Dissertations / Theses on the topic 'Biological tissu'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Biological tissu.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Badie, Laetitia. "Adhésion sur les tissus biologiques." Thesis, Pau, 2016. http://www.theses.fr/2016PAUU3017/document.
Full textAdhesives are more and more used by the public to seal superficial wounds. The current adhesives for medical use are formulated on the basis of hydrogels, silicon and are ready to use. Only a few of them are associated to a particular preparation before application as the dental adhesives. The main goals of this research were to formulate some photo-polymerizable adhesives which induce a permanent strong anchorage into the internal biological tissues and to understand the mechanisms leading to a good quality adhesion and respecting the high constraints of the application: (i) the wetness of the media in which the adhesive is deposited, (ii) the viscoelasticity of the biological tissues and (iii) the easiness of the set up. The whole experiments were done onto a substrate considered as a “model”, the bovine pericardium, which was demonstrated to have the same mechanical properties as the human pericardium. This study showed that the adhesion onto internal tissue depends on several parameters. To create the adhesion, the adhesive has to wet and penetrate deep enough the tissue to get a strong mechanical anchorage. Thus, some low viscous acrylate-based adhesive formulations were realized. A linear correlation was found between the viscosity of the formulation before photo-polymerization and the adhesion energy: as the viscosity increases, the adhesion energy decreases. This result led to the hypothesis of the penetration of the adhesive into the tissue, which was proven by different techniques. Finally, it was proven that a strong adhesion onto a biological tissue depends on the viscosity and its capability to penetrate the substrate. This whole work led to the understanding of the mechanisms induced by the deposit of a monomer onto a living substrate and to some hypotheses about the polymerization of the adhesive layer and its interaction with the substrate. Some in-vivo experiments onto internal organs of mice or rabbits have shown promising results which are to be confirmed by multiple other experiments. Finally, a phenomenological description is proposed through a simplified equation takin into account different essential parameters to describe the mechanisms taking part into this phenomenon
Chen, Guoyan. "Dielectric characterizations, ex vivo experiments and multiphysics simulations of microwave hyperthermia of biological tissues." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066289/document.
Full textResearch and development of medical devices with various diagnostic and therapeutic applications have been carried out in different countries because of the great advances in electronic and electromagnetic devices during recent decades. However, at present, all of available existing microwave hyperthermia system can just offer treatment, by using high microwave power. In this thesis, a new microwave hyperemia system is researched which could have both diagnostic and therapeutic functions. One single applicator is used to measure dielectric properties of tissue with a very low harmless microwave power for diagnosis first. Then thermal therapeutic treatment will be carried out by using the same applicator with higher and adapted microwave power. Microwave broad band characterization of five different biological tissues at different temperatures with an open–ended coaxial probe method and the virtual line model has been carried out. Ex vivo microwave hyperthermia experiments using microwave power of a few Watts at 2.45GHz have been carried out on five tissues of various thicknesses. Temperature evolution of the biological tissues has been measured by using an infra-red senor. Electromagnetic and thermal simulations for ex vivo microwave hyperthermia experiment have also been achieved by using COMSOL Multiphysics software with 2D axisymmetrical finite–element method and considering different tissues of various thicknesses and incident microwave powers. Simulation results correlate well with the experimental ones. This research, illustrates the possibility to have a flexible and feasible coaxial cable for both diagnosis and treatment for a minimally invasive therapy
Ta, Anh Tuan. "Modélisation de lois de comportement anisotropes par la théorie mathématique des invariants : application aux matériaux biologiques fibreux." Thesis, Belfort-Montbéliard, 2014. http://www.theses.fr/2014BELF0236/document.
Full textThis thesis concerns a mathematical formulation of anisotropic behavior laws for the modeling of biological soft tissues (such as ligaments, muscle, tendons or arterial walls), fibers reinforced rubbers and textile composites used in aeronautical industry or for civil engineering applications. From the fifties, the theory of invariants was extensively developped in the framework of continuum mechanics and several families of invariants were proposed. However the use of these invariants meets some problems:• Because of a wide diversity, it is uneasy to well choose them in order to perform a finite element analysis.• It is difficult to give a physical meaning to some of them.• They often require the superposition of two strain energy densities: one for the description of the isotropic behavior of the material and one for the purely anisotropic behavior.To overcome these problems, a constructive method was recently proposed by Thionnet et al. It ensures the uniqueness (up to an algebraic relation) of the polynomial expression of the invariants. We have adapted this method to the case of anisotropic hyperelastic materials with two and with one single family of collagen fibers. In the first case, the Noether theorem and the Reynolds operator were used. The second case is more complex because the symmetry group is not of finite cardinal. Therefore, the Reynolds operator does not make sense anymore and the Noether theorem cannot be used. To overcome these technical difficulties, we have introduced a generalized Reynolds operator and we have shown that this operator is nothing but the extension of the classical one. In both cases of materials treated, we have succeeded to calculate an integrity basis made of invariants which are different (for some of them) from the classical ones found in the literature. In the case of the single family of fibers, we have demonstrated, thanks to the Kantorovich theorem, that one of those invariant was linked to the maximum value of the shear angle between the fiber and the matrix
Wang, Mengze. "Système radio-fréquences sans contact pour la caractérisation diélectrique de tissus biologiques." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS015.
