Journal articles on the topic 'Biomass degrading enzymes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Biomass degrading enzymes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lunin, Vladimir, Markus Alahuhta, Gregg Beckham, et al. "Structural studies of biomass degrading enzyme systems." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C1812. http://dx.doi.org/10.1107/s2053273314081881.
Full textLee, Charles C. "Screening assays for biomass-degrading enzymes." Biofuels 1, no. 4 (2010): 575–88. http://dx.doi.org/10.4155/bfs.10.26.
Full textFrandsen, Kristian E. H., Tobias Tandrup, Jens-Christian N. Poulsen, et al. "Active site evolution in biomass degrading enzymes." Acta Crystallographica Section A Foundations and Advances 75, a2 (2019): e124-e124. http://dx.doi.org/10.1107/s2053273319094324.
Full textSaini, Anita, Neeraj K. Aggarwal, Anuja Sharma, and Anita Yadav. "Actinomycetes: A Source of Lignocellulolytic Enzymes." Enzyme Research 2015 (December 17, 2015): 1–15. http://dx.doi.org/10.1155/2015/279381.
Full textAgrawal, Ruchi, Ruchi Gaur, Anshu Mathur, et al. "Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes." RSC Advances 5, no. 87 (2015): 71462–71. http://dx.doi.org/10.1039/c5ra13360b.
Full textBook, Adam J., Gina R. Lewin, Bradon R. McDonald, et al. "Cellulolytic Streptomyces Strains Associated with Herbivorous Insects Share a Phylogenetically Linked Capacity To Degrade Lignocellulose." Applied and Environmental Microbiology 80, no. 15 (2014): 4692–701. http://dx.doi.org/10.1128/aem.01133-14.
Full textWu, Vincent W., Nils Thieme, Lori B. Huberman, et al. "The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus." Proceedings of the National Academy of Sciences 117, no. 11 (2020): 6003–13. http://dx.doi.org/10.1073/pnas.1915611117.
Full textPatyshakuliyeva, Aleksandrina, Daniel L. Falkoski, Ad Wiebenga, Klaas Timmermans, and Ronald P. de Vries. "Macroalgae Derived Fungi Have High Abilities to Degrade Algal Polymers." Microorganisms 8, no. 1 (2019): 52. http://dx.doi.org/10.3390/microorganisms8010052.
Full textBissaro, Bastien, Zarah Forsberg, Yan Ni, Frank Hollmann, Gustav Vaaje-Kolstad, and Vincent G. H. Eijsink. "Fueling biomass-degrading oxidative enzymes by light-driven water oxidation." Green Chemistry 18, no. 19 (2016): 5357–66. http://dx.doi.org/10.1039/c6gc01666a.
Full textHenske, John K., Sean P. Gilmore, Charles H. Haitjema, Kevin V. Solomon, and Michelle A. O'Malley. "Biomass-degrading enzymes are catabolite repressed in anaerobic gut fungi." AIChE Journal 64, no. 12 (2018): 4263–70. http://dx.doi.org/10.1002/aic.16395.
Full textMeilleur, Flora. "Characterization of biomass-degrading enzymes using neutron diffraction and scattering." Neutron News 32, no. 1 (2021): 13–14. http://dx.doi.org/10.1080/10448632.2021.1875777.
Full textMezule, Linda, and Anna Civzele. "Bioprospecting White-Rot Basidiomycete Irpex lacteus for Improved Extraction of Lignocellulose-Degrading Enzymes and Their Further Application." Journal of Fungi 6, no. 4 (2020): 256. http://dx.doi.org/10.3390/jof6040256.
Full textLange, Lene, Kristian Barrett, and Anne S. Meyer. "New Method for Identifying Fungal Kingdom Enzyme Hotspots from Genome Sequences." Journal of Fungi 7, no. 3 (2021): 207. http://dx.doi.org/10.3390/jof7030207.
Full textForeman, Pamela K., Doug Brown, Lydia Dankmeyer, et al. "Transcriptional Regulation of Biomass-degrading Enzymes in the Filamentous FungusTrichoderma reesei." Journal of Biological Chemistry 278, no. 34 (2003): 31988–97. http://dx.doi.org/10.1074/jbc.m304750200.
Full textTaggar, Monica Sachdeva. "Insect cellulolytic enzymes: Novel sources for degradation of lignocellulosic biomass." Journal of Applied and Natural Science 7, no. 2 (2015): 625–30. http://dx.doi.org/10.31018/jans.v7i2.656.
Full textBlumer-Schuette, Sara E. "Insights into Thermophilic Plant Biomass Hydrolysis from Caldicellulosiruptor Systems Biology." Microorganisms 8, no. 3 (2020): 385. http://dx.doi.org/10.3390/microorganisms8030385.
