Academic literature on the topic 'Biological agent detection'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biological agent detection.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biological agent detection"

1

JAKUPCIAK, JOHN P., and RITA R. COLWELL. "Biological agent detection technologies." Molecular Ecology Resources 9 (May 2009): 51–57. http://dx.doi.org/10.1111/j.1755-0998.2009.02632.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pohanka, Miroslav, Petr Skládal, and Michal Kroèa. "Biosensors for Biological Warfare Agent Detection." Defence Science Journal 57, no. 3 (2007): 185–93. http://dx.doi.org/10.14429/dsj.57.1760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

EMANUEL, P. "Recombinant antibodies: a new reagent for biological agent detection." Biosensors and Bioelectronics 14, no. 10-11 (2000): 751–59. http://dx.doi.org/10.1016/s0956-5663(99)00058-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Romay, F. J., D. L. Roberts, V. A. Marple, B. Y. H. Liu, and B. A. Olson. "A High-Performance Aerosol Concentrator for Biological Agent Detection." Aerosol Science and Technology 36, no. 2 (2002): 217–26. http://dx.doi.org/10.1080/027868202753504074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kish, Laszlo B., Hung C. Chang, Maria D. King, et al. "Fluctuation-Enhanced Sensing for Biological Agent Detection and Identification." IEEE Transactions on Nanotechnology 10, no. 6 (2011): 1238–42. http://dx.doi.org/10.1109/tnano.2011.2105277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Griest, Wayne H., Marcus B. Wise, Kevin J. Hart, Stephen A. Lammert, Cyril V. Thompson, and Arpad A. Vass. "Biological agent detection and identification by the Block II Chemical Biological Mass Spectrometer." Field Analytical Chemistry & Technology 5, no. 4 (2001): 177–84. http://dx.doi.org/10.1002/fact.1019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anderson, George P., Keeley D. King, David S. Cuttino, et al. "Biological agent detection with the use of an airborne biosensor." Field Analytical Chemistry & Technology 3, no. 4-5 (1999): 307–14. http://dx.doi.org/10.1002/(sici)1520-6521(1999)3:4/5<307::aid-fact9>3.0.co;2-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

VERNIK, IGOR V. "ULTRASENSITIVE WIDEBAND INTEGRATED SPECTROMETER FOR CHEMICAL AND BIOLOGICAL AGENT DETECTION." International Journal of High Speed Electronics and Systems 18, no. 01 (2008): 87–98. http://dx.doi.org/10.1142/s0129156408005163.

Full text
Abstract:
A novel concept of a compact mm/submm integrated spectrometers for environmental monitoring for hazardous materials of chemical and biological origin as well as for remote monitoring of the Earth atmosphere is discussed. The agents will be exactly identified by their unique spectral signatures. The assembled on a multi-chip module, cryocooler-mounted Superconducting Integrated SPectromer (SISP) exploits the superior performance of superconducting Josephson junction technology and unique on-chip integration of analog components, analog-to-digital converter, and digital components. Analog components include a superconductor-insulator-superconductor (SIS) mixer with integrated quasioptical antenna, mm-wave local oscillator, and SQUID amplifier for the down-converted (IF) signals. Upon amplification, the IF signal is digitized using a bandpass delta-sigma modulator, followed by real time processing with rapid single flux quantum (RSFQ) circuitry. Experimental results showing both operation of spectrometer components and the way to their successful integration are presented.
APA, Harvard, Vancouver, ISO, and other styles
9

Song, Linan, Soohyoun Ahn, and David R. Walt. "Fiber-Optic Microsphere-Based Arrays for Multiplexed Biological Warfare Agent Detection." Analytical Chemistry 78, no. 4 (2006): 1023–33. http://dx.doi.org/10.1021/ac051417w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hybl, John D., Shane M. Tysk, Shaun R. Berry, and Michael P. Jordan. "Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection." Applied Optics 45, no. 34 (2006): 8806. http://dx.doi.org/10.1364/ao.45.008806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Biological agent detection"

1

Palframan, Mark C. "Real Time Biological Threat Agent Detection with a Surface Plasmon Resonance Equipped Unmanned Aerial Vehicle." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23241.