Full textThe characterization of the dielectric properties of organic tissues is a major issue in health diagnosis. These properties reflect the way organic material stores or dissipates the electromagnetic energy transmitted by an external field. They are related to the composition and the structure of the organic medium. Furthermore, they are also related to the nature and the physiological state of a tissue. For that reason the estimation of these properties is very valuable for detecting and/or monitoring the evolution of tissue pathology.Among the existing dielectric characterization methods, we focused on a characterization technique using an inductive antenna, which acts as a transmitter/receiver sensor and allows a contactless implementation between the measuring system and investigated tissue to be carried out. This system is operated in the radio-frequency (RF) band. Indeed, in the RF the device is equally sensitive to both the electrical conductivity and the dielectric permittivity of the tissue. This technique operates in a near-field and therefore a 3D electromagnetic modeling technique is required to accurately model the interactions between the sensor and the investigated tissue.This work deals with the 3D modeling and with the resolution of the inverse problem required to estimate the dielectric parameters of tissues starting from the data provided by the antenna and the outputs of the model. For this purpose, a canonical configuration featuring a filiform circular antenna is considered. This antenna interacts with a “healthy” homogeneous dielectric medium, which possess the macroscopic dielectric parameters of a typical organic tissue (i.e. conductivity 0.6S/m and relative permittivity of 80 at 100 MHz). Meanwhile, a spherical inclusion buried within the tissue is considered to simulate a tissue lesion. This inclusion features a dielectric contrast of 10% up to 50% by reference to the parameters of the “healthy” medium. A 3D modeling of the sensor/tissue interactions is established, which is based on the distributed point source method (DPSM), a versatile semi-analytical modeling technique. The model is adjusted using a parametric study and validated against analytical models (in simplified configurations) and experiments. The implemented DPSM modeling was found to feature a 5% accuracy error, compared to the experimentations, together with offering an acceptable trade-off between accuracy and the computation cost. Finally, we focused on the solving of the inverse problem which consists in estimating the geometric and dielectric parameters of a buried lesion in the “healthy” dielectric medium, starting from the variations of the impedance of the RF antenna. To do so, a behavioral model build up using an artificial neural network (ANN) was established. The model is build using a data base elaborated using the DPSM model. The parameters of the ANN is discussed in order to identify the relevant configuration (frequency, position of the antenna) to estimate the dielectric properties, the size and the position of the inclusion in the tissue. For a single antenna operated at a single frequency, an inclusion of 3cm radius buried as deep at 6 cm within the tissue was located and characterized with estimation errors of the order of 7%.The methodologies developed in these works open the way to the diagnosis of more complex material (such as layered tissues), using promising techniques such as multi-frequency non contact RF antenna arrays
Harb, Nizar. "Identification inverse de paramètres biomécaniques en hyperélasticité anisotrope." Phd thesis, Université de Technologie de Belfort-Montbeliard, 2013. http://tel.archives-ouvertes.fr/tel-00879257.
Full textBoulvert, Frédéric. "ANALYSE DE MILIEUX FORTEMENT DIFFUSANTS PAR POLARIMETRIE DE MUELLER ET METHODES OPTIQUES COHERENTES. APPLICATION A L'ETUDE DU SYNDROME CUTANE D'IRRADIATION AIGUE." Phd thesis, Université de Bretagne occidentale - Brest, 2006. http://tel.archives-ouvertes.fr/tel-00079822.
Full textLA PREMIERE PARTIE REVIENT SUR LES MOTIVATIONS QUI ONT ABOUTI AU CHOIX DE LA POLARISATION COMME AGENT DE CONTRASTE DANS LE CADRE DE CETTE ETUDE. NOUS AVONS ALORS OPTE POUR LA POLARIMETRIE DE MUELLER, TECHNIQUE ADAPTEE A L'ETUDE D'UN MILIEU DEPOLARISANT TEL QUE LA PEAU.
LA DEUXIEME PARTIE POSE LES BASES THEORIQUES DANS L'INTERPRETATION DES RESULTATS OBTENUS A PARTIR DE LA MESURE DE LA MATRICE DE MUELLER D'UN MILIEU. LA LECTURE DE CETTE DERNIERE N'ETANT PAS IMMEDIATE, UN ALGORITHME DE DECOMPOSITION ET DE CLASSIFICATION DES MATRICES DE MUELLER DEPOLARISANTES ET NON DEPOLARISANTES A ETE DEVELOPPE. CELUI-CI EST VALIDE SUR UNE SERIE D'ECHANTILLONS DE NATURES TRES DIVERSES.