Full textvan den Brink, Joost, Gonny C. J. van Muiswinkel, Bart Theelen, Sandra W. A. Hinz, and Ronald P. de Vries. "Efficient Plant Biomass Degradation by Thermophilic Fungus Myceliophthora heterothallica." Applied and Environmental Microbiology 79, no. 4 (2012): 1316–24. http://dx.doi.org/10.1128/aem.02865-12.
Full textZhang, Dongcheng, Amy L. VanFossen, Ryan M. Pagano, et al. "Consolidated Pretreatment and Hydrolysis of Plant Biomass Expressing Cell Wall Degrading Enzymes." BioEnergy Research 4, no. 4 (2011): 276–86. http://dx.doi.org/10.1007/s12155-011-9138-2.
Full textMa, Hongyan, Daniel G. Delafield, Zhe Wang, Jianlan You, and Si Wu. "Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)." Journal of The American Society for Mass Spectrometry 28, no. 4 (2017): 655–63. http://dx.doi.org/10.1007/s13361-016-1569-8.
Full textLange, Lene, Bo Pilgaard, Florian-Alexander Herbst, Peter Kamp Busk, Frank Gleason, and Anders Gorm Pedersen. "Origin of fungal biomass degrading enzymes: Evolution, diversity and function of enzymes of early lineage fungi." Fungal Biology Reviews 33, no. 1 (2019): 82–97. http://dx.doi.org/10.1016/j.fbr.2018.09.001.
Full textRohman, Ali, Bauke W. Dijkstra та Ni Nyoman Tri Puspaningsih. "β-Xylosidases: Structural Diversity, Catalytic Mechanism, and Inhibition by Monosaccharides". International Journal of Molecular Sciences 20, № 22 (2019): 5524. http://dx.doi.org/10.3390/ijms20225524.
Full textJung, Sang-Kyu, Vinuselvi Parisutham, Seong Hun Jeong, and Sung Kuk Lee. "Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels." Journal of Biomedicine and Biotechnology 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/405842.
Full textVitcosque, Gabriela L., Rafael F. Fonseca, Ursula Fabiola Rodríguez-Zúñiga, Victor Bertucci Neto, Sonia Couri, and Cristiane S. Farinas. "Production of Biomass-Degrading Multienzyme Complexes under Solid-State Fermentation of Soybean Meal Using a Bioreactor." Enzyme Research 2012 (December 29, 2012): 1–9. http://dx.doi.org/10.1155/2012/248983.
Full textSingh, K. M., Bhaskar Reddy, Dishita Patel, et al. "High Potential Source for Biomass Degradation Enzyme Discovery and Environmental Aspects Revealed through Metagenomics of Indian Buffalo Rumen." BioMed Research International 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/267189.
Full textFrandsen, Kristian E. H., and Leila Lo Leggio. "Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes." IUCrJ 3, no. 6 (2016): 448–67. http://dx.doi.org/10.1107/s2052252516014147.
Full textAyeronfe, Fadilah, Angzzas Kassim, Patricia Hung, Nadiah Ishak, Sharfina Syarifah, and Ashuvila Aripin. "Production of Ligninolytic Enzymes by Coptotermes curvignathus Gut Bacteria." Environmental and Climate Technologies 23, no. 1 (2019): 111–21. http://dx.doi.org/10.2478/rtuect-2019-0008.
Full textBernardi, Aline Vianna, Luis Eduardo Gerolamo, Paula Fagundes de Gouvêa, et al. "LPMO AfAA9_B and Cellobiohydrolase AfCel6A from A. fumigatus Boost Enzymatic Saccharification Activity of Cellulase Cocktail." International Journal of Molecular Sciences 22, no. 1 (2020): 276. http://dx.doi.org/10.3390/ijms22010276.
Full textGladden, John M., Martin Allgaier, Christopher S. Miller, et al. "Glycoside Hydrolase Activities of Thermophilic Bacterial Consortia Adapted to Switchgrass." Applied and Environmental Microbiology 77, no. 16 (2011): 5804–12. http://dx.doi.org/10.1128/aem.00032-11.
Full textSolomon, Kevin V., Charles H. Haitjema, John K. Henske, et al. "Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes." Science 351, no. 6278 (2016): 1192–95. http://dx.doi.org/10.1126/science.aad1431.
Full textFreitag, Michael, and Jeffrey J. Morrel. "Changes in selected enzyme activities during growth of pure and mixed cultures of the white-rot decay fungus Trametes versicolor and the potential biocontrol fungus Trichoderma harzianum." Canadian Journal of Microbiology 38, no. 4 (1992): 317–23. http://dx.doi.org/10.1139/m92-053.