Full text
Abstract:
A system was developed to perform real-time biological threat agent (BTA) detection<br />with a small autonomous unmanned aerial vehicle (UAV). Biological sensors just recently<br />reached a level of miniaturization and sensitivity that made UAV integration a feasible task.<br />A Surface Plasmon Resonance (SPR) biosensor was integrated for the first time into a small<br />UAV platform, allowing the UAV platform to collect and then quantify the concentration<br />of an aerosolized biological agent in real-time. A sensor operator ran the SPR unit through<br />a groundstation laptop and was able to wirelessly view detection results in real time. An<br />aerial sampling mechanism was also developed for use with the SPR sensor. The collection<br />system utilized a custom impinger setup to collect and concentrate aerosolized particles.<br />The particles were then relocated and pressurized for use with the SPR sensor. The sampling<br />system was tested by flying the UAV through a ground based plume of water soluble<br />dye. During a second flight test utilizing the onboard SPR sensor, a sucrose solution was<br />autonomously aerosolized, collected, and then detected by the combined sampling and SPR<br />sensor subsystems, validating the system\'s functionality. The real-time BTA detection system<br />has paved the way for future work quantifying biological agents in the atmosphere and<br />performing source localization procedures.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
2

Adducci, Benjamin Augustus. "Detection of a Surrogate Biological Threat Agent (Bacillus globigii) with a Portable Surface Plasmon Resonance Biosensor." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/73535.

Full text
Abstract:
New methods and technology are needed to detect biological agents that threaten the health of humans and domestic animals. The bacterium Bacillus anthracis, causal agent of anthrax, has been used as a biological warfare agent. Here, we extend the work of Chinowksy et al. (2007) to the detection of a surrogate of B. anthracis, B. globigii (also known as B. atrophaeus, B. subtilis var. niger, B. subtilis var. subtilis) in a mixed sample containing two different species of Bacillus using a portable surface plasmon resonance (SPR) biosensor (SPIRIT 4.0, Seattle Sensor Systems). Two methods (direct capture and antibody injection) were used to determine the limit of detection for spores of B. globigii and to detect spores of B. globigii in a mixed sample containing at least one other Bacillus spp. Spores of B. globigii were detected on freshly coated sensors (not previously exposed to spores) with direct capture at a minimum concentration of 10^7 spores/mL, and with antibody injection at a concentration of 10^5 spores/mL. Spores of B. globigii were also detected when mixed with B. pumilus spores in the same sample at equal concentrations (107 spores/mL) using antibody injection. An SPR method using synthetic miRNA was adapted to the portable SPR unit (SPIRIT), and preliminary experiments suggested that the target sequence could be detected. SPR methods using nucleic acids have an exciting future in the detection of biological agents, such as B. anthracis. With the availability of portable instrumentation to accurately detect biological warfare agents such as B. anthracis, emergency responders can implement emergency protocols in a timely fashion, limiting the amount of people and domestic animals exposed.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
3

Pulsipher, Trenton C. "Statistical Considerations in Designing for Biomarker Detection." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1992.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheong, Kit. "Analysis of an Optical Coherence Imaging Modality on the Detection of an Abnormality in Biological Tissue with a Nanoparticle Contrast Agent." Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/195474.

Full text
Abstract:
There is great interest in promoting the use of contrast agents in optical imaging for better diagnosis of diseases. However, until recently, there was still no quantitative method existing to assess the ability of contrast agents in improving clinical diagnosis. In this study, we used the method of task-based medical image analysis as a quantitative tool to evaluate the effectiveness of nanoparticles as contrast agents in an OCT imaging modality for clinical diagnosis.The task was formulated as the detection of abnormalities in a biological tissue using a quadratic observer. We derived the test statistics of the quadratic observer, and an analytical expression for the index of detectability for such a quadratic observer. The statistical properties of the OCT data are determined by the stochastic mechanisms in the imaging system as well as the demodulation method in the data acquisition process. In this analysis, we have considered the effect of phase fluctuations from the broadband source, the shot noise fluctuations of the imaging system, and the scattering noise due to refractive index fluctuation in the biological tissue. Our analysis was performed at the system level by integrating to the analysis the data demodulation process based on a mixer scheme. Also, we implemented the dynamic focusing in the scanning process.Optical propagation in biological samples is dominated by scattering due to fluctuations in refractive index. For OCT imaging, it is assumed that only the singly scattered field from the sample will contribute significantly to the interferometric optical power. We modeled the normal biological tissue (the background) as a spatial Poisson field of randomly distributed scattering centers, and the abnormality (the target) as a region with a different concentration of scattering centers embedded in the background.We presented the results on the detectability of abnormalities of different sizes, with or without the presence of contrast agents. We have shown that the application of nanoparticle contrast agents improved the detectability of small abnormalities which are usually difficult to detect. We have thus shown the efficacy of the task-based analysis framework in delivering quantitative assessments of the efficiency of contrast agents.
APA, Harvard, Vancouver, ISO, and other styles
5

