To see the other types of publications on this topic, follow the link: Biological fixation of nitrogen.

Journal articles on the topic 'Biological fixation of nitrogen'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Biological fixation of nitrogen.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sprent, J. I., and M. Alexander. "Biological Nitrogen Fixation." Journal of Applied Ecology 22, no. 2 (1985): 601. http://dx.doi.org/10.2307/2403193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wiseman, Alan, Gordon C. Hartman, and Barry E. Smith. "Biological nitrogen fixation." Journal of Biological Education 19, no. 1 (1985): 24–30. http://dx.doi.org/10.1080/00219266.1985.9654683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Burris, R. H., and G. P. Roberts. "Biological Nitrogen Fixation." Annual Review of Nutrition 13, no. 1 (1993): 317–35. http://dx.doi.org/10.1146/annurev.nu.13.070193.001533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Šimon, T. "Utilization of the biological nitrogen fixation for soil evaluation." Plant, Soil and Environment 49, No. 8 (2011): 359–63. http://dx.doi.org/10.17221/4137-pse.

Full text
Abstract:
Non-symbiotic nitrogen fixation (potential nitrogenase activity – PNA) of soil samples originating from different plots of long-term field experiments (selected variants: Nil, NPK [mineral fertilisation: 64.6–100 kg N/ha/year], FYM [farmyard manure], and FYM + NPK from three blocks III, IV and B with different crop rotation) was determined in laboratory experiments. The symbiotic nitrogen fixation (total nitrogenase activity – TNA) of the same soil samples was evaluated in hydroponic experiments with pea (2001, 2002) and lucerne (2001) in which the soil samples we
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Barry E. "Nitrogen and diversity biological nitrogen fixation." Trends in Biochemical Sciences 18, no. 3 (1993): 109–10. http://dx.doi.org/10.1016/0968-0004(93)90165-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vicente, C. S. L., M. A. Pérez-Fernández, G. Pereira, and M. M. Tavares-de-Sousa. "  Biological nitrogen fixation of Biserrula pelecinus L. under water deficit." Plant, Soil and Environment 58, No. 8 (2012): 360–66. http://dx.doi.org/10.17221/786/2011-pse.

Full text
Abstract:
The present work studied the effects of water deficiency conditions on the biological nitrogen fixation of three native rhizobia (SafPt12, SafPt6, and AjuPt16) isolated from Biserrula pelecinus L., and a reference strain Mesorhizobium ciceri biovar biserrulae. In terms of plant-water status, B. pelecinus showed typical signs of drought avoidance strategies such as reducing the aboveground development (i.e. reduction in leaf surface area and increase in root/shoot ratio) in detriment of a better developed root system. Dry-matter production and nitrogen content of the aboveground biomass decreas
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Jongsun, and Douglas C. Rees. "Nitrogenase and biological nitrogen fixation." Biochemistry 33, no. 2 (1994): 389–97. http://dx.doi.org/10.1021/bi00168a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Halbleib, Cale M., and Paul W. Ludden. "Regulation of Biological Nitrogen Fixation." Journal of Nutrition 130, no. 5 (2000): 1081–84. http://dx.doi.org/10.1093/jn/130.5.1081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bruijn, Frans J. de. "“Biological Nitrogen Fixation” Book Summary." Advances in Microbiology 06, no. 06 (2016): 407–11. http://dx.doi.org/10.4236/aim.2016.66040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Danso, S. K. A. "Assessment of biological nitrogen fixation." Fertilizer Research 42, no. 1-3 (1995): 33–41. http://dx.doi.org/10.1007/bf00750498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wielbo, Jerzy. "Recent Advances in Biological Nitrogen Fixation." Agronomy 11, no. 10 (2021): 1941. http://dx.doi.org/10.3390/agronomy11101941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Brewin, Nicholas J., and Andrzej B. Legocki. "Biological nitrogen fixation for sustainable agriculture." Trends in Microbiology 4, no. 12 (1996): 476–77. http://dx.doi.org/10.1016/s0966-842x(97)82908-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Orme-Johnson, W. H. "Molecular Basis of Biological Nitrogen Fixation." Annual Review of Biophysics and Biophysical Chemistry 14, no. 1 (1985): 419–59. http://dx.doi.org/10.1146/annurev.bb.14.060185.002223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rees, Douglas C., F. Akif Tezcan, Chad A. Haynes, et al. "Structural basis of biological nitrogen fixation." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, no. 1829 (2005): 971–84. http://dx.doi.org/10.1098/rsta.2004.1539.

