039/c5ra00054h.
Full textBaumeister, Sören, Dirk Schepmann, and Bernhard Wünsch. "Synthesis and receptor binding of thiophene bioisosteres of potent GluN2B ligands with a benzo[7]annulene-scaffold." MedChemComm 10, no. 2 (2019): 315–25. http://dx.doi.org/10.1039/c8md00545a.
Full textChen, Guanglin, Manee Patanapongpibul, Ziran Jiang, Qiang Zhang, Shilong Zheng, Guangdi Wang, James D. White, and Qiao-Hong Chen. "Synthesis and antiproliferative evaluation of new zampanolide mimics." Organic & Biomolecular Chemistry 17, no. 15 (2019): 3830–44. http://dx.doi.org/10.1039/c9ob00556k.
Full textHenderson, Jaclyn L., Aarti Sawant-Basak, Jamison B. Tuttle, Amy B. Dounay, Laura A. McAllister, Jayvardhan Pandit, Suobao Rong, et al. "Discovery of hydroxamate bioisosteres as KAT II inhibitors with improved oral bioavailability and pharmacokinetics." MedChemComm 4, no. 1 (2013): 125–29. http://dx.doi.org/10.1039/c2md20166f.
Full textKaur, Gurminder, Kawaljit Singh, Elumalai Pavadai, Mathew Njoroge, Marlene Espinoza-Moraga, Carmen De Kock, Peter J. Smith, Sergio Wittlin, and Kelly Chibale. "Synthesis of fusidic acid bioisosteres as antiplasmodial agents and molecular docking studies in the binding site of elongation factor-G." MedChemComm 6, no. 11 (2015): 2023–28. http://dx.doi.org/10.1039/c5md00343a.
Full textLiu, Yang, Lin Guo, Hongliang Duan, Liming Zhang, Neng Jiang, Xuechu Zhen, and Jianhua Shen. "Discovery of 4-benzoylpiperidine and 3-(piperidin-4-yl)benzo[d]isoxazole derivatives as potential and selective GlyT1 inhibitors." RSC Advances 5, no. 51 (2015): 40964–77. http://dx.doi.org/10.1039/c5ra04714e.
Full textTommasi, Sara, Chiara Zanato, Benjamin C. Lewis, Pramod C. Nair, Sergio Dall'Angelo, Matteo Zanda, and Arduino A. Mangoni. "Arginine analogues incorporating carboxylate bioisosteric functions are micromolar inhibitors of human recombinant DDAH-1." Organic & Biomolecular Chemistry 13, no. 46 (2015): 11315–30. http://dx.doi.org/10.1039/c5ob01843a.
Full textDuncton, Matthew A. J., Ryan B. Murray, Gary Park, and Rajinder Singh. "Tetrazolone as an acid bioisostere: application to marketed drugs containing a carboxylic acid." Organic & Biomolecular Chemistry 14, no. 39 (2016): 9343–47. http://dx.doi.org/10.1039/c6ob01646d.
Full textWagener, Markus, and Jos P. M. Lommerse. "The Quest for Bioisosteric Replacements." Journal of Chemical Information and Modeling 46, no. 2 (March 2006): 677–85. http://dx.doi.org/10.1021/ci0503964.
Full textErdeljac, Nathalie, Gerald Kehr, Marie Ahlqvist, Laurent Knerr, and Ryan Gilmour. "Exploring physicochemical space via a bioisostere of the trifluoromethyl and ethyl groups (BITE): attenuating lipophilicity in fluorinated analogues of Gilenya® for multiple sclerosis." Chemical Communications 54, no. 85 (2018): 12002–5. http://dx.doi.org/10.1039/c8cc05643a.
Full textOuyang, Han, Chuan Fu, Songsen Fu, Zhe Ji, Ying Sun, Peiran Deng, and Yufen Zhao. "Development of a stable phosphoarginine analog for producing phosphoarginine antibodies." Organic & Biomolecular Chemistry 14, no. 6 (2016): 1925–29. http://dx.doi.org/10.1039/c5ob02603b.
Full textDick, Benjamin L., Ashay Patel, and Seth M. Cohen. "Effect of heterocycle content on metal binding isostere coordination." Chemical Science 11, no. 26 (2020): 6907–14. http://dx.doi.org/10.1039/d0sc02717k.
Full textSwarbrick, Joanna M., Richard Graeff, Clive Garnham, Mark P. Thomas, Antony Galione, and Barry V. L. Potter. "‘Click cyclic ADP-ribose’: a neutral second messenger mimic." Chem. Commun. 50, no. 19 (2014): 2458–61. http://dx.doi.org/10.1039/c3cc49249d.
Full textDudkin, V. Y. "Bioisosteric equivalence of five-membered heterocycles." Chemistry of Heterocyclic Compounds 48, no. 1 (April 2012): 27–32. http://dx.doi.org/10.1007/s10593-012-0964-8.
Full textBurgos-Lepley, Carmen E., Lisa R. Thompson, Clare O. Kneen, Simon A. Osborne, Justin S. Bryans, Thomas Capiris, Nirmala Suman-Chauhan, et al. "Carboxylate bioisosteres of gabapentin." Bioorganic & Medicinal Chemistry Letters 16, no. 9 (May 2006): 2333–36. http://dx.doi.org/10.1016/j.bmcl.2005.05.016.
Full textEdge, Colin. "Theoretical studies on bioisosteres." Journal of Molecular Graphics 8, no. 1 (March 1990): 57. http://dx.doi.org/10.1016/0263-7855(90)80072-n.
