Academic literature on the topic 'Biologically-inspired robots'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biologically-inspired robots.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biologically-inspired robots"
Holland, Owen. "The first biologically inspired robots." Robotica 21, no. 4 (August 2003): 351–63. http://dx.doi.org/10.1017/s0263574703004971.
Full textBekey, George A. "Biologically inspired control of autonomous robots." Robotics and Autonomous Systems 18, no. 1-2 (July 1996): 21–31. http://dx.doi.org/10.1016/0921-8890(96)00022-x.
Full textWang, Hongqiang, Peter York, Yufeng Chen, Sheila Russo, Tommaso Ranzani, Conor Walsh, and Robert J. Wood. "Biologically inspired electrostatic artificial muscles for insect-sized robots." International Journal of Robotics Research 40, no. 6-7 (March 31, 2021): 895–922. http://dx.doi.org/10.1177/02783649211002545.
Full textKelasidi, Eleni, Pal Liljeback, Kristin Y. Pettersen, and Jan Tommy Gravdahl. "Innovation in Underwater Robots: Biologically Inspired Swimming Snake Robots." IEEE Robotics & Automation Magazine 23, no. 1 (March 2016): 44–62. http://dx.doi.org/10.1109/mra.2015.2506121.
Full textBelter, Dominik, and Piotr Skrzypczyński. "A biologically inspired approach to feasible gait learning for a hexapod robot." International Journal of Applied Mathematics and Computer Science 20, no. 1 (March 1, 2010): 69–84. http://dx.doi.org/10.2478/v10006-010-0005-7.
Full textZhang, Chi, Wei Zou, Liping Ma, and Zhiqing Wang. "Biologically inspired jumping robots: A comprehensive review." Robotics and Autonomous Systems 124 (February 2020): 103362. http://dx.doi.org/10.1016/j.robot.2019.103362.
Full textShahbazi, Hamed, Kamal Jamshidi, Amir Hasan Monadjemi, and Hafez Eslami. "Biologically inspired layered learning in humanoid robots." Knowledge-Based Systems 57 (February 2014): 8–27. http://dx.doi.org/10.1016/j.knosys.2013.12.003.
Full textBar-Cohen, Y. "Biologically Inspired Intelligent Robots using Artificial Muscles." Strain 41, no. 1 (February 2005): 19–24. http://dx.doi.org/10.1111/j.1475-1305.2004.00161.x.
Full textMasár, Marek, and Ivana Budinská. "Robot Coordination Based on Biologically Inspired Methods." Advanced Materials Research 664 (February 2013): 891–96. http://dx.doi.org/10.4028/www.scientific.net/amr.664.891.
Full textParker, Chris A. C., and Hong Zhang. "Biologically inspired collective comparisons by robotic swarms." International Journal of Robotics Research 30, no. 5 (March 7, 2011): 524–35. http://dx.doi.org/10.1177/0278364910397621.
Full textDissertations / Theses on the topic "Biologically-inspired robots"
Peng, Shiqi. "A biologically inspired four legged walking robot." Peng, Shiqi (2006) A biologically inspired four legged walking robot. PhD thesis, Murdoch University, 2006. http://researchrepository.murdoch.edu.au/255/.
Full textMamrak, Justin. "MARK II a biologically-inspired walking robot /." Ohio : Ohio University, 2008. http://www.ohiolink.edu/etd/view.cgi?ohiou1226694264.
Full textDong, Wei S. M. Massachusetts Institute of Technology. "Biologically-inspired robots for stage performance." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62126.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 46-47).
Stage performances present many challenges and opportunities in the field of robotics. Onstage robots not only have to function flawlessly, they must interact convincingly with their human counterparts and adhere to a rigid timeline. The scope of this work is to create set pieces that look and behave like organic entities for the production of Tod Machover's new opera, Death and the Powers. With a set of design rules and techniques, I have developed the mechanical and control systems, including their interactive behavior, for several performance-ready robots. A six-legged walking robot and transformable robot were first built to verify the adopted design methodology prior to the prototyping of onstage robots. In addition, the robots were certified as performance-ready according to four criteria: the visual appearance, the overall functionality, the quality of movement, and the fluency of human-robot interaction. Two robots were successfully built and tested for use in the opera of Death and the Powers.
by Wei Dong.