Afouda, Leonard A. C. "Approach to the biological control of Macrophomina phaseolina (Tassi) Goid, causal agent of charcoal rot of cowpea (Vigna unguiculata (L.) Walp), and development of serological methods for its detection /." Göttingen : Cuvillier, 1999. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=008864202&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Holman, Charles E. "Predicting biological warfare agent detector performance." Fairfax, VA : George Mason University, 2008. http://hdl.handle.net/1920/3091.

Full text
Abstract:
Thesis (Ph.D.)--George Mason University, 2008.<br>Vita: p. 232. Thesis director: Andrew Loerch. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biodefense. Title from PDF t.p. (viewed July 7, 2008). Includes bibliographical references (p. 226-231). Also issued in print.
APA, Harvard, Vancouver, ISO, and other styles
7

Bacena, Dulay Samuel. "Development of electrochemical biosensors for the detection of biological warfare agents." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/279295.

Full text
Abstract:
En aquesta tesi, s’ha desenvolupat un sensitiu bio-sensor electroquímic, amb capacitat de multiplexió, simple, de baix cost i portable, per a la detecció ràpida i fiable d’agents de guerra biològica en diferents situacions com la seguretat nacional, operacions militars i seguretat en instal•lacions dels transports públics. En el desenvolupament de l’immuno-sensor es van explorar diferents superfícies químiques, utilitzant fragments d’anticossos o anticossos sencers per a la detecció de cèl•lules bacterianes. També es va explorar la detecció d’anticossos d’anti-Francisella tularensis en mostres de sèrum animal infectades amb tularemia. Els resultats van mostrar un bon grau de correlació en ésser comparats amb els obtinguts mitjançant mètodes ELISA. En el desenvolupament del bio-sensor d’ADN, es va dur a terme la detecció simultània de vuit (8) espècies virulentes, emprant un conjunt de sensors, amb diferents dissenys de sondes. El conjunt de bio-sensors i l’immuno-sensor van ser integrats amb micro-fluids localitzats en un dispositiu de testeig. Utilitzant un mètode de nano-plantilles (diferents fases de surfactant octaethylene glycol monohexadecyl ether) per a una millor distribució de les sondes, es va aconseguir millorar la sensibilitat i el límit inferior de detecció del bio-sensor d’ADN, millorant l’eficiència d’hibridació. Les superfícies modificades d’elèctrode d’or van ser avaluades mitjançant fluorescència i força atòmica microscòpica i electroquímica. En general, aquest treball constitueix una completa visió del desenvolupament de bio-sensors electroquímics per a la detecció de cèl•lules bacterianes de F. tularensis, anticossos anti-F. Tularensis, així com d’un conjunt de bio-sensors d’ADN multiplexats, altament sensitius i selectius per a la detecció de productes RCP.<br>n esta tesis, se desarrolló un sensitivo bio-sensor electroquímico, con capacidad de multiplexión, simple, de bajo coste y portable, para la detección rápida y fiable de agentes de guerra biológica en diferentes situaciones como la seguridad nacional, operaciones militares y seguridad en instalaciones de los transportes públicos. En el desarrollo del inmuno-sensor, se exploraron diferentes superficies químicas usando fragmentos de anticuerpos o anticuerpos enteros para la detección de células bacterianas. También se exploró la detección de anticuerpos de anti-Francisella tularensis en muestras de suero animal infectadas con tularemia. Los resultados mostraron un buen grado de correlación al ser comparados con los obtenidos mediante métodos ELISA. En el desarrollo del bio-sensor de ADN se llevó a cabo la detección simultánea de ocho (8) especies virulentas utilizando un conjunto de sensores, con diferentes diseños de sondas. El conjunto de bio-sensores i el inmuno-sensor fueron integrados con micro-fluidos localizados en un dispositivo de testeo. Usando un método de nano-plantillas (diferentes fases de surfactante octaethylene glycol monohexadecyl ether) para una mejor distribución de las sondas, se consiguió mejorar la sensibilidad y el límite inferior de detección del bio-sensor de ADN, mejorando la eficiencia de hibridación. Las superficies modificadas de electrodo de oro fueron evaluadas mediante fluorescencia y fuerza atómica microscópica y electroquímica. En general, este trabajo constituye una completa visión del desarrollo de bio-sensores electroquímicos para la detección de células bacterianas de F. tularensis, anticuerpos anti-F. Tularensis, así como de un conjunto de bio-sensores de ADN multiplexados altamente sensitivos y selectivos para la detección de productos RCP.<br>In this thesis, a simple, low cost, portable, multiplexing capable and sensitive electrochemical biosensor was developed for rapid and reliable detection of biowarfare agents for different situations like homeland security, military operations, public transportation securities such as airports, metro and railway stations. In the development of immunosensor, different surface chemistry using antibody fragments or whole antibodies were explored for bacterial cells detection. The detection of anti-Francisella tularensis antibodies in animal serum samples known to be infected with tularemia was also explored. The results obtained were compared to that obtained using ELISA methods with a good degree of correlation. In the development of multiplexed DNA biosensor, simultaneous detection of eight (8) virulent species using a sensor array was developed using different designs of capture probes. The developed multiplexed biosensor array and immunosensor for detecting bacterial cells were integrated with microfluidics housed in a tester set-up device. The search to improve sensitivity and lower limit of detection of a DNA biosensor was achieved using a nanotemplating method for a better probe distribution enhancing hybridisation efficiency. Different phases of the surfactant octaethylene glycol monohexadecyl ether were used as templates. Fluorescence and atomic force microscopy as well as electrochemistry were used to evaluate the modified surfaces of gold electrode. Overall, this work constitutes a complete overview of the development of electrochemical biosensors for the detection of bacterial cells of F. tularensis, anti-F. tularensis antibodies as well a highly sensitive and selective multiplexed DNA biosensor array for the detection of PCR products.
APA, Harvard, Vancouver, ISO, and other styles
8

