To see the other types of publications on this topic, follow the link: Bioluminescence resonance energy transfer.

Journal articles on the topic 'Bioluminescence resonance energy transfer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bioluminescence resonance energy transfer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Breton, Billy, Étienne Sauvageau, Joris Zhou, Hélène Bonin, Christian Le Gouill, and Michel Bouvier. "Multiplexing of Multicolor Bioluminescence Resonance Energy Transfer." Biophysical Journal 99, no. 12 (2010): 4037–46. http://dx.doi.org/10.1016/j.bpj.2010.10.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hwang, Eugene, Jisu Song, and Jin Zhang. "Integration of Nanomaterials and Bioluminescence Resonance Energy Transfer Techniques for Sensing Biomolecules." Biosensors 9, no. 1 (2019): 42. http://dx.doi.org/10.3390/bios9010042.

Full text
Abstract:
Bioluminescence resonance energy transfer (BRET) techniques offer a high degree of sensitivity, reliability and ease of use for their application to sensing biomolecules. BRET is a distance dependent, non-radiative energy transfer, which uses a bioluminescent protein to excite an acceptor through the resonance energy transfer. A BRET sensor can quickly detect the change of a target biomolecule quantitatively without an external electromagnetic field, e.g., UV light, which normally can damage tissue. Having been developed quite recently, this technique has evolved rapidly. Here, different biolu
APA, Harvard, Vancouver, ISO, and other styles
3

McVey, Mary, Douglas Ramsay, Elaine Kellett, et al. "Monitoring Receptor Oligomerization Using Time-resolved Fluorescence Resonance Energy Transfer and Bioluminescence Resonance Energy Transfer." Journal of Biological Chemistry 276, no. 17 (2001): 14092–99. http://dx.doi.org/10.1074/jbc.m008902200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Samanta, Anirban, and Igor L. Medintz. "Bioluminescence-Based Energy Transfer Using Semiconductor Quantum Dots as Acceptors." Sensors 20, no. 10 (2020): 2909. http://dx.doi.org/10.3390/s20102909.

Full text
Abstract:
Bioluminescence resonance energy transfer (BRET) is the non-radiative transfer of energy from a bioluminescent protein donor to a fluorophore acceptor. It shares all the formalism of Förster resonance energy transfer (FRET) but differs in one key aspect: that the excited donor here is produced by biochemical means and not by an external illumination. Often the choice of BRET source is the bioluminescent protein Renilla luciferase, which catalyzes the oxidation of a substrate, typically coelenterazine, producing an oxidized product in its electronic excited state that, in turn, couples with a p
APA, Harvard, Vancouver, ISO, and other styles
5

De, Abhijit. "The New Era of Bioluminescence Resonance Energy Transfer Technology." Current Pharmaceutical Biotechnology 12, no. 4 (2011): 558–68. http://dx.doi.org/10.2174/138920111795163922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sauvageau, Etienne, and Stephane Lefrancois. "A beginner's guide to bioluminescence resonance energy transfer (BRET)." Biochemist 41, no. 6 (2019): 36–40. http://dx.doi.org/10.1042/bio04106036.

Full text
Abstract:
The Beginner's Guides are an ongoing series of articles in the magazine, each one covering a key technique and offering the scientifically literate but not necessarily expert audience a background briefing on the underlying science of a technique that is (or will be) widely used in molecular bioscience. The series covers a mixture of techniques, including some that are well established amongst a subset of our readership but not necessarily familiar to those in different specialisms. This Beginner's Guide covers bioluminescence resonance energy transfer (BRET).
APA, Harvard, Vancouver, ISO, and other styles
7

Xia, Zuyong, and Jianghong Rao. "Biosensing and imaging based on bioluminescence resonance energy transfer." Current Opinion in Biotechnology 20, no. 1 (2009): 37–44. http://dx.doi.org/10.1016/j.copbio.2009.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Lufei, Dong Joon Lee, Han Han, et al. "Application of bioluminescence resonance energy transfer-based cell tracking approach in bone tissue engineering." Journal of Tissue Engineering 12 (January 2021): 204173142199546. http://dx.doi.org/10.1177/2041731421995465.