LA TROISIEME PARTIE PRESENTE LE POLARIMETRE ET LES RESULTATS, ANGULAIRES ET SPECTRAUX, OBTENUS SUR DES ECHANTILLONS DE PEAU IRRADIES OU IL N'Y A AUCUN SIGNE CLINIQUE VISIBLE. EN UTILISANT L'ALGORITHME PRECEDENT NOUS AVONS MIS EN EVIDENCE DEUX AGENTS DE CONTRASTE POLARIMETRIQUE QUI SEULS OU COMBINES APPORTENT UNE INFORMATION SUR LE TAUX D'IRRADIATION. CES RESULTATS SONT CONFORTES PAR UNE ETUDE HISTOLOGIQUE MENEE EN PARALLELE PAR L'IRSN. NOUS AVONS AINSI MONTRE QUE LA POLARISATION PEUT ETRE UN AGENT DE CONTRASTE POUR DE FAIBLES DOSES D'IRRADIATION.
LA DERNIERE PARTIE MONTRE L'INTERET D'UTILISER EN COMPLEMENT A LA POLARIMETRIE UNE METHODOLOGIE D'OPTIQUE COHERENTE (SPECKLE, TOMOGRAPHIE PAR COHERENCE OPTIQUE) POUR LOCALISER LES ALTERATIONS CUTANEES.
Daft, C. M. W. "Acoustic microscopy of biological tissue." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379997.
Full textZerrari, Naoual. "Caractérisation des tissus biologiques mous par diffusion multiple de la lumière." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10052/document.
Full textDiffusing Wave Spectroscopy (DWS) is a technique that allows to probe the internal dynamics of opaque media and concentrated at high frequencies. It has been used to determine the viscoelastic properties of these media. It has the advantage of being nondestructive, rapid and sensitive. This work aims to study soft biological materials by DWS. The first step is setting up of the experimental device. To evaluate the limits of the art, successive studies were conducted on materials of increasing complexity (a suspension, milk and a foam) tending to the structural complexity of biological tissues. Concerning the suspension and milk, two concentrated media, and mono-dispersed in which the particles are in Brownian motion, DWS allowed to measure with good precision their viscosity. The limits of DWS to evaluate the viscosity of the medium are achieved with the foam which the complex structure is similar to that of soft biological tissues. Finally, the renal cortex, the hepatic parenchyma and porcine brain were studied. The theory applied to previous media does not allow to calculate viscosity. But the DWS allowed us to follow their microstructure during dehydration and degeneration. For all these media, repeatability, reproducibility, variability and effect of experimental conditions were evaluated. The DWS could be used to study the effect of temperature and freezing on the DWS spectrum of biological tissues, or combined with rheology to monitor the evolution spectra DWS during shear
Yvanoff, Marie. "LC sensor for biological tissue characterization /." Online version of thesis, 2008. http://hdl.handle.net/1850/8044.
Full textBrookner, Carrie Kazinoff. "Biological basis of cervical tissue autofluorescence /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textGuntupalli, Jyothi Swaroop. "Physical sectioning in 3D biological microscopy." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2037.
Full textWaterworth, Alan Richard. "Data analysis techniques of measured biological impedance." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340146.
Full textForsyth, Donald Scott. "Determination of organolead salts in biological tissue." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=73971.
Full textEl, Babli Inas. "Interaction of electromagnetic waves with biological tissue." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq62633.pdf.
Full textPoland, Simon. "Techniques in deep imaging within biological tissue." Thesis, University of Strathclyde, 2006. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21651.
Full textTobin, Jill M. "Laser induced plasma ablation of biological tissue." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15155.
Full textBlomgren, Bo. "Morphometrical Methodology in Quantification of Biological Tissue Components." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4628.
Full textLi, Teng. "Advanced Photoacoustic Measurement and Imaging in Biological Tissue." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506584.
Full textRoy, Ranadhir. "Image reconstruction from light measurements on biological tissue." Thesis, University of Hertfordshire, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338567.
Full textPhillips, Christopher George. "Transport in biological tissue and in shear flow." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257212.
Full textChan, Wilson (Wilson Sian Chew) 1976. "Instrumentation to characterize needle insertion into biological tissue." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/17541.
Full textIncludes bibliographical references (leaves 52-53).
The Transdermal Drug Delivery Project in the BioInstrumentation Laboratory involves the design of a device to deliver drugs through the human skin using micro needles. It is crucial to characterize the insertion of micro needles into biological tissues. Hence, instrumentation will be designed and fabricated for the characterization of micro needle insertion. This thesis focuses on the design and fabrication of such instrumentation. The instrument is multi-modal, multi-axis, mobile and compact. It is capable of precise insertion positioning and acquiring accurate insertion force data. Characterization of micro needle insertion into biological tissues is done successfully using the data acquired by this instrument and an existing physical force model.
by Wilson Chan.
S.M.
Cai, Renye. "Original strain energy density functions for modeling of anisotropic soft biological tissue." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCA003/document.