S.M.
Garratt, Matthew A. "Biologically inspired vision and control for an autonomous flying vehicle /." View thesis entry in Australian Digital Theses Program, 2007. http://thesis.anu.edu.au/public/adt-ANU20090116.154822/index.html.
Full textStowers, John Ross. "Biologically Inspired Visual Control of Flying Robots." Thesis, University of Canterbury. Electrical and Computer Engineering, 2013. http://hdl.handle.net/10092/8729.
Full textYau, Chi-Yung. "A biologically inspired neural architecture for emotional robots." Thesis, University of Sunderland, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.529272.
Full textAmayo, Paul Omondi. "Biologically inspired goal directed navigation for mobile robots." Master's thesis, University of Cape Town, 2016. http://hdl.handle.net/11427/20512.
Full textDiller, Eric David. "Design of a Biologically-Inspired Climbing Hexapod Robot for Complex Maneuvers." Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1259960651.
Full textTitle from PDF (viewed on 2010-01-28) Department of EMC - Mechanical Engineering Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
McBride, Michael F. "Biologically inspired sensory processing for mobile robots using Spiking Neural Networks." Thesis, Ulster University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538953.
Full textCristiano, Rodríguez Julián Efrén. "Generation and control of locomotion for biped robots based on biologically inspired approaches." Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/348879.
Full textEsta tesis propone el uso de aproximaciones de control inspiradas biológicamente para generar y controlar el modo de caminar omnidireccional de robots humanoides, adaptando su movimiento a varios tipos de terreno plano usando realimentación multisensorial. Los sistemas de control de locomoción propuestos fueron implementados usando redes de Generadores Centrales de Patrones (CPG) basadas en el modelo de neurona de Matsuoka. Los CPGs son redes neuronales biológicas ubicadas en el sistema nervioso central de vertebrados o en los ganglios principales de invertebrados, las cuales pueden controlar movimientos coordinados. El hecho de que, en la naturaleza, la locomoción humana y animal sea controlada mediante redes CPG ha inspirado la teoría en la cual se basa la presente tesis. En particular, dos arquitecturas de control en lazo cerrado basadas en métodos de control CPG-espacio-articulaciones han sido propuestas y probadas mediante ambos un robot simulado y un robot humanoide NAO real. La primera arquitectura de control identificó algunas características importantes que un esquema de control CPG-espacio-articulaciones debe tener si se quiere describir un patrón de locomoción útil. A partir de este análisis, la segunda arquitectura de control fue propuesta para describir patrones de locomoción bien caracterizados. Para mejorar cómo se comporta el sistema en lazo cerrado, un mecanismo de reseteo de fase para redes CPG basadas en el modelo de neurona de Matsuoka ha sido propuesto. Este mecanismo hace posible diseñar y estudiar controladores de realimentación que pueden modificar rápidamente los patrones de locomoción generados. Los resultados obtenidos muestran que los esquemas de control propuestos pueden producir patrones de locomoción bien caracterizados con una respuesta rápida adecuada para robots humanoides con una capacidad de procesamiento reducida. Estos experimentos también indican que el sistema de control propuesto habilita al robot a responder rápida y robustamente, y poder hacer frente a situaciones complejas.
This thesis proposes the use of biologically inspired control approaches to generate and control the omnidirectional gait of humanoid robots, adapting their movement to various types of flat terrain using multi-sensory feedback. The proposed locomotion control systems were implemented using Central Pattern Generator (CPG) networks based on Matsuoka’s neuron model. CPGs are biological neural networks located in the central nervous system of vertebrates or in the main ganglia of invertebrates, which can control coordinated movements, such as those involved in locomotion, respiration, chewing or swallowing. The fact that, in nature, human and animal locomotion is controlled by CPG networks has inspired the theory on which the present thesis is based. In particular, two closed-loop control architectures based on CPG-joint-space control methods have been proposed and tested by using both a simulated and a real NAO humanoid robot. The first control architecture identified some important features that a CPG-joint-space control scheme must have if a useful locomotion pattern is to be described. On the basis of this analysis, the second control architecture was proposed to describe well-characterized locomotion patterns. The new system, characterized by optimized parameters obtained with a genetic algorithm (GA), effectively generated and controlled locomotion patterns for biped robots on flat and sloped terrain. To improve how the system behaves in closed loop, a phase resetting mechanism for CPG networks based on Matsuoka’s neuron model has been proposed. It makes it possible to design and study feedback controllers that can quickly modify the locomotion pattern generated. The results obtained show that the proposed control schemes can yield well-characterized locomotion patterns with a fast response suitable for humanoid robots with a reduced processing capability. These experiments also indicate that the proposed system enables the robot to respond quickly and robustly, and to cope with complex situations.
