Journal articles on the topic 'Biologically-inspired robots'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Biologically-inspired robots.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Holland, Owen. "The first biologically inspired robots." Robotica 21, no. 4 (August 2003): 351–63. http://dx.doi.org/10.1017/s0263574703004971.
Full textBekey, George A. "Biologically inspired control of autonomous robots." Robotics and Autonomous Systems 18, no. 1-2 (July 1996): 21–31. http://dx.doi.org/10.1016/0921-8890(96)00022-x.
Full textWang, Hongqiang, Peter York, Yufeng Chen, Sheila Russo, Tommaso Ranzani, Conor Walsh, and Robert J. Wood. "Biologically inspired electrostatic artificial muscles for insect-sized robots." International Journal of Robotics Research 40, no. 6-7 (March 31, 2021): 895–922. http://dx.doi.org/10.1177/02783649211002545.
Full textKelasidi, Eleni, Pal Liljeback, Kristin Y. Pettersen, and Jan Tommy Gravdahl. "Innovation in Underwater Robots: Biologically Inspired Swimming Snake Robots." IEEE Robotics & Automation Magazine 23, no. 1 (March 2016): 44–62. http://dx.doi.org/10.1109/mra.2015.2506121.
Full textBelter, Dominik, and Piotr Skrzypczyński. "A biologically inspired approach to feasible gait learning for a hexapod robot." International Journal of Applied Mathematics and Computer Science 20, no. 1 (March 1, 2010): 69–84. http://dx.doi.org/10.2478/v10006-010-0005-7.
Full textZhang, Chi, Wei Zou, Liping Ma, and Zhiqing Wang. "Biologically inspired jumping robots: A comprehensive review." Robotics and Autonomous Systems 124 (February 2020): 103362. http://dx.doi.org/10.1016/j.robot.2019.103362.
Full textShahbazi, Hamed, Kamal Jamshidi, Amir Hasan Monadjemi, and Hafez Eslami. "Biologically inspired layered learning in humanoid robots." Knowledge-Based Systems 57 (February 2014): 8–27. http://dx.doi.org/10.1016/j.knosys.2013.12.003.
Full textBar-Cohen, Y. "Biologically Inspired Intelligent Robots using Artificial Muscles." Strain 41, no. 1 (February 2005): 19–24. http://dx.doi.org/10.1111/j.1475-1305.2004.00161.x.
Full textMasár, Marek, and Ivana Budinská. "Robot Coordination Based on Biologically Inspired Methods." Advanced Materials Research 664 (February 2013): 891–96. http://dx.doi.org/10.4028/www.scientific.net/amr.664.891.
Full textParker, Chris A. C., and Hong Zhang. "Biologically inspired collective comparisons by robotic swarms." International Journal of Robotics Research 30, no. 5 (March 7, 2011): 524–35. http://dx.doi.org/10.1177/0278364910397621.
Full textKimura, Hiroshi, Yasuhiro Fukuoka, and Avis H. Cohen. "Biologically inspired adaptive walking of a quadruped robot." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365, no. 1850 (November 17, 2006): 153–70. http://dx.doi.org/10.1098/rsta.2006.1919.
Full textSareh, Sina, Kaspar Althoefer, Min Li, Yohan Noh, Francesca Tramacere, Pooya Sareh, Barbara Mazzolai, and Mirko Kovac. "Anchoring like octopus: biologically inspired soft artificial sucker." Journal of The Royal Society Interface 14, no. 135 (October 2017): 20170395. http://dx.doi.org/10.1098/rsif.2017.0395.
Full textYang, Woosung, Hyungjoo Kim, and Bum Jae You. "Biologically Inspired Self-Stabilizing Control for Bipedal Robots." International Journal of Advanced Robotic Systems 10, no. 2 (February 2013): 144. http://dx.doi.org/10.5772/55463.