Full text
Abstract:
Bioluminescent imaging (BLI) has emerged as a popular in vivo tracking modality in bone regeneration studies stemming from its clear advantages: non-invasive, real-time, and inexpensive. We recently adopted bioluminescence resonance energy transfer (BRET) principle to improve BLI cell tracking and generated the brightest bioluminescent signal known to date, which thus enables more sensitive real-time cell tracking at deep tissue level. In the present study, we brought BRET-based cell tracking strategy into the field of bone tissue engineering for the first time. We labeled rat mesenchymal stem
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Seonghoon, HyeongChan Jo, Mijeong Jeon, Myung-Gyu Choi, Sei Kwang Hahn, and Seok-Hyun Yun. "Luciferase–Rose Bengal conjugates for singlet oxygen generation by bioluminescence resonance energy transfer." Chemical Communications 53, no. 33 (2017): 4569–72. http://dx.doi.org/10.1039/c7cc00041c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alam, Rabeka, Liliana M. Karam, Tennyson L. Doane, et al. "Probing Bioluminescence Resonance Energy Transfer in Quantum Rod–Luciferase Nanoconjugates." ACS Nano 10, no. 2 (2016): 1969–77. http://dx.doi.org/10.1021/acsnano.5b05966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

CHENG, Z., and L. MILLER. "Examination 01 cholecystokinin receptor dimerization using bioluminescence resonance energy transfer." Gastroenterology 120, no. 5 (2001): A101—A102. http://dx.doi.org/10.1016/s0016-5085(01)80498-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Cheng, Zhijie, and Laurence J. Miller. "Examination 01 cholecystokinin receptor dimerization using bioluminescence resonance energy transfer." Gastroenterology 120, no. 5 (2001): A101—A102. http://dx.doi.org/10.1016/s0016-5085(08)80498-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Levi, Jelena, Abhijit De, Zhen Cheng, and Sanjiv Sam Gambhir. "Bisdeoxycoelenterazine Derivatives for Improvement of Bioluminescence Resonance Energy Transfer Assays." Journal of the American Chemical Society 129, no. 39 (2007): 11900–11901. http://dx.doi.org/10.1021/ja073936h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kamkaew, Anyanee, Haiyan Sun, Christopher G. England, Liang Cheng, Zhuang Liu, and Weibo Cai. "Quantum dot–NanoLuc bioluminescence resonance energy transfer enables tumor imaging and lymph node mapping in vivo." Chemical Communications 52, no. 43 (2016): 6997–7000. http://dx.doi.org/10.1039/c6cc02764d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Smirnova, Darya, and Natalia Ugarova. "Bioanalytical Systems Based on Bioluminescence Resonance Energy Transfer Using Firefly Luciferase." Combinatorial Chemistry & High Throughput Screening 18, no. 10 (2015): 946–51. http://dx.doi.org/10.2174/1386207318666150917095731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