Mayboroda, Olena. "Development of diagnostic platform for detection of biological agents and toxic microalgae using isothermal amplification." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/461089.

Full text
Abstract:
L'objectiu principal d’aquesta tesis és desenvolupar sensors d’ADN portàtils i fàcils d’utilitzar per analitzar material genètic al lloc on sigui necessari, superant les limitacions de les tecnologies actuals. Per dur-ho a terme, els sensors d’ADN s’han dissenyat integrant en un únic dispositiu dues tecnologies: l’amplificació isotèrmica d’ADN, tant en fase líquida com en fase sòlida, i la tecnologia de microarrays. A la tesis es detallen els resultats obtinguts per assolir els objectius específics, que inclouen: el desenvolupament d’una plataforma d’anàlisi d’ADN en fase líquida per a la detecció simultània de diversos organismes. L’ús d’amplificació isotèrmica d’ADN en superfície (fase sòlida), combinant tant amb detecció òptica com detecció electroquímica per a la detecció de mostres reals. L’estudi i optimització de la química de superfície dels sensors d’ADN en fase sòlida, i finalment, l’amplificació isotèrmica d’ADN d’algues tòxiques emprant dNTPs modificats amb molècules redox, fet que permet mesurar directament l’ADN amplificat reduint el temps total d’anàlisi.<br>El objetivo principal de la tesis es desarrollar sensores de ADN portátiles y fáciles de utilizar para analizar material genético allí donde sea requerido, superando las limitaciones de las tecnologías actuales. Para llevarlo a cabo, los sensores de ADN se han diseñado integrando en un único dispositivo dos tecnologías: la amplificación isotérmica de ADN tanto en fase líquida como en fase sólida, y la tecnología de microarrays. En la tesis se detallan los resultados obtenidos para lograr los objetivos específicos, que incluyen: el desarrollo de una plataforma de análisis de ADN en fase líquida para la detección simultánea de distintos organismos. El uso de amplificación isotérmica de ADN en superficie (fase sólida) combinado tanto con detección óptica como con detección electroquímica para la detección de muestras reales. El estudio y optimización de la química de superficie de los sensores de ADN en fase sólida, y finalmente, la amplificación isotérmica de ADN de algas tóxicas utilizando dNTPs modificados con moléculas redox, cosa que permite medir el ADN amplificado directamente, reduciendo así el tiempo tota de análisis.<br>The main goal of this doctoral thesis is to present alternative approaches in the field of DNA biosensors, design and develop new isothermal amplification protocols compatible with a portable, easy-to use device that can be deployed for analysis of genetic material at the point-of-care/need, while overcoming some of the currently existing limitations. In order to achieve this objective, a variety of different strategies of effective solid-phase immobilisation and liquid-phase and solid-phase isothermal enzymatic amplification have been studied to achieve lower detection limits with rapid and easy to carry out assays. This work presents a convenient, flexible solution for detecting DNA with biosensors, exploiting a general concept of liquid-phase and solid-phase isothermal amplification and detection, thus integrating two nucleic acid tests, PCR and microarrays, in one single device. The thesis report the work performed to achieve the specific objectives of this doctoral thesis: the development of multiplexing platform for simultaneous detection of several targets, the use of solid-phase recombinase polymerase amplification strategy for DNA amplification with optical and electrochemical detection, the detection of real samples, the study of the surface chemistry and the combination of isothermal amplification with redox labelled dNTPs for the amplification and detection of toxic microalgae as an innovative method that permits incorporation of labels throughout the amplification process facilitating direct electrochemical detection of the DNA products and an inherent shortening of assay time.
APA, Harvard, Vancouver, ISO, and other styles
9