Full textSolis, Jorge, Kenichiro Ozawa, Maasaki Takeuchi, Takafumi Kusano, Shimpei Ishikawa, Klaus Petersen, and Atsuo Takanishi. "Biologically-Inspired Control Architecture for Musical Performance Robots." International Journal of Advanced Robotic Systems 11, no. 10 (January 2014): 172. http://dx.doi.org/10.5772/59232.
Full textKelasidi, Eleni, Mansoureh Jesmani, Kristin Pettersen, and Jan Gravdahl. "Locomotion Efficiency Optimization of Biologically Inspired Snake Robots." Applied Sciences 8, no. 1 (January 9, 2018): 80. http://dx.doi.org/10.3390/app8010080.
Full textCouceiro, Micael S., J. Miguel A. Luz, Carlos M. Figueiredo, and N. M. Fonseca Ferreira. "Modeling and control of biologically inspired flying robots." Robotica 30, no. 1 (April 27, 2011): 107–21. http://dx.doi.org/10.1017/s0263574711000312.
Full textFernández-Caballero, Antonio. "Biologically Inspired Vision Systems for Flying Robots – Editorial." International Journal of Advanced Robotic Systems 13, no. 1 (January 2016): 22. http://dx.doi.org/10.5772/62432.
Full textSheng-Dong Xu, Sendren, Hsu-Chih Huang, Tai-Chun Chiu, and Shao-Kang Lin. "Biologically-Inspired Learning and Adaptation of Self-Evolving Control for Networked Mobile Robots." Applied Sciences 9, no. 5 (March 12, 2019): 1034. http://dx.doi.org/10.3390/app9051034.
Full textTrimmer, Barry Andrew. "Metal or muscle? The future of biologically inspired robots." Science Robotics 5, no. 38 (January 22, 2020): eaba6149. http://dx.doi.org/10.1126/scirobotics.aba6149.
Full textClark, Jonathan E., and Mark R. Cutkosky. "The Effect of Leg Specialization in a Biomimetic Hexapedal Running Robot." Journal of Dynamic Systems, Measurement, and Control 128, no. 1 (December 1, 2005): 26–35. http://dx.doi.org/10.1115/1.2168477.
Full textSantana, Pedro F., José Barata, and Luís Correia. "Sustainable Robots for Humanitarian Demining." International Journal of Advanced Robotic Systems 4, no. 2 (June 1, 2007): 23. http://dx.doi.org/10.5772/5695.
Full textMartinez-Martin, Ester, and Angel P. del Pobil. "A Biologically Inspired Approach for Robot Depth Estimation." Computational Intelligence and Neuroscience 2018 (August 23, 2018): 1–16. http://dx.doi.org/10.1155/2018/9179462.
Full textKinugasa, Tetsuya, Koh Hosoda, Masatsugu Iribe, Fumihiko Asano, and Yasuhiro Sugimoto. "Special Issue on Dynamically and Biologically Inspired Legged Locomotion." Journal of Robotics and Mechatronics 29, no. 3 (June 20, 2017): 455. http://dx.doi.org/10.20965/jrm.2017.p0455.
Full textYun Seong Song and M. Sitti. "Surface-Tension-Driven Biologically Inspired Water Strider Robots: Theory and Experiments." IEEE Transactions on Robotics 23, no. 3 (June 2007): 578–89. http://dx.doi.org/10.1109/tro.2007.895075.
Full textChirikjian, Gregory S. "Design and analysis of some nonanthropomorphic, biologically inspired robots: An overview." Journal of Robotic Systems 18, no. 12 (2001): 701–13. http://dx.doi.org/10.1002/rob.8108.
Full textHsieh, M. Ani, Ádám Halász, Spring Berman, and Vijay Kumar. "Biologically inspired redistribution of a swarm of robots among multiple sites." Swarm Intelligence 2, no. 2-4 (September 10, 2008): 121–41. http://dx.doi.org/10.1007/s11721-008-0019-z.