Full text
Abstract:
Biological nitrogen fixation is mediated by the nitrogenase enzyme system that catalyses the ATP dependent reduction of atmospheric dinitrogen to ammonia. Nitrogenase consists of two component metalloproteins, the MoFe-protein with the FeMo-cofactor that provides the active site for substrate reduction, and the Fe-protein that couples ATP hydrolysis to electron transfer. An overview of the nitrogenase system is presented that emphasizes the structural organization of the proteins and associated metalloclusters that have the remarkable ability to catalyse nitrogen fixation under ambient conditi
APA, Harvard, Vancouver, ISO, and other styles
15

Richards, R. L. "The chemistry of biological nitrogen fixation." Soil Use and Management 6, no. 2 (1990): 80–82. http://dx.doi.org/10.1111/j.1475-2743.1990.tb00808.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Cheng, Qi. "Perspectives in Biological Nitrogen Fixation Research." Journal of Integrative Plant Biology 50, no. 7 (2008): 786–98. http://dx.doi.org/10.1111/j.1744-7909.2008.00700.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Howard, James B., and Douglas C. Rees. "Structural Basis of Biological Nitrogen Fixation." Chemical Reviews 96, no. 7 (1996): 2965–82. http://dx.doi.org/10.1021/cr9500545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Soares, Ricardo, Jesus Tejo, Maria Manuela Veloso, and Isabel Videira e Castro. "Biological nitrogen fixation by Phaseolus vulgaris." Revista de Ciências Agrárias 39, no. 4 (2016): 526–37. http://dx.doi.org/10.19084/rca16104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dixon, Ray, and Daniel Kahn. "Genetic regulation of biological nitrogen fixation." Nature Reviews Microbiology 2, no. 8 (2004): 621–31. http://dx.doi.org/10.1038/nrmicro954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Burris, R. H. "Biological nitrogen fixation: A scientific perspective." Plant and Soil 108, no. 1 (1988): 7–14. http://dx.doi.org/10.1007/bf02370094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kots, S. Ya. "Biological nitrogen fixation: achievements and prospects." Fiziologia rastenij i genetika 53, no. 2 (2021): 128–59. http://dx.doi.org/10.15407/frg2021.02.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yu, Tong, and Qianlai Zhuang. "Modeling biological nitrogen fixation in global natural terrestrial ecosystems." Biogeosciences 17, no. 13 (2020): 3643–57. http://dx.doi.org/10.5194/bg-17-3643-2020.

Full text
Abstract:
Abstract. Biological nitrogen fixation plays an important role in the global nitrogen cycle. However, the fixation rate has been usually measured or estimated at a particular observational site. To quantify the fixation amount at the global scale, process-based models are needed. This study develops a biological nitrogen fixation model to quantitatively estimate the nitrogen fixation rate by plants in a natural environment. The revised nitrogen module better simulates the nitrogen cycle in comparison with our previous model that has not considered the fixation effects. The new model estimates
APA, Harvard, Vancouver, ISO, and other styles
23

Santachiara, Gabriel, Fernando Salvagiotti, José A. Gerde, and José L. Rotundo. "Does biological nitrogen fixation modify soybean nitrogen dilution curves?" Field Crops Research 223 (June 2018): 171–78. http://dx.doi.org/10.1016/j.fcr.2018.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Neugschwandtner, Reinhard W., Alexander Bernhuber, Stefan Kammlander, et al. "Nitrogen Yields and Biological Nitrogen Fixation of Winter Grain Legumes." Agronomy 11, no. 4 (2021): 681. http://dx.doi.org/10.3390/agronomy11040681.

Full text
Abstract:
Grain legumes are valuable sources of protein and contribute to the diversification and sustainability of agricultural systems. Shifting the sowing date from spring to autumn is a strategy to address low yields of spring grain legumes under conditions of climate change. A two-year field experiment was conducted under Pannonian climate conditions in eastern Austria to assess the nitrogen yield and biological N2 fixation of winter peas and winter faba beans compared to their spring forms. The grain nitrogen yields of winter peas and winter faba beans were 1.83-fold and 1.35-fold higher compared
APA, Harvard, Vancouver, ISO, and other styles
25