Segal, Jonathan. "Real-time qPCR Assay Development for Detection of Bacillus thuringiensis and Serratia marcescens DNA and the Influence of Complex Microbial Community DNA on Assay Sensitivity." FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/1030.

Full text
Abstract:
Real-time quantitative polymerase chain reaction (real-time qPCR) assays are an effective technique to detect biological warfare agents and surrogate organisms. In my study, primers were designed to detect chromosomal DNA of biological warfare agent surrogates B. thuringiensis and S. marcescens (representing B. anthracis and Y. pestis, respectively) via real-time qPCR. Species-level specificity of the primers was demonstrated through comparisons with a bacterial strain panel and corroborated by qPCR data. Additionally, the primer efficacy was tested when template DNA was spiked into metagenomic DNA extracted from clinical lung microbiome samples. The results showed that while detection of B. thuringiensis or S. marcescens was still largely successful, the addition of metagenomic DNA did significantly inhibit amplification in most cases. The present study is significant not only for the design of multiple novel primer pairs able to detect bacterial agents in metagenomic DNA, but also the quantitative insight to the influence of background DNA on single species detection at low DNA concentrations.
APA, Harvard, Vancouver, ISO, and other styles
10

Heard, Edward. "Establishment of blackberries and detection and management of raspberry crown borer." Master's thesis, Mississippi State : Mississippi State University, 2006. http://library.msstate.edu/etd/show.asp?etd=etd-12012006-133945.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Biological agent detection"

1

Banoub, Joseph. Detection of Biological Agents for the Prevention of Bioterrorism. Springer Science+Business Media B.V., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Banoub, Joseph, ed. Detection of Biological Agents for the Prevention of Bioterrorism. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-9815-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Banoub, Joseph H., and Richard M. Caprioli, eds. Molecular Technologies for Detection of Chemical and Biological Agents. Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1113-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heineman, William R. Rapid detection of bioterrorism agents in water supplies. Awwa Research Foundation, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Banoub, Joseph, ed. Detection of Chemical, Biological, Radiological and Nuclear Agents for the Prevention of Terrorism. Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9238-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Y, Ong Kwok, ed. Detection technologies for chemical warfare agents and toxic vapors. CRC Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Oshima, Kevin H. Ultrafiltration-based extraction for biological agents in early warning systems. Awwa Research Foundation, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Institute of Medicine (U.S.). Board on Health Sciences Policy, National Research Council (U.S.). Board on Chemical Sciences and Technology, National Research Council (U.S.). Board on Life Sciences, and National Academies Press (U.S.), eds. BioWatch and public health surveillance: Evaluating systems for the early detection of biological threats. National Academies Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fountain, Augustus W. Chemical, biological, radiological, nuclear, and explosives (CBRNE) sensing IX: 18-20 March 2008, Orlando, Florida, USA. SPIE, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fountain, Augustus W. Chemical, biological, radiological, nuclear, and explosives (CBRNE) sensing X: 14-16 April 2009, Orlando, Florida, United States. SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Biological agent detection"