Full textSugisaka, Masanori, Kouta Imamura, Kouji Tokuda, and Maoki Masuda. "A new artificial life body: biologically inspired dynamic bipedal humanoid robots." Artificial Life and Robotics 8, no. 1 (September 2004): 1–4. http://dx.doi.org/10.1007/s10015-004-0307-7.
Full textDallaLibera, Fabio, Shuhei Ikemoto, Hiroshi Ishiguro, and Koh Hosoda. "Control of real-world complex robots using a biologically inspired algorithm." Artificial Life and Robotics 17, no. 1 (July 27, 2012): 42–46. http://dx.doi.org/10.1007/s10015-012-0034-4.
Full textIde, Shoichiro, and Atsushi Nishikawa. "Muscle Coordination Control for an Asymmetrically Antagonistic-Driven Musculoskeletal Robot Using Attractor Selection." Applied Bionics and Biomechanics 2018 (September 12, 2018): 1–10. http://dx.doi.org/10.1155/2018/9737418.
Full textHESSE, FRANK, and FLORENTIN WÖRGÖTTER. "A GOAL-ORIENTATION FRAMEWORK FOR SELF-ORGANIZING CONTROL." Advances in Complex Systems 16, no. 02n03 (May 2013): 1350002. http://dx.doi.org/10.1142/s0219525913500021.
Full textAndrade, Gabriela R., and Jordan H. Boyle. "A minimal biologically-inspired algorithm for robots foraging energy in uncertain environments." Robotics and Autonomous Systems 128 (June 2020): 103499. http://dx.doi.org/10.1016/j.robot.2020.103499.
Full textLow, Emily M. P., Ian R. Manchester, and Andrey V. Savkin. "A biologically inspired method for vision-based docking of wheeled mobile robots." Robotics and Autonomous Systems 55, no. 10 (October 2007): 769–84. http://dx.doi.org/10.1016/j.robot.2007.04.002.
Full textArena, Paolo, Davide Lombardo, and Luca Patanè. "Biorobots, Nonlinear Dynamics and Perception." Advances in Science and Technology 58 (September 2008): 143–52. http://dx.doi.org/10.4028/www.scientific.net/ast.58.143.
Full textOKITA, SANDRA Y., and DANIEL L. SCHWARTZ. "YOUNG CHILDREN'S UNDERSTANDING OF ANIMACY AND ENTERTAINMENT ROBOTS." International Journal of Humanoid Robotics 03, no. 03 (September 2006): 393–412. http://dx.doi.org/10.1142/s0219843606000795.
Full textTranseth, Aksel Andreas, Kristin Ytterstad Pettersen, and Pål Liljebäck. "A survey on snake robot modeling and locomotion." Robotica 27, no. 7 (March 3, 2009): 999–1015. http://dx.doi.org/10.1017/s0263574709005414.
Full textYao, Jianjun, Shuang Gao, Guilin Jiang, Thomas L. Hill, Han Yu, and Dong Shao. "Screw theory based motion analysis for an inchworm-like climbing robot." Robotica 33, no. 08 (April 29, 2014): 1704–17. http://dx.doi.org/10.1017/s0263574714001003.
Full textLewinger, William A., Cynthia M. Harley, Michael S. Watson, Michael S. Branicky, Roy E. Ritzmann, and Roger D. Quinn. "Animal-Inspired Sensing for Autonomously Climbing or Avoiding Obstacles." Applied Bionics and Biomechanics 6, no. 1 (2009): 43–61. http://dx.doi.org/10.1155/2009/280968.
Full textMoualla, Aliaa, Sofiane Boucenna, Ali Karaouzene, Denis Vidal, and Philippe Gaussier. "Is it useful for a robot to visit a museum?" Paladyn, Journal of Behavioral Robotics 9, no. 1 (December 1, 2018): 374–90. http://dx.doi.org/10.1515/pjbr-2018-0025.