Full textThis thesis has focused on the construction of strain energy densities for describing the non-linear behavior of anisotropic materials such as biological soft tissues (ligaments, tendons, arterial walls, etc.) or fiber-reinforced rubbers. The densities we have proposed have been developed with the mathematical theory of invariant polynomials, particularly the Noether theorem and the Reynolds operator. Our work involved two types of anisotropic materials, the first with a single fiber family and the second with a four-fiber family. The concept of polyconvexity has also been studied because it is well known that it plays an important role for ensuring the existence of solutions. In the case of a single fiber family, we have demonstrated that it is impossible for a polynomial density of any degree to predict shear tests with a loading parallel and then perpendicular to the direction of the fibers. A linear polynomial density combined with a power-law function allowed to overcome this problem. In the case of a material made of a four-fiber family, a polynomial density allowed to correctly predict bi-axial tensile test data extracted from the literature. The two proposed densities were implemented in C++ language in the university finite element software FER by adopting a total Lagrangian formulation. This implementation has been validated by comparisons with reference analytical solutions exhibited in the case of simple loads leading to homogeneous deformations. More complex three-dimensional examples, involving non-homogeneous deformations, have also been studied
Bettinger, Christopher John 1981. "Biodegradable microfluidic scaffolds for vascular tissue engineering." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/18047.
Full textIncludes bibliographical references (leaves 91-93).
This work describes the integration of novel microfabrication techniques for vascular tissue engineering applications in the context of a novel biodegradable elastomer. The field of tissue engineering and organ regeneration has been born out of the high demand for organ transplants. However, one of the critical limitations in regeneration of vital organs is the lack of an intrinsic blood supply. This work expands on the development of microfluidic scaffolds for vascular tissue engineering applications by employing microfabrication techniques. Unlike previous efforts, this work focuses on fabricating this scaffolds from poly(glycerol-sebacate) (PGS), a novel biodegradable elastomer with superior mechanical properties. The transport properties of oxygen and carbon dioxide in PGS were measured through a series of time-lag diffusion experiments. The results of these measurements were used to calculate a characteristic length scale for oxygen diffusion limits in PGS scaffolds. Microfluidic scaffolds were then produced using fabrication techniques specific for PGS. Initial efforts have resulted in solid PGS-based scaffolds with biomimetic fluid flow and capillary channels on the order of 10 microns in width. These scaffolds have also been seeded with endothelial cells and perfused continuously in culture for up to 14 days resulting in partially confluent channels. More complex fabrication techniques were also demonstrated. A novel electrodeposition technique was used in the fabrication of biomimetic microfluidic masters. Thin-walled devices were also synthesized to accommodate the relatively low gas permeability of PGS.
by Christopher John Bettinger.
M.Eng.
Cheang, Maggie Chon U. "Biological classification of clinical breast cancer using tissue microarrays." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2430.
Full textWalker, Gillian Claire. "Modelling the propagation of terahertz radiation in biological tissue." Thesis, University of Leeds, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406881.
Full textHolden, Elizabeth. "New effective descriptions of deformable, adaptively remodelling biological tissue." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/53213/.
Full textSweeney, Paul William. "Realistic numerical image-based modelling of biological tissue substrates." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10049410/.
Full textAlbagli, D. (Douglas). "Fundamental mechanisms of pulsed laser ablation of biological tissue." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/33521.
Full textYablon, Andrew D. 1970. "Photothermal effects of pulsed laser irradiation of biological tissue." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10244.
Full textAli, S. (Syed). "Employing VLC technology for transmitting data in biological tissue." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201905141758.
Full textZorgani, Ali. "Passive Elastography : Tomography and Mechanical Characterization of Biological Tissue." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1191/document.
Full textThe aim of this thesis was the development of a new approach called passive elastography. This approach is inspired from noise correlation methods well developed in seismology and time reversal technics in acoustics. Passive elastography uses shear waves naturally induced in the human body to extract its mechanical properties of soft tissue. The feasibility of this method was tested in several applications. First in ultrasound, slow frame rate ultrasound scanner was used to monitor high intensity focused ultrasound treatment on porcine pancreas. Then, an ultrafast ultrasound scanner was used to retrieve shear wave speed map in a calibrated phantom and in-vivo. Second, Magnetic resonance elastography was implemented to image natural motion in the brain of healthy volunteers and conduct shear wavelength tomography. Third, of ophthalmological and dermatological applications, optical coherence passive elastography was tested in a phantom and a cornea of healthy mouse. Also, a fully optical setup was established to image surface wave for elastography applications. Finally, the resolution limit of elastography was measured using and ultrasound ultrafast scanner
Eriksson, Emil. "Simulation of Biological Tissue using Mass-Spring-Damper Models." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-27663.