Full textSchwarz, Jacob B., Norman L. Colbry, Zhijian Zhu, Brian Nichelson, Nancy S. Barta, Kristin Lin, Raymond A. Hudack, et al. "Carboxylate bioisosteres of pregabalin." Bioorganic & Medicinal Chemistry Letters 16, no. 13 (July 2006): 3559–63. http://dx.doi.org/10.1016/j.bmcl.2006.03.083.
Full textRatni, H., K. Baumann, P. Bellotti, X. A. Cook, L. G. Green, T. Luebbers, M. Reutlinger, A. F. Stepan, and W. Vifian. "Phenyl bioisosteres in medicinal chemistry: discovery of novel γ-secretase modulators as a potential treatment for Alzheimer's disease." RSC Medicinal Chemistry 12, no. 5 (2021): 758–66. http://dx.doi.org/10.1039/d1md00043h.
Full textB., Unterhalt, and Adam T. "1-(4-Biphenylyl)ethylnitramine, bioisostere Profene." Scientia Pharmaceutica 70, no. 4 (December 5, 2002): 353–58. http://dx.doi.org/10.3797/scipharm.aut-02-34.
Full textMykhailiuk, Pavel K. "Saturated bioisosteres of benzene: where to go next?" Organic & Biomolecular Chemistry 17, no. 11 (2019): 2839–49. http://dx.doi.org/10.1039/c8ob02812e.
Full textDowney, A. Michael, and Christopher W. Cairo. "Synthesis of α-brominated phosphonates and their application as phosphate bioisosteres." Med. Chem. Commun. 5, no. 11 (2014): 1619–33. http://dx.doi.org/10.1039/c4md00255e.
Full textStaroń, Jakub, Dawid Warszycki, Rafał Kurczab, Grzegorz Satała, Ryszard Bugno, Adam Hogendorf, and Andrzej J. Bojarski. "Halogen bonding enhances activity in a series of dual 5-HT6/D2 ligands designed in a hybrid bioisostere generation/virtual screening protocol." RSC Advances 6, no. 60 (2016): 54918–25. http://dx.doi.org/10.1039/c6ra08714k.
Full textHevey, Rachel. "Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design." Biomimetics 4, no. 3 (July 28, 2019): 53. http://dx.doi.org/10.3390/biomimetics4030053.
Full textChen, Deheng, Dexiang Guo, Ziqin Yan, and Yujun Zhao. "Allenamide as a bioisostere of acrylamide in the design and synthesis of targeted covalent inhibitors." MedChemComm 9, no. 2 (2018): 244–53. http://dx.doi.org/10.1039/c7md00571g.
Full textMittal, Rupali, Amit Kumar, and Satish Kumar Awasthi. "Practical scale up synthesis of carboxylic acids and their bioisosteres 5-substituted-1H-tetrazoles catalyzed by a graphene oxide-based solid acid carbocatalyst." RSC Advances 11, no. 19 (2021): 11166–76. http://dx.doi.org/10.1039/d1ra01053k.
Full textBubenyák, Máté, Mária Takács, Balázs Blazics, Ákos Rácz, Béla Noszál, László Püski, József Kökösi, and István Hermecz. "Synthesis of bioisosteric 5-sulfa-rutaecarpine derivatives." Arkivoc 2010, no. 11 (November 7, 2010): 291–302. http://dx.doi.org/10.3998/ark.5550190.0011.b23.
Full textMugnaini, C., S. Pasquini, and F. Corelli. "The Bioisosteric Concept Applied to Cannabinoid Ligands." Current Medicinal Chemistry 19, no. 28 (October 1, 2012): 4794–815. http://dx.doi.org/10.2174/092986712803341575.
Full textIEMURA, Ryuichi, Manabu HORI, Tadayuki SAITO, and Hiroshi OHTAKA. "Bioisosteric transformation of H1-antihistaminic benzimidazole derivatives." CHEMICAL & PHARMACEUTICAL BULLETIN 37, no. 10 (1989): 2723–26. http://dx.doi.org/10.1248/cpb.37.2723.
Full textWarszycki, Dawid, Stefan Mordalski, Jakub Staroń, and Andrzej J. Bojarski. "Bioisosteric Matrices for Ligands of Serotonin Receptors." ChemMedChem 10, no. 4 (March 13, 2015): 601–5. http://dx.doi.org/10.1002/cmdc.201402563.
Full textTomaszewski, Zbigniew, Michael P. Johnson, Xuemei Huang, and David E. Nichols. "Benzofuran bioisosteres of hallucinogenic tryptamines." Journal of Medicinal Chemistry 35, no. 11 (May 1992): 2061–64. http://dx.doi.org/10.1021/jm00089a017.
Full textGoldring, Alastair O., Ian H. Gilbert, Naheed Mahmood, and Jan Balzarini. "Lipophilic bioisosteres of nucleoside triphosphates." Bioorganic & Medicinal Chemistry Letters 6, no. 20 (October 1996): 2411–16. http://dx.doi.org/10.1016/0960-894x(96)00443-x.
Full textVANMIDDLESWORTH, FRANK, JIM MILLIGAN, KEN BARTIZAL, CLAUDE DUFRESNE, JAN ONISHI, GEORGE ABRUZZO, ART PATCHETT, and KEN WILSON. "Carbazate as a Glycine Bioisostere in Restricticin." Journal of Antibiotics 49, no. 3 (1996): 329–31. http://dx.doi.org/10.7164/antibiotics.49.329.
Full text