Full textChang, Alexander H., and Patricio A. Vela. "Evaluation of Bio-Inspired Scales on Locomotion Performance of Snake-Like Robots." Robotica 37, no. 08 (February 5, 2019): 1302–19. http://dx.doi.org/10.1017/s0263574718001522.
Full textSong, Changhui, and Weicheng Cui. "Review of Underwater Ship Hull Cleaning Technologies." Journal of Marine Science and Application 19, no. 3 (September 2020): 415–29. http://dx.doi.org/10.1007/s11804-020-00157-z.
Full textCuneo, J., L. Barboni, N. Blanco, M. del Castillo, and J. Quagliotti. "ARM-Cortex M3-Based Two-Wheel Robot for Assessing Grid Cell Model of Medial Entorhinal Cortex: Progress towards Building Robots with Biologically Inspired Navigation-Cognitive Maps." Journal of Robotics 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/8069654.
Full textNurmaini, Siti, and Bambang Tutuko. "Intelligent Robotics Navigation System: Problems, Methods, and Algorithm." International Journal of Electrical and Computer Engineering (IJECE) 7, no. 6 (December 1, 2017): 3711. http://dx.doi.org/10.11591/ijece.v7i6.pp3711-3726.
Full textPiltan, Farzin, Cheol-Hong Kim, and Jong-Myon Kim. "Adaptive Fuzzy-Based Fault-Tolerant Control of a Continuum Robotic System for Maxillary Sinus Surgery." Applied Sciences 9, no. 12 (June 19, 2019): 2490. http://dx.doi.org/10.3390/app9122490.
Full textBreazeal, Cynthia, Daphna Buchsbaum, Jesse Gray, David Gatenby, and Bruce Blumberg. "Learning From and About Others: Towards Using Imitation to Bootstrap the Social Understanding of Others by Robots." Artificial Life 11, no. 1-2 (January 2005): 31–62. http://dx.doi.org/10.1162/1064546053278955.
Full textSu, Hang, Nima Enayati, Luca Vantadori, Andrea Spinoglio, Giancarlo Ferrigno, and Elena De Momi. "Online human-like redundancy optimization for tele-operated anthropomorphic manipulators." International Journal of Advanced Robotic Systems 15, no. 6 (November 1, 2018): 172988141881469. http://dx.doi.org/10.1177/1729881418814695.
Full textSloman, A., and R. L. Chrisley. "More things than are dreamt of in your biology: Information-processing in biologically inspired robots." Cognitive Systems Research 6, no. 2 (June 2005): 145–74. http://dx.doi.org/10.1016/j.cogsys.2004.06.004.
Full textMaroto-Gómez, Marcos, Álvaro Castro-González, José Castillo, María Malfaz, and Miguel Salichs. "A Bio-inspired Motivational Decision Making System for Social Robots Based on the Perception of the User." Sensors 18, no. 8 (August 16, 2018): 2691. http://dx.doi.org/10.3390/s18082691.
Full textHopkins, Michael, Robert Griffin, and Alexander Leonessa. "Compliant Locomotion." Mechanical Engineering 137, no. 06 (June 1, 2015): S12—S16. http://dx.doi.org/10.1115/1.2015-jun-6.
Full textBar-Cohen, Yoseph. "EAP Actuators for Biomimetic Technologies with Humanlike Robots as one of the Ultimate Challenges." Advances in Science and Technology 61 (September 2008): 1–7. http://dx.doi.org/10.4028/www.scientific.net/ast.61.1.
Full textParrott, Christopher, Tony J. Dodd, Joby Boxall, and Kirill Horoshenkov. "Simulation of the behavior of biologically-inspired swarm robots for the autonomous inspection of buried pipes." Tunnelling and Underground Space Technology 101 (July 2020): 103356. http://dx.doi.org/10.1016/j.tust.2020.103356.
Full text