Full textMålet med detta projekt var att utvärdera huruvida en modell baserad på massa-fjäderdämpare är meningsfull för att modellera biologisk vävnad. En metod för att automatiskt generera en sådan modell utifrån data tagen från medicinsk 3D-skanningsutrustning presenteras. Denna metod inkluderar både generering av punktmassor samt en algoritm för generering av länkar mellan dessa. Vidare beskrivs en implementation av en simulering av denna modell som körs i realtid genom att utnyttja den parallella beräkningskraften hos modern GPU-hårdvara via OpenCL. Denna implementation använder sig av fjärde ordningens Runge-Kutta-metod för förbättrad stabilitet jämfört med liknande implementationer. Svårigheten att bibehålla stabiliteten samtidigt som den simulerade vävnaden ges tillräcklig styvhet diskuteras genomgående. Flera observationer om modellstrukturens inverkan på den simulerade vävnadens konsistens presenteras också. Denna implementation inkluderar två manipuleringsverktyg, ett flytta-verktyg och ett skärverktyg för att interagera med simuleringen. Resultaten visar tydligt att en modell baserad på massa-fjäder-dämpare är en rimlig modell som är möjlig att simulera i realtid på modern men lättillgänglig hårdvara. Med vidareutveckling kan detta bli betydelsefullt för områden så som medicinsk bildvetenskap och kirurgisk simulering.
Ng, Shengyong. "Engineering human hepatic tissue for modeling liver-stage malaria." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90150.
Full textCataloged from PDF version of thesis. Vita.
Includes bibliographical references (pages 132-153).
The Plcsmodium liver stage is an attractive target for the development of antimalarial drugs and vaccines, as it provides an opportunity to interrupt the life cycle of the parasite at a critical early stage. However, targeting the liver stage has been difficult due to a lack of human liver models that robustly recapitulate host-pathogen interactions in a physiologically relevant cell type. Through the application of hepatic tissue engineering concepts and techniques, this thesis sought to develop advanced models of liver-stage malaria that will allow the facile interrogation of potential antimalarial drugs in primary human hepatocytes. In the first part of this work, we established liver-stage Plasmodium infection in an engineered microscale human liver platform based on micropatterned cocultures of primary human hepatocytes and supportive stromal cells, enabling medium-throughput phenotypic screens for potential antimalarial drugs in a more authentic host cell, and demonstrated the utility of this model for malaria vaccine testing. We further hypothesized and showed that recapitulation of a more physiologically relevant oxygen tension that is experienced by hepatocytes in vivo improved infection rates and parasite growth in vitro. Next, we demonstrated the feasibility of establishing liver-stage malaria infections in human induced pluripotent stem cell-derived hepatocyte-like cells (iHLCs), thus enabling the study of host genetic variation on liver-stage malaria infection and antimalarial drug responses. We also applied recently discovered small molecules to induce further hepatic maturation, thus increasing the utility of using iHLCs for antimalarial drug development. Finally, we designed and provided a proof-of-concept for a humanized mouse model of liver-stage malaria that involves the fabrication and ectopic implantation of PEG-cryogel-based engineered human artificial livers, and can be generated in a facile, rapid and scalable fashion for future preclinical antimalarial drug testing in vivo. The results of this research represent a three-pronged approach towards engineering scalable human liver models that recapitulate liver-stage malaria infection which may ultimately facilitate antimalarial drug discovery at various stages of the drug development pipeline.
by Shengyong Ng.
Ph. D.
Rothman, Craig Jeremy. "Tissue-specific classification of alternatively spliced human exons." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39920.
Full textIncludes bibliographical references (p. 53-57).
Alternative splicing is involved in numerous cellular functions and is often disrupted and involved in disease. Previous research has identified methods to distinguish alternative conserved exons (ACEs) in human and mouse. However, the cellular machinery, the spliceosome, does not use comparative genomics to decide when to include and when to exclude an exon. Human RefSeq exons obtained from the University of California Santa Cruz (UCSC) genome browser were analyzed for tissue-specific skipping. Expressed sequence tags (ESTs) were aligned to exons and their tissue of origin and histology were identified. ACEs were also identified as a subset of the skipped exons. About 18% of the exons were identified as tissue-specifically skipped in one of sixteen different tissues at four stringency levels. The different datasets were analyzed for both general features such as exon and intron length, splice site strength, base composition, conservation, modularity, and susceptibility to nonsense-mediated mRNA decay caused by skipping. Cis-element motifs that might bind protein factors that affect splicing were identified using overrepresentation analysis and conserved occurrence rate between human and mouse.
(cont.) Tissue-specific skipped exons were then classified with both a decision-tree based classifier (Random ForestsTM) and a support vector machine. Classification results were better for tissue-specific skipped exons vs. constitutive exons than for tissue-specific skipped exons vs. exons skipped in other tissues.
by Craig Jeremy Rothman.
M.Eng.
Casasnovas, Ortega Nicole. "Developing osteoarthritis treatments through cartilage tissue engineering and molecular imaging." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76172.
Full textCataloged from PDF version of thesis. Page 104 blank.
Includes bibliographical references.