Ciampitti, Ignacio A., and Fernando Salvagiotti. "New Insights into Soybean Biological Nitrogen Fixation." Agronomy Journal 110, no. 4 (2018): 1185–96. http://dx.doi.org/10.2134/agronj2017.06.0348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Leigh, G. J. "Update: Biological Nitrogen Fixation and Model Chemistry." Science 275, no. 5305 (1997): 1442–0. http://dx.doi.org/10.1126/science.275.5305.1442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Natr, L. "Biological Nitrogen Fixation Associated with Rice Production." Photosynthetica 34, no. 1 (1998): 66. http://dx.doi.org/10.1023/a:1006837917829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ciampitti, Ignacio, and Fernando Salvagiotti. "Soybeans and Biological Nitrogen Fixation: A review." Better Crops with Plant Food 102, no. 3 (2018): 5–7. http://dx.doi.org/10.24047/bc10235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Katz, Faith E. H., Cedric P. Owens, and F. A. Tezcan. "Electron Transfer Reactions in Biological Nitrogen Fixation." Israel Journal of Chemistry 56, no. 9-10 (2016): 682–92. http://dx.doi.org/10.1002/ijch.201600020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Dreyfus, B. L., H. G. Diem, and Y. R. Dommergues. "Future directions for biological nitrogen fixation research." Plant and Soil 108, no. 1 (1988): 191–99. http://dx.doi.org/10.1007/bf02370115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Santi, Carole, Didier Bogusz, and Claudine Franche. "Biological nitrogen fixation in non-legume plants." Annals of Botany 111, no. 5 (2013): 743–67. http://dx.doi.org/10.1093/aob/mct048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Burris, R. H. "Advances in biological nitrogen fixation, (Volume 19)." Journal of Industrial Microbiology and Biotechnology 22, no. 4-5 (1999): 381–93. http://dx.doi.org/10.1038/sj.jim.2900651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mus, Florence, Alexander B. Alleman, Natasha Pence, Lance C. Seefeldt, and John W. Peters. "Exploring the alternatives of biological nitrogen fixation." Metallomics 10, no. 4 (2018): 523–38. http://dx.doi.org/10.1039/c8mt00038g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Silsbury, J. H. "Biological nitrogen fixation technology for tropical agriculture." Field Crops Research 10 (January 1985): 95–97. http://dx.doi.org/10.1016/0378-4290(85)90015-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Boddey, R. M., S. Urquiaga, V. Reis, and J. Döbereiner. "Biological nitrogen fixation associated with sugar cane." Plant and Soil 137, no. 1 (1991): 111–17. http://dx.doi.org/10.1007/bf02187441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Freitas, Ana Dolores Santiago de, Everardo Valadares de Sá Barretto Sampaio, Carolina Etienne de Rosália e. Silva Santos, Aleksandro Ferreira da Silva, and Renata Janaína Carvalho de Souza. "Biological nitrogen fixation in the Brazilian Semiarid." Revista Brasileira de Geografia Física 8 (2015): 585–97. http://dx.doi.org/10.5935/1984-2295.20150016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kundu, D. K., and J. K. Ladha. "Enhancing Soil Nitrogen Use and Biological Nitrogen Fixation in Wetland Rice." Experimental Agriculture 31, no. 3 (1995): 261–78. http://dx.doi.org/10.1017/s0014479700025448.

Full text
Abstract:
SummaryThe limited fossil fuel reserve available for manufacturing fertilizer nitrogen and the adverse effects of continued use of high fertilizer nitrogen doses on the environment call for a more efficient use of indigenous soil nitrogen. This paper presents several ways of enhancing soil nitrogen use in wetland rice. These involve utilizing nitrogen present in the deeper soil layers, increasing soil nitrogen mineralization rate, decreasing the loss of mineralized nitrogen from the rooting zone, and adjusting rice variety, soil flooding, and transplanting time. To sustain nitrogen fertility a
APA, Harvard, Vancouver, ISO, and other styles
38

Vance, Carroll P. "Nitrogen Fixation. John Postgate." Quarterly Review of Biology 75, no. 3 (2000): 305. http://dx.doi.org/10.1086/393510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Carreres, R., R. González Tomé, J. Sendra, et al. "Effect of nitrogen rates on rice growth and biological nitrogen fixation." Journal of Agricultural Science 127, no. 3 (1996): 295–302. http://dx.doi.org/10.1017/s002185960007845x.