Books on the topic "Biologically-inspired robots"
L, Breazeal Cynthia, ed. Biologically inspired intelligent robots. Bellingham, Wash: SPIE Press, 2003.
Find full textHirose, Shigeo. Biologically inspired robots: Snake-like locomotors and manipulators. Oxford: Oxford University Press, 1993.
Find full textBiologically inspired robots: Snake-like locomotors and manipulators. Oxford: Oxford University Press, 1993.
Find full textservice), SpringerLink (Online, ed. Biologically Inspired Approaches for Locomotion, Anomaly Detection and Reconfiguration for Walking Robots. Berlin, Heidelberg: Springer-Verlag GmbH Berlin Heidelberg, 2011.
Find full textJakimovski, Bojan. Biologically Inspired Approaches for Locomotion, Anomaly Detection and Reconfiguration for Walking Robots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22505-5.
Full textClaudio, Mattiussi, ed. Bio-inspired artificial intelligence: Theories, methods, and technologies. Cambridge, MA: MIT Press, 2009.
Find full textDuro, Richard J., José Santos, and Manuel Graña, eds. Biologically Inspired Robot Behavior Engineering. Heidelberg: Physica-Verlag HD, 2003. http://dx.doi.org/10.1007/978-3-7908-1775-1.
Full textLiu, Yunhui, and Dong Sun. Biologically inspired robotics. Boca Raton, FL: Taylor & Francis/CRC Press, 2011.
Find full textSpiers, Adam, Said Ghani Khan, and Guido Herrmann. Biologically Inspired Control of Humanoid Robot Arms. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30160-0.
Full textBook chapters on the topic "Biologically-inspired robots"
Meyer, Jean-Arcady, and Agnès Guillot. "Biologically Inspired Robots." In Springer Handbook of Robotics, 1395–422. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-30301-5_61.
Full textSchulz, S., C. Pylatiuk, A. Kargov, R. Oberle, H. Klosek, T. Werner, W. Rößler, H. Breitwieser, and G. Bretthauer. "Fluidically Driven Robots with Biologically Inspired Actuators." In Climbing and Walking Robots, 97–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-26415-9_11.
Full textHennion, B., J. Pill, and J. C. Guinot. "A Biologically Inspired Model For Quadruped Locomotion." In Climbing and Walking Robots, 49–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-26415-9_5.
Full textJakimovski, Bojan. "Biologically Inspired Robot Control Architecture." In Biologically Inspired Approaches for Locomotion, Anomaly Detection and Reconfiguration for Walking Robots, 23–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22505-5_4.
Full textDe Santis, Dalia, Vishwanathan Mohan, Pietro Morasso, and Jacopo Zenzeri. "Do Humanoid Robots Need a Body Schema?" In Biologically Inspired Cognitive Architectures 2012, 109–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34274-5_23.
Full textHaikonen, Pentti O. A. "Consciousness and the Quest for Sentient Robots." In Biologically Inspired Cognitive Architectures 2012, 19–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34274-5_4.
Full textSalomon, Ralf. "Self-Adapting Neural Networks for Mobile Robots." In Biologically Inspired Robot Behavior Engineering, 173–97. Heidelberg: Physica-Verlag HD, 2003. http://dx.doi.org/10.1007/978-3-7908-1775-1_6.
Full textSpiers, Adam, Said Ghani Khan, and Guido Herrmann. "Humanoid Robots and Control." In Biologically Inspired Control of Humanoid Robot Arms, 15–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30160-0_2.