Tissue engineering can be applied to develop therapeutic techniques for osteoarthritis, a degenerative disease caused by the progressive deterioration of cartilage in joints. An inherent goal in developing cartilage-replacement treatments is ensuring that tissue-engineered constructs possess the same properties as native cartilage tissue. Biochemical assays and imaging techniques can be used to study some of the main components of cartilage and assess the value of potential therapies. Agarose and self-assembling peptides have been used to make hydrogels for in vitro culture of bovine bone marrow stromal cells (BMSCs) which can differentiate into chondrocytes, undergo chondrogenesis, and produce cartilage tissue. So far, differences in cell morphology that characterize chondrogenesis had been observed in peptide hydrogels like KLD and RAD but not in the 2.0% agarose hydrogels typically used for culture. A tissue engineering study was conducted to determine if a suitable environment for cell proliferation and differentiation could be obtained using different agarose compositions. BMSCs were cultured in 0.5%, 1.0%, and 2.0% agarose hydrogels for 21 days following TGF-p1 supplementation. Results indicate that the 0.5% agarose hydrogels are clearly inferior scaffolds when compared to the 1.0% and 2.0% agarose hydrogels, which are generally comparable. Since agarose gels appear to be suboptimal in promoting chondrogenesis, self-assembling peptides should be used in future studies. In addition to the biochemical assays traditionally used in cartilage tissue engineering studies, atomic force microscopy (AFM) can be used to image aggrecan, one of the main components of cartilage. Imaging studies were carried out using fetal bovine epiphyseal aggrecan to optimize previous extraction and sample preparation procedures, as well as an AFM imaging protocol, for samples containing aggrecan. Experiments were conducted with 10, 25, and 50 ptg/mL aggrecan solutions to find the minimum concentration needed to create aggrecan monolayers on APTES-mica that would yield acceptable AFM images (25 [mu]g/mL). AFM instrument and software parameters were optimized to find the working range of the integral and proportional gains (0.2 - 0.4 and 0.6 - 0.8, respectively) and to increase the resolution, showing fields at the 800 nm level. Finally, an image processing protocol relevant to these molecules was established.
by Nicole Casasnovas Ortega.
S.M.
Qing, Bo Ph D. Massachusetts Institute of Technology. "Mechanical characterization of mammalian brain tissue and energy dissipative polymers." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119974.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
The high incidence of traumatic brain injury due to adverse impact events ranging from head collisions to ballistic attacks has prompted significant interest in synthetic polymer gels capable of mimicking key mechanical properties of brain tissue. These so-called brain tissue simulants are valuable tools for developing protective strategies because they can serve as test media to evaluate new helmets or optimize robotic surgery techniques. However, the so-called "soft matter" employed to date for ballistic applications, such as ballistic gelatin and clay, are crude mechanical representations of brain tissue. Therefore, there remains a need for a class of tissue simulant materials that more accurately replicates the mechanical behavior of brain tissue under impact loading, specifically in terms of deformation resistance and impact energy dissipation. This thesis focuses on design and synthesis of hierarchically structured gels, and mechanical characterization of these compliant gels for comparison with mammalian brain tissue. In particular, we use impact indentation to explore how the impact energy dissipation response varies as a function of species for brain tissue, or as a function of molecular composition and structure for synthetic gels. We find that a bilayered polydimethylsiloxane (PDMS) composite system enables the decoupling of the material's deformation resistance and energy dissipation characteristics, and can be tuned to fully match porcine brain tissue. However, given that the top PDMS layer is highly adhesive, we investigate whether adhesion plays a significant role in modulating the energy dissipation response, which has important implications in the utility of the tissue simulant material for ballistic applications. With a separate bilayered PDMS composite system, we decouple surface adhesion from bulk viscoelasticity, and quantify their individual contributions to impact energy dissipation. Through these experimental studies, in addition to a finite element computational analysis, we establish fundamental design principles and provide new insights regarding mechanisms that govern the extent of deformation and energy dissipation in compliant polymeric materials. Finally, we extend the capabilities of our impact indentation technique by demonstrating a novel analytical approach to extract viscoelastic moduli and relaxation time constants directly from the measured impact deformation response, thus significantly broadening the utility of impact indentation. With conventional characterization techniques such as shear rheology, several challenges arise when the material of interest has stiffness on the order of 1 kPa or lower, as is the case with brain tissue, largely due to difficulties detecting initial contact with the compliant sample surface. In contrast, impact indentation does not require contact detection a priori, and thus can potentially be utilized as a more accurate tool to characterize the viscoelastic properties of a wider range of soft matter for diverse biomedical or engineering applications, not limited to brain tissue simulants. This semi-analytical approach enables future studies to extract viscoelastic properties of brain tissue and tissue simulant polymers with increased accuracy and spatial resolution, in the context of traumatic brain injury, protection, and recovery.
by Bo Qing.
Ph. D.
Kelly, Michael. "Characterisation of the biological potential of fracture non-union tissue." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/24765.
Full textHollmann, Joseph. "Multi-layer diffusion approximation for photon transport in biological tissue." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1901.
Full textGuermazi, Mahdi. "In-Vitro Biological Tissue State Monitoring based on Impedance Spectroscopy." Doctoral thesis, Universitätsverlag der Technischen Universität Chemnitz, 2016. https://monarch.qucosa.de/id/qucosa%3A20484.