Full text
Abstract:
SUMMARYThe effect of different rates (0–140 kg/ha) of nitrogen fertilizers on soil cyanobacteria and rice crop performance were studied in a rice-cropping system on an alkaline Fluvent soil at Valencia, Spain, during three consecutive crop seasons (1990–92). The results showed that the rice fields of Valencia favour the development of N2-fixing cyanobacteria. Nitrogen fixation varied during the cultivation cycle, reaching its highest values at the maximum tillering stage, 5–6 weeks after sowing, and showed a positive correlation with the abundance of cyanobacteria and a negative correlation wi
APA, Harvard, Vancouver, ISO, and other styles
40

Wolfe, E. C. "Nitrogen Special Issue: summing up of papers and recommendations for future research." Australian Journal of Experimental Agriculture 41, no. 3 (2001): 459. http://dx.doi.org/10.1071/ea00137.

Full text
Abstract:
The 12th Australian Nitrogen Fixation Conference was the third in a series of national workshops that began in 1991 and dealt with aspects of the nitrogen dynamics of Australian pastures and croplands. The conference and the papers published in the Special Issue addressed, at least in part, the slow progress that is evident in improving the rate of biological nitrogen fixation by enhancing inoculating techniques and Rhizobium strains. An important output from the conference was an analysis of nitrogen supply and demand in Australian dryland crops, indicating less reliance on biological nitroge
APA, Harvard, Vancouver, ISO, and other styles
41

Poonam Sharma, H. S. Sekhon, Veena Khanna, and G. Singh. "BIOLOGICAL NITROGEN FIXATION IN MUNGBEAN: FACTS AND FINDINGS." Acta Horticulturae, no. 752 (September 2007): 597–602. http://dx.doi.org/10.17660/actahortic.2007.752.113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

HUBBELL, DAVID H. "Biological Nitrogen Fixation and Sustainability of Tropical Agriculture." Soil Science 157, no. 1 (1994): 61–62. http://dx.doi.org/10.1097/00010694-199401000-00011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Spatzal, Thomas. "The Center of Biological Nitrogen Fixation: FeMo-Cofactor." Zeitschrift für anorganische und allgemeine Chemie 641, no. 1 (2014): 10–17. http://dx.doi.org/10.1002/zaac.201400161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bohlool, B. B., J. K. Ladha, D. P. Garrity, and T. George. "Biological nitrogen fixation for sustainable agriculture: A perspective." Plant and Soil 141, no. 1-2 (1992): 1–11. http://dx.doi.org/10.1007/bf00011307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Keyser, Harold H., and Fudi Li. "Potential for increasing biological nitrogen fixation in soybean." Plant and Soil 141, no. 1-2 (1992): 119–35. http://dx.doi.org/10.1007/bf00011313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ledgard, S. F., and K. W. Steele. "Biological nitrogen fixation in mixed legume/grass pastures." Plant and Soil 141, no. 1-2 (1992): 137–53. http://dx.doi.org/10.1007/bf00011314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Danso, S. K. A., G. D. Bowen, and N. Sanginga. "Biological nitrogen fixation in trees in agro-ecosystems." Plant and Soil 141, no. 1-2 (1992): 177–96. http://dx.doi.org/10.1007/bf00011316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ishizuka, Junji. "Trends in biological nitrogen fixation research and application." Plant and Soil 141, no. 1-2 (1992): 197–209. http://dx.doi.org/10.1007/bf00011317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Liyanage, M. de S., S. K. A. Danso, and H. P. S. Jayasundara. "Biological nitrogen fixation in four Gliricidia sepium genotypes." Plant and Soil 161, no. 2 (1994): 267–74. http://dx.doi.org/10.1007/bf00046398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Reis, Veronica M., Fábio B. dos Reis Jr, Diego M. Quesada, et al. "Biological nitrogen fixation associated with tropical pasture grasses." Functional Plant Biology 28, no. 9 (2001): 837. http://dx.doi.org/10.1071/pp01079.

Full text
Abstract:
This paper originates from an address at the 8th International Symposium on Nitrogen Fixation with Non-Legumes, Sydney, NSW, December 2000 The semi-humid or humid tropics are ideal for the production of large quantities of biomass from fast-growing C4 grasses, but high yields normally require large quantities of fertiliser, especially N, which has a very high input from fossil fuels (natural gas). A program has been started recently to use elephant grass (Pennisetum purpureum Schum.) to substitute firewood as a fuel and also to make charcoal for iron production. In this case, any large N ferti
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!