SASAKI, Osamu, and Takumi KOSHIBA. "Analysis of Mitochondrial Protein-Protein Interaction Using Bioluminescence Resonance Energy Transfer." Seibutsu Butsuri 54, no. 3 (2014): 160–62. http://dx.doi.org/10.2142/biophys.54.160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Aird, Eric J., Kassidy J. Tompkins, Maria Paz Ramirez, and Wendy R. Gordon. "Enhanced Molecular Tension Sensor Based on Bioluminescence Resonance Energy Transfer (BRET)." ACS Sensors 5, no. 1 (2019): 34–39. http://dx.doi.org/10.1021/acssensors.9b00796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Coulon, Vincent, Martin Audet, Vincent Homburger, et al. "Subcellular Imaging of Dynamic Protein Interactions by Bioluminescence Resonance Energy Transfer." Biophysical Journal 94, no. 3 (2008): 1001–9. http://dx.doi.org/10.1529/biophysj.107.117275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yang, Yingkun, Weiying Hou, Siyang Liu, Kai Sun, Minyong Li, and Changfeng Wu. "Biodegradable Polymer Nanoparticles for Photodynamic Therapy by Bioluminescence Resonance Energy Transfer." Biomacromolecules 19, no. 1 (2017): 201–8. http://dx.doi.org/10.1021/acs.biomac.7b01469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Andou, Takashi, Tamaki Endoh, Masayasu Mie, and Eiry Kobatake. "Development of an RNA detection system using bioluminescence resonance energy transfer." Sensors and Actuators B: Chemical 152, no. 2 (2011): 277–84. http://dx.doi.org/10.1016/j.snb.2010.12.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Shramova, E. I., G. M. Proshkina, S. P. Chumakov, Yu M. Khodarovich, and S. M. Deyev. "Flavoprotein miniSOG Cytotoxisity Can Be Induced By Bioluminescence Resonance Energy Transfer." Acta Naturae 8, no. 4 (2016): 118–23. http://dx.doi.org/10.32607/20758251-2016-8-4-118-123.

Full text
Abstract:
In this study, we investigated the possibility of phototoxic flavoprotein miniSOG (photosensitizer) excitation in cancer cells by bioluminescence occurring when luciferase NanoLuc oxidizes its substrate, furimazine. We have shown that the phototoxic flavoprotein miniSOG expressed in eukaryotic cells in fusion with NanoLuc luciferase is activated in the presence of its substrate, furimazine. Upon such condition, miniSOG possesses photoinduced cytotoxicity and causes a 48% cell death level in a stably transfected cell line.
APA, Harvard, Vancouver, ISO, and other styles
22

Prinz, Anke, Mandy Diskar, and Friedrich W. Herberg. "Application of Bioluminescence Resonance Energy Transfer (BRET) for Biomolecular Interaction Studies." ChemBioChem 7, no. 7 (2006): 1007–12. http://dx.doi.org/10.1002/cbic.200600048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kim, Young-Pil, Zongwen Jin, Eunkyung Kim, Sunyoung Park, Young-Hee Oh, and Hak-Sung Kim. "Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET)." Biochemical and Biophysical Research Communications 382, no. 3 (2009): 530–34. http://dx.doi.org/10.1016/j.bbrc.2009.03.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Borghei, Golnaz, and Elizabeth A. H. Hall. "BRET-linked ATP assay with luciferase." Analyst 139, no. 17 (2014): 4185–92. http://dx.doi.org/10.1039/c4an00436a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bhuckory, Shashi, Joshua C. Kays, and Allison M. Dennis. "In Vivo Biosensing Using Resonance Energy Transfer." Biosensors 9, no. 2 (2019): 76. http://dx.doi.org/10.3390/bios9020076.

Full text
Abstract:
Solution-phase and intracellular biosensing has substantially enhanced our understanding of molecular processes foundational to biology and pathology. Optical methods are favored because of the low cost of probes and instrumentation. While chromatographic methods are helpful, fluorescent biosensing further increases sensitivity and can be more effective in complex media. Resonance energy transfer (RET)-based sensors have been developed to use fluorescence, bioluminescence, or chemiluminescence (FRET, BRET, or CRET, respectively) as an energy donor, yielding changes in emission spectra, lifetim
APA, Harvard, Vancouver, ISO, and other styles
26