1

Valdes, J. J. "Biological Agent Detection Technology." In Verification of the Biological and Toxin Weapons Convention. Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-3643-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stopa, Peter J., John Walther, and Jeff Morgan. "Technical Approaches to Biological Agent Detection." In Technology for Combating WMD Terrorism. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2683-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Yih-Far, Joon Mo Yang, Jen Gau, Chih-Ming Ho, and Yu-Chong Tai. "Microfluidic System for Biological Agent Detection." In Science and Art Symposium 2000. Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4177-2_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Joon Mo, Janice Bell, Ying Huang, et al. "An Integrated, Stacked Microlaboratory for Biological Agent Detection." In Micro Total Analysis Systems 2001. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-1015-3_220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Szymański, G., R. Jóźwicki, L. Wawrzyniuk, M. Rataj, and M. Józwik. "Novel FTIR Spectrometer for the Biological Agent Detection." In Mechatronics. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23244-2_82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ramasamy, M., and B. C. Prorok. "Resonance Behavior of Magnetostrictive Sensor in Biological Agent Detection." In Experimental and Applied Mechanics, Volume 6. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9792-0_124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ehricht, Ralf, Karin Adelhelm, Stefan Monecke, and Birgit Huelseweh. "Application of Protein ArrayTubes to Bacteria, Toxin, and Biological Warfare Agent Detection." In Methods in Molecular Biology. Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-372-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eifried, Gary. "Detecting Biological Terrorism." In The Role of Biotechnology in Countering BTW Agents. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0775-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bologna, Mauro. "Biological Agents and Bioterrorism." In Detection of Chemical, Biological, Radiological and Nuclear Agents for the Prevention of Terrorism. Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9238-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hülseweh, Birgit, and Hans-Jürgen Marschall. "Detection and Analysis of Biological Agents." In CBRN Protection. Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650163.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Biological agent detection"

1

Phelps, Kirkman R. "Chemical/Biological Agent Stand-Off Detection." In 1988 Los Angeles Symposium--O-E/LASE '88, edited by Frank Allario. SPIE, 1988. http://dx.doi.org/10.1117/12.944247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, Aloke, Venu Gorti, and Steve Wereley. "Biological Agent Detection Using Optical Diffusometry Methods." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13267.

Full text
Abstract:
Biological agent detection has captured the attention of many researchers over the last few years. The present research explores the possibility of directly measuring the diffusion coefficients of sub-micron particles as a means of pathogen detection. At a constant temperature, the diffusion coefficient is simply a function of the drag on the particle. If the particles are functionalized with antibodies against a specific analyte and introduced into a sample containing that analyte, binding of the analyte with the particles will increase the particles' hydrodynamic drag. This results in a decrease in diffusion, which is measured by a particle tracking algorithm. The reduction in diffusion is correlated with the amount of analyte present. Sensitivity to experimental conditions is also explored and it is shown that alternate methods like optical traps provide an even better technique for biological agent detection.
APA, Harvard, Vancouver, ISO, and other styles
3