Full textNolfi, Stefano, and Davide Marocco. "Evolving Robots Able to Integrate Sensory-Motor Information over Time." In Biologically Inspired Robot Behavior Engineering, 199–213. Heidelberg: Physica-Verlag HD, 2003. http://dx.doi.org/10.1007/978-3-7908-1775-1_7.
Full textIshiguro, Hiroshi. "Biological Fluctuation “Yuragi” as the Principle of Bio-inspired Robots." In Biologically Inspired Cognitive Architectures 2012, 29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34274-5_5.
Full textConference papers on the topic "Biologically-inspired robots"
Melhuish, Chris, Andrew Adamatzky, and Brett A. Kennedy. "Biologically inspired robots." In SPIE's 8th Annual International Symposium on Smart Structures and Materials, edited by Yoseph Bar-Cohen. SPIE, 2001. http://dx.doi.org/10.1117/12.432659.
Full textBar-Cohen, Yoseph, and Cynthia Breazeal. "Biologically inspired intelligent robots." In Smart Structures and Materials, edited by Yoseph Bar-Cohen. SPIE, 2003. http://dx.doi.org/10.1117/12.484379.
Full textBar-Cohen, Yoseph. "Biologically inspired robots as artificial inspectors." In NDE For Health Monitoring and Diagnostics, edited by Tribikram Kundu. SPIE, 2002. http://dx.doi.org/10.1117/12.469902.
Full textJe-sung Koh, Seung-won Kim, Min-kyun Noh, and Kyu-jin Cho. "Biologically inspired robots using Smart Composite Microstructures." In 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2011). IEEE, 2011. http://dx.doi.org/10.1109/urai.2011.6145989.
Full textPolverino, Giovanni, and Maurizio Porfiri. "Controlling invasive species with biologically-inspired robots." In The 2021 Conference on Artificial Life. Cambridge, MA: MIT Press, 2021. http://dx.doi.org/10.1162/isal_a_00373.
Full textBerkvens, Rafael, Adam Jacobson, Michael Milford, Herbert Peremans, and Maarten Weyn. "Biologically inspired SLAM using Wi-Fi." In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). IEEE, 2014. http://dx.doi.org/10.1109/iros.2014.6942799.
Full textHo, Thanhtam, and Sangyoon Lee. "Two Types of Biologically-Inspired Mesoscale Quadruped Robots." In 2008 IEEE Conference on Robotics, Automation and Mechatronics (RAM). IEEE, 2008. http://dx.doi.org/10.1109/ramech.2008.4681384.
Full textSmith, Beatrice G. R., Chakravarthini M. Saaj, and Elie Allouis. "Evolving legged robots using biologically inspired optimization strategies." In 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2010. http://dx.doi.org/10.1109/robio.2010.5723523.
Full textKim, Hyun K., Woong Kwon, and Kyung Shik Roh. "Biologically Inspired Energy Efficient Walking for Biped Robots." In 2006 IEEE International Conference on Robotics and Biomimetics. IEEE, 2006. http://dx.doi.org/10.1109/robio.2006.340273.
Full textHecker, Joshua, Karl Stolleis, Bjorn Swenson, Kenneth Letendre, and Melanie Moses. "Evolving Error Tolerance in Biologically-Inspired iAnt Robots." In European Conference on Artificial Life 2013. MIT Press, 2013. http://dx.doi.org/10.7551/978-0-262-31709-2-ch153.
Full textReports on the topic "Biologically-inspired robots"
Quinn, Roger, Roy Ritzmann, Stephen Phillips, Randall Beer, Steven Garverick, and Matthew Birch. Biologically-Inspired Micro-Robots. Volume 1. Robots Based on Crickets. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada434047.
Full textBeer, Randall D. A Biologically-Inspired Autonomous Robot. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada273909.
Full textShim, Jaeeun, and Ronald C. Arkin. Biologically-Inspired Deceptive Behavior for a Robot. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada563086.
Full textRego, Jocelyn, Edward Kim, and Garrett Kenyon. Biologically Inspired Robust Perception Approximating Sparse Coding. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1820067.
Full text