Koshiba, Takumi. "Protein-protein interactions of mitochondrial-associated protein via bioluminescence resonance energy transfer." Biophysics and Physicobiology 12 (2015): 31–35. http://dx.doi.org/10.2142/biophysico.12.0_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Blanquart, Christophe, Josepha Achi, and Tarik Issad. "Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer." Biochemical Pharmacology 76, no. 7 (2008): 873–83. http://dx.doi.org/10.1016/j.bcp.2008.07.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Alam, Rabeka, Liliana M. Karam, Tennyson L. Doane, et al. "Near infrared bioluminescence resonance energy transfer from firefly luciferase—quantum dot bionanoconjugates." Nanotechnology 25, no. 49 (2014): 495606. http://dx.doi.org/10.1088/0957-4484/25/49/495606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lim, Jun Hyung, Geun Chul Park, Seung Muk Lee, et al. "Surface-Tunable Bioluminescence Resonance Energy Transfer via Geometry-Controlled ZnO Nanorod Coordination." Small 11, no. 28 (2015): 3469–75. http://dx.doi.org/10.1002/smll.201403700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Arai, Ryoichi, Hideyuki Nakagawa, Kouhei Tsumoto, et al. "Demonstration of a Homogeneous Noncompetitive Immunoassay Based on Bioluminescence Resonance Energy Transfer." Analytical Biochemistry 289, no. 1 (2001): 77–81. http://dx.doi.org/10.1006/abio.2000.4924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yao, Hequan, Yan Zhang, Fei Xiao, Zuyong Xia, and Jianghong Rao. "Quantum Dot/Bioluminescence Resonance Energy Transfer Based Highly Sensitive Detection of Proteases." Angewandte Chemie International Edition 46, no. 23 (2007): 4346–49. http://dx.doi.org/10.1002/anie.200700280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yao, Hequan, Yan Zhang, Fei Xiao, Zuyong Xia, and Jianghong Rao. "Quantum Dot/Bioluminescence Resonance Energy Transfer Based Highly Sensitive Detection of Proteases." Angewandte Chemie 119, no. 23 (2007): 4424–27. http://dx.doi.org/10.1002/ange.200700280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Pfleger, Kevin D. G., and Karin A. Eidne. "Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET)." Nature Methods 3, no. 3 (2006): 165–74. http://dx.doi.org/10.1038/nmeth841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shramova, E. I., S. M. Deyev, and G. M. Proshkina. "Efficiency of Bioluminescence Resonance Energy Transfer in the NanoLuc-miniSOG-Furimazine System." Russian Journal of Bioorganic Chemistry 44, no. 6 (2018): 755–58. http://dx.doi.org/10.1134/s1068162018060080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