Full textAuf der Basis von Impedanzspektroskopie wurde ein neuartiges in-vitro-Messverfahren zur Überwachung der Frische von biologischem Gewebe entwickelt. Die wichtigsten Herausforderungen stellen dabei die Reproduzierbarkeit der Impedanzmessung und die Klassifizierung der Gewebeart sowie dessen Zustands dar. Für die Reproduzierbarkeit von Impedanzmessungen an biologischen Geweben, wurde ein zylindrischer Multielektrodensensor realisiert, der die 2D-Anisotropie des Gewebes berücksichtigt und einen guten Kontakt zum Gewebe realisiert. Experimentelle Untersuchungen wurden an verschiedenen Geweben über einen längeren Zeitraum durchgeführt und mittels eines modifizierten Fricke-Cole-Cole-Modells analysiert. Die Ergebnisse sind reproduzierbar und entsprechen dem physikalisch-basierten erwarteten Verhalten. Als Merkmale für die Klassifikation wurden die Modellparameter genutzt.
Woods, Stephan M. "VIBRATIONAL SPECTROSCOPY AND SPECTROSCOPIC IMAGING OF BIOLOGICAL CELLS AND TISSUE." Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1322540287.
Full textGuermazi, Mahdi. "In-Vitro Biological Tissue State Monitoring based on Impedance Spectroscopy." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-206710.
Full textAuf der Basis von Impedanzspektroskopie wurde ein neuartiges in-vitro-Messverfahren zur Überwachung der Frische von biologischem Gewebe entwickelt. Die wichtigsten Herausforderungen stellen dabei die Reproduzierbarkeit der Impedanzmessung und die Klassifizierung der Gewebeart sowie dessen Zustands dar. Für die Reproduzierbarkeit von Impedanzmessungen an biologischen Geweben, wurde ein zylindrischer Multielektrodensensor realisiert, der die 2D-Anisotropie des Gewebes berücksichtigt und einen guten Kontakt zum Gewebe realisiert. Experimentelle Untersuchungen wurden an verschiedenen Geweben über einen längeren Zeitraum durchgeführt und mittels eines modifizierten Fricke-Cole-Cole-Modells analysiert. Die Ergebnisse sind reproduzierbar und entsprechen dem physikalisch-basierten erwarteten Verhalten. Als Merkmale für die Klassifikation wurden die Modellparameter genutzt
Assar, Cuevas Rodrigo. "Modeling and simulation of hybrid systems and cell factory applications." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14335/document.
Full textThe main aim of this thesis is to develop an approach that allows us to describe biological systems with theoretical sustenance and good results in practice. Biological functions are the result of the interaction of many processes, that connect different hierarchy levels going from macroscopic to microscopic level. Each process works in different way, with its own goal, complexity and hierarchy level. In addition, it is common to observe that changes in the conditions, such as nutrients or environment, modify the behavior of the systems. So, to describe the behavior of a biological system over time, it is convenient to combine different types of models: continuous models for gradual changes, discrete models for instantaneous changes, deterministic models for completely predictable behaviors, and stochastic or non- deterministic models to describe behaviors with imprecise or incomplete information. In this thesis we use the theory of Composition and Hybrid Systems as basis, and the BioRica framework as tool to model biological systems and analyze their emergent properties in silico.With respect to Hybrid Systems, we considered continuous models given by sets of differential equations or more general dynamics. We used Stochastic Transition Systems to describe the dynamics of model changes, allowing cofficient switches that control the parameters of the continuous model, and strong switches that choose different models. Composition, reconciliation and reusing of models allow us to build complete and consistent descriptions of complex biological systems by combining them. Compositions of hybrid systems are hybrid systems, and the refinement of a model forming part of a composed system results in a refinement of the composed system. To implement our approach ideas we complemented the theory of our approach with the improving of the BioRica framework. We contributed to do that giving a BioRica specification of Hybrid Systems that assures integrity of models, allowing composition, reconciliation, and reuse of models with SBML specification.We applied our approach to describe two systems: wine fermentation kinetics, and cell fate decisions leading to bone and fat formation. In the case of wine fermentation, we reused known models that describe the responses of yeasts cells to different temperatures, quantities of resources and toxins, and we reconciled these models choosing the model with best adjustment to experimental data depending on the initial conditions and fermentation variable. The resulting model can be applied to avoid process problems as stuck and sluggish fermentations. With respect to cell fate decisions the idea is very ambitious. By using accurate models to predict the bone and fat formation in response to activation of pathways such as the Wnt pathway, and changes of conditions affecting these functions such as increments in Homocysteine, one can analyze the responses to treatments for osteoporosis and other bone mass disorders. We think that here we are giving a first step to obtain in silico evaluations of medical treatments before testing them in vitro or in vivo
Appelt, Jessika. "Advanced scaffold for adipose tissue reconstruction." Thesis, University of Brighton, 2016. https://research.brighton.ac.uk/en/studentTheses/9be07efe-bd1f-46be-b1b4-e43e801d6696.