Dausch, David E., Kristin H. Gilchrist, Daniel G. Cole, Monica Rivera, and Robert L. Clark. "Active microcantilever device for biological agent detection." In Defense and Security Symposium, edited by Patrick J. Gardner and Augustus W. Fountain III. SPIE, 2006. http://dx.doi.org/10.1117/12.665991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Manning, Christopher, Michael Gross, Tim Hanshaw, R. Lynn Kirlin, and Alan Samuels. "Compact interferometers for chemical and biological agent detection." In Optical Technologies for Industrial, Environmental, and Biological Sensing, edited by James O. Jensen and Jean-Marc Theriault. SPIE, 2004. http://dx.doi.org/10.1117/12.519193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Braun, Jerome J., Yan Glina, Nicholas Judson, and Kevin D. Transue. "Biological agent detection and identification using pattern recognition." In Defense and Security, edited by Patrick J. Gardner. SPIE, 2005. http://dx.doi.org/10.1117/12.605913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Samuels, Alan C., Joshua L. Santarpia, Jerold R. Bottiger, Scott A. Hunter, and Edward W. Stuebing. "Test methodology development for biological agent detection systems." In Optics East 2006, edited by Steven D. Christesen, Arthur J. Sedlacek III, James B. Gillespie, and Kenneth J. Ewing. SPIE, 2006. http://dx.doi.org/10.1117/12.686715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mudigonda, Naga R., and Ray Kacelenga. "Biological agent detection based on principal component analysis." In Defense and Security Symposium, edited by Patrick J. Gardner and Augustus W. Fountain III. SPIE, 2006. http://dx.doi.org/10.1117/12.669522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Carrano, John C., John C. Carrano, Andrew J. Maltenfort, and Andrew J. Maltenfort. "Semiconductor ultraviolet optical sources for biological agent detection." In AeroSense 2002, edited by Edward M. Carapezza. SPIE, 2002. http://dx.doi.org/10.1117/12.448517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Farquharson, Stuart, Alan Gift, Paul Maksymiuk, et al. "Chemical agent detection by surface-enhanced Raman spectroscopy." In Optical Technologies for Industrial, Environmental, and Biological Sensing, edited by Arthur J. Sedlacek III, Richard Colton, and Tuan Vo-Dinh. SPIE, 2004. http://dx.doi.org/10.1117/12.511940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ramasamy, Madhumidha, and Barton C. Prorok. "Resonance Behavior of Magnetostrictive Sensor in Biological Agent Detection." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37162.

Full text
Abstract:
The growing threat of biowarfare agents and bioterrorism has led to the development of specific field tools that perform rapid analysis and identification of encountered suspect materials. One such technology, recently developed is a microscale acoustic sensor that uses experimental modal analysis. Ferromagnetic materials with the property to change their physical dimensions in response to changing its magnetization can be built into such sensors and actuators. One such sensor is fashioned from Metglas 2826mb, a Magnetostrictive strip actuated in their longitudinal vibration mode when subjected to external magnetic field. Due to mass addition, these magnetostrictive strips are driven to resonance with a modulated magnetic field resulting in frequency shifts. In vibration mechanics the frequency shift for a certain amount of mass will have a tolerance limit based on their distribution and discrete position over the sensor platform. Moreover lateral positioning of same amount of mass does not influence the resonant frequency shift of the sensor. In this regard, this work concentrates on developing a model correlating experimental and numerical simulations to determine the mass of E.coli O157:H7 cells attached to the sensor platform.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Biological agent detection"

1

Vold, Natalie K. Biological Agent Testing Lab Uses CGFs to Represent Biothreat Agent DNA for Aerosol Detection. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1088889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Jian-Qiao. Sample Concentration Systems for Chemical and Biological Agent Detection in Water. Defense Technical Information Center, 2001. http://dx.doi.org/10.21236/ada399976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Figiel, Jeffrey James, Mary Hagerott Crawford, Michael Anthony Banas, et al. Final LDRD report : development of advanced UV light emitters and biological agent detection strategies. Office of Scientific and Technical Information (OSTI), 2007. http://dx.doi.org/10.2172/950095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aker, Pam M., Timothy J. Johnson, Richard M. Williams, and Nancy B. Valentine. Feasibility Study of Using Short Wave Infrared Cavity Ringdown Spectroscopy (SWIR-CRDS) for Biological Agent Detection. Office of Scientific and Technical Information (OSTI), 2007. http://dx.doi.org/10.2172/949941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sun, Jian-Qiao. Sample Concentration Systems for Fast Laboratory Evaluation of Sensory Materials for Chemical and Biological Agent Detection in Water. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada412618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Williams, Bryan R. G. Rapid Detection of Cellular Responses to Biological Agents. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada410758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Williams, Bryan R. Rapid Detection of Cellular Responses to Biological Agents. Defense Technical Information Center, 2004. http://dx.doi.org/10.21236/ada421869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Langry, K., and J. Horn. Chemiluminescence assay for the detection of biological warfare agents. Office of Scientific and Technical Information (OSTI), 1999. http://dx.doi.org/10.2172/15013394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cload, Sharon. Novel Biosensors for the Detection of Biological Warfare Agents. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada415590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zdanovsky, Alexey G. A Rapid Sensitive Universal Detection System for Biological Agents of Mass-destruction. Defense Technical Information Center, 2000. http://dx.doi.org/10.21236/ada382700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!