ISSAD, TARIK, NICOLAS BOUTE, and KARINE PERNET. "The Activity of the Insulin Receptor Assessed by Bioluminescence Resonance Energy Transfer." Annals of the New York Academy of Sciences 973, no. 1 (2002): 120–23. http://dx.doi.org/10.1111/j.1749-6632.2002.tb04619.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lopez-Ilasaca, Marco A., Julio C. Bernabe-Ortiz, Soon-Young Na, Victor J. Dzau, and Ramnik J. Xavier. "Bioluminescence resonance energy transfer identify scaffold protein CNK1 interactions in intact cells." FEBS Letters 579, no. 3 (2004): 648–54. http://dx.doi.org/10.1016/j.febslet.2004.12.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ayoub, Mohammed A., and Kevin DG Pfleger. "Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization." Current Opinion in Pharmacology 10, no. 1 (2010): 44–52. http://dx.doi.org/10.1016/j.coph.2009.09.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Baba, Yuji, Kaho Yamamoto, and Wataru Yoshida. "Multicolor bioluminescence resonance energy transfer assay for quantification of global DNA methylation." Analytical and Bioanalytical Chemistry 411, no. 19 (2019): 4765–73. http://dx.doi.org/10.1007/s00216-019-01583-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ruigrok, Hermanus Johannes, Guillaume Shahid, Bertrand Goudeau, et al. "Full-Spectral Multiplexing of Bioluminescence Resonance Energy Transfer in Three TRPV Channels." Biophysical Journal 112, no. 1 (2017): 87–98. http://dx.doi.org/10.1016/j.bpj.2016.11.3197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Felce, James H., Rachel G. Knox, and Simon J. Davis. "Type-3 BRET, an Improved Competition-Based Bioluminescence Resonance Energy Transfer Assay." Biophysical Journal 106, no. 12 (2014): L41—L43. http://dx.doi.org/10.1016/j.bpj.2014.04.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kakizuka, Taishi, Akira Takai, Keiko Yoshizawa, Yasushi Okada, and Tomonobu M. Watanabe. "An improved fluorescent protein-based expression reporter system that utilizes bioluminescence resonance energy transfer and peptide-assisted complementation." Chemical Communications 56, no. 25 (2020): 3625–28. http://dx.doi.org/10.1039/c9cc08664a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Adamczyk, Maciej, Jeffrey A. Moore, and Kevin Shreder. "Quenching of Biotinylated Aequorin Bioluminescence by Dye-Labeled Avidin Conjugates: Application to Homogeneous Bioluminescence Resonance Energy Transfer Assays." Organic Letters 3, no. 12 (2001): 1797–800. http://dx.doi.org/10.1021/ol015843p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nickolls, Sarah A., and Rich A. Maki. "Dimerization of the melanocortin 4 receptor: A study using bioluminescence resonance energy transfer." Peptides 27, no. 2 (2006): 380–87. http://dx.doi.org/10.1016/j.peptides.2004.12.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kobayashi, Hiroyuki, Louis-Philippe Picard, Anne-Marie Schönegge, and Michel Bouvier. "Bioluminescence resonance energy transfer–based imaging of protein–protein interactions in living cells." Nature Protocols 14, no. 4 (2019): 1084–107. http://dx.doi.org/10.1038/s41596-019-0129-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Xu, Y., D. W. Piston, and C. H. Johnson. "A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins." Proceedings of the National Academy of Sciences 96, no. 1 (1999): 151–56. http://dx.doi.org/10.1073/pnas.96.1.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gorokhovatsky, Andrey Yu, Natalia V. Rudenko, Victor V. Marchenkov, et al. "Homogeneous assay for biotin based on Aequorea victoria bioluminescence resonance energy transfer system." Analytical Biochemistry 313, no. 1 (2003): 68–75. http://dx.doi.org/10.1016/s0003-2697(02)00514-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

James, John R., Marta I. Oliveira, Alexandre M. Carmo, Andrea Iaboni, and Simon J. Davis. "A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer." Nature Methods 3, no. 12 (2006): 1001–6. http://dx.doi.org/10.1038/nmeth978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Endo, Mizuki, and Takeaki Ozawa. "Advanced Bioluminescence System for In Vivo Imaging with Brighter and Red-Shifted Light Emission." International Journal of Molecular Sciences 21, no. 18 (2020): 6538. http://dx.doi.org/10.3390/ijms21186538.

Full text
Abstract:
In vivo bioluminescence imaging (BLI), which is based on luminescence emitted by the luciferase–luciferin reaction, has enabled continuous monitoring of various biochemical processes in living animals. Bright luminescence with a high signal-to-background ratio, ideally red or near-infrared light as the emission maximum, is necessary for in vivo animal experiments. Various attempts have been undertaken to achieve this goal, including genetic engineering of luciferase, chemical modulation of luciferin, and utilization of bioluminescence resonance energy transfer (BRET). In this review, we overvi
APA, Harvard, Vancouver, ISO, and other styles
49

Liu, Renfa, Jie Tang, Yunxue Xu, and Zhifei Dai. "Bioluminescence Imaging of Inflammation in Vivo Based on Bioluminescence and Fluorescence Resonance Energy Transfer Using Nanobubble Ultrasound Contrast Agent." ACS Nano 13, no. 5 (2019): 5124–32. http://dx.doi.org/10.1021/acsnano.8b08359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Branchini, Bruce R., Justin C. Rosenberg, Danielle M. Ablamsky, Kelsey P. Taylor, Tara L. Southworth, and Samantha J. Linder. "Sequential bioluminescence resonance energy transfer–fluorescence resonance energy transfer-based ratiometric protease assays with fusion proteins of firefly luciferase and red fluorescent protein." Analytical Biochemistry 414, no. 2 (2011): 239–45. http://dx.doi.org/10.1016/j.ab.2011.03.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!