Full textOngaro, Federica. "Theoretical and numerical modelling of biologically inspired composite materials." Thesis, Queen Mary, University of London, 2017. http://qmro.qmul.ac.uk/xmlui/handle/123456789/30826.
Full textCamp, James (James Patrick) 1977. "Development of simple 3D-printed scaffolds for liver tissue engineering." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/16864.
Full textIncludes bibliographical references (leaves 51-52).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
One solution to the increasing need for liver transplants is to grow implantable liver tissue in the lab. A tissue-engineered liver for transplantation will require complex structures to support cell differentiation and integration with surrounding vasculature. Recent developments in 3D-printing (3DP™) technology allow the construction of such geometrically complex scaffolds out of biodegradable polymers. These artificial tissues should maintain healthy, functional hepatocytes in proper contact with supporting cell types in the context of proper flow cues. This project comprises three major efforts. First, the design and development of a 3D-printed scaffold, constructed of a porous biodegradable polymer matrix, for flow bioreactor culture. Second, the development of protocols for the production, preparation, and flow support of these scaffolds. And third, the employment of standard cell culture methodologies to test the ability of these scaffolds to support liver tissue cultures. Initial cell culture experiments showed similar rates of albumin production in the polymer disk scaffolds compared to cells in silicon-chip scaffolds under appropriately scaled flow conditions, indicating that the polymer scaffolds maintain functioning liver tissue. Further, histology sections of liver tissue grown on these polymer scaffolds show organization of cells into structures reminiscent of in vivo liver. The results of this study show that 3D-printed porous polymer scaffolds have great potential for use as biodegradable tissue culture support devices. It is believed that, combined with printing technologies now under development, the technologies developed in this thesis will help facilitate the construction of an implantable tissue engineered liver.
by James Camp.
S.M.in Bioengineering
Olurinde, Mobolaji O. "Antigen-specific memory T cell distribution in non-lymphoid tissue." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40951.
Full textIncludes bibliographical references (leaves 28-34).
CD8+ T cells are the main adaptive immune system cell type responding to intracellular pathogens, particularly viruses, and tumor antigens. In the case of influenza, activated T cells migrate from the mediastinal (draining) lymph nodes to the lung where they perform their cytolytic function. After pathogen clearance, memory CD8+ T cells are generated, giving rise to long-term protection from reinfection. However, these cells are no longer detectable in the lung parenchyma six months post-infection, and cell-mediated immunity, and protection is lost. Knock-out studies in mice show that interleukin 15 (IL-15) is essential for memory CD8+ T cell proliferation. Fibroblasts, macrophages, dendritic cells and epithelial cells express IL-15 and its receptor isoform [alpha] (IL-15R[alpha]). Histological studies suggest that memory CD8+ T cells preferentially reside in peribronchiolar and perivascular areas, the stroma, of the lung. We hypothesize that memory CD8+ T cells preferentially reside in regions where molecules necessary for their maintenance, for example, IL-15/R secreting cells, are located. In this study, we have shown that antigen-specific 2C GFP effector memory CD8+ T cells are generated in B6 recipient mice 30-32 days after influenza virus infection, preferentially reside in peribronchiolar areas. Both 2C and 2C GFP recipient mice have severe vasculitis and widely distributed inflammatory infiltrates 7 days post-infection. Lower lung lobes appear to be more affected than upper lobes at this time point. On day 30, most of the airways have been cleared and restored. Although lymphoid-appearing nodules were detected in the lungs 31 dpi, no clusters of B cells and T cells suggesting induced BALT were identified by immunofluorescence.
(cont.) Interestingly, antigen-specific GFP cells preferentially remained in the lung tissue and were almost undetectable in spleens, lymph nodes, and livers. This preference was not observed in 2C (non-GFP) recipient mice. Immunofluorescence studies showed no colocalization between 2C GFP T cells and dendritic cells that might suggest stable dendritic cell interactions contribute to antigen-specific cells preferentially residing in the lung stroma. Further studies are necessary to determine what other cell types might contribute to this phenomenon. These results provide some insight into how structural elements in non-lymphoid tissue influence cell-mediated immunity.
by Mobolaji O. Olurinde.
S.M.
Kilaru, Aruna. "Insights into Oil Biosynthesis in Nonseed Tissues." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etsu-works/4765.
Full textKilaru, Aruna. "Oil Biosynthesis in Nonseed Tissues." Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etsu-works/4768.
Full textGoyal, Poorva. "Development of dendritic and polymeric scaffolds for biological and catalysis applications." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24826.
Full textCommittee Chair: Weck, Marcus; Committee Member: Bunz, Uwe H. F.; Committee Member: Dickson, Robert M; Committee Member: Fahrni, Christoph J; Committee Member: Jones, Christopher W; Committee Member: Murthy, Niren.
Kocová, Lucie. "Návrh a realizace měření elektrických vlastností biologických tkání." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220027.
Full text