Full textCouturier, Marie, Mireille Haon, Pedro M. Coutinho, Bernard Henrissat, Laurence Lesage-Meessen, and Jean-Guy Berrin. "Podospora anserinaHemicellulases Potentiate theTrichoderma reeseiSecretome for Saccharification of Lignocellulosic Biomass." Applied and Environmental Microbiology 77, no. 1 (2010): 237–46. http://dx.doi.org/10.1128/aem.01761-10.
Full textHenske, John K., Stephen D. Springer, Michelle A. O'Malley, and Alison Butler. "Substrate-based differential expression analysis reveals control of biomass degrading enzymes in Pycnoporus cinnabarinus." Biochemical Engineering Journal 130 (February 2018): 83–89. http://dx.doi.org/10.1016/j.bej.2017.11.015.
Full textJadhav, Rajesh Khanduji. "IN VITRO SCREENING OF CELL WALL DEGRADING ENZYME PRODUCTIVITY FROM FUNGAL CULTURE FILTRATES ON DEPROTEINISED PLANT FLUID BY CUP PLATE ASSAY." Fungal Territory 1, no. 2 (2018): 5–9. http://dx.doi.org/10.36547/ft.2018.1.2.5-9.
Full textYao, Bo, Qiwu Hu, Guihua Zhang, Yafeng Yi, Meijuan Xiao, and Dazhi Wen. "Effects of Elevated CO2 Concentration and Nitrogen Addition on Soil Respiration in a Cd-Contaminated Experimental Forest Microcosm." Forests 11, no. 3 (2020): 260. http://dx.doi.org/10.3390/f11030260.
Full textAnderson, Timothy D., J. Izaak Miller, Henri-Pierre Fierobe, and Robert T. Clubb. "Recombinant Bacillus subtilis That Grows on Untreated Plant Biomass." Applied and Environmental Microbiology 79, no. 3 (2012): 867–76. http://dx.doi.org/10.1128/aem.02433-12.
Full textGeiser, Elena, Michèle Reindl, Lars M. Blank, Michael Feldbrügge, Nick Wierckx, and Kerstin Schipper. "Activating Intrinsic Carbohydrate-Active Enzymes of the Smut Fungus Ustilago maydis for the Degradation of Plant Cell Wall Components." Applied and Environmental Microbiology 82, no. 17 (2016): 5174–85. http://dx.doi.org/10.1128/aem.00713-16.
Full textLynd, Lee R., Paul J. Weimer, Willem H. van Zyl, and Isak S. Pretorius. "Microbial Cellulose Utilization: Fundamentals and Biotechnology." Microbiology and Molecular Biology Reviews 66, no. 3 (2002): 506–77. http://dx.doi.org/10.1128/mmbr.66.3.506-577.2002.
Full textMetz, Benjamin, Verena Seidl-Seiboth, Thomas Haarmann, et al. "Expression of Biomass-Degrading Enzymes Is a Major Event during Conidium Development in Trichoderma reesei." Eukaryotic Cell 10, no. 11 (2011): 1527–35. http://dx.doi.org/10.1128/ec.05014-11.
Full textLudwig, Roland. "OXIDISE - Interaction and Kinetics of Oxidative Biomass Degrading Enzymes Resolved by High-Resolution Techniques - ERC." Impact 2019, no. 5 (2019): 9–11. http://dx.doi.org/10.21820/23987073.2019.5.9.
Full textLongoni, Paolo, Sadhu Leelavathi, Enrico Doria, Vanga Siva Reddy, and Rino Cella. "Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification." BioMed Research International 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/289759.
Full textLangston, James A., Tarana Shaghasi, Eric Abbate, Feng Xu, Elena Vlasenko, and Matt D. Sweeney. "Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61." Applied and Environmental Microbiology 77, no. 19 (2011): 7007–15. http://dx.doi.org/10.1128/aem.05815-11.
Full textMekasha, Sophanit, Tina Rise Tuveng, Fatemeh Askarian, et al. "A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin." Journal of Biological Chemistry 295, no. 27 (2020): 9134–46. http://dx.doi.org/10.1074/jbc.ra120.013040.
Full textAdlakha, Nidhi, Raman Rajagopal, Saravanan Kumar, Vanga Siva Reddy, and Syed Shams Yazdani. "Synthesis and Characterization of Chimeric Proteins Based on Cellulase and Xylanase from an Insect Gut Bacterium." Applied and Environmental Microbiology 77, no. 14 (2011): 4859–66. http://dx.doi.org/10.1128/aem.02808-10.
Full textSaxena, Hirak, Bryan Hsu, Marc de Asis, et al. "Characterization of a thermostable endoglucanase from Cellulomonas fimi ATCC484." Biochemistry and Cell Biology 96, no. 1 (2018): 68–76. http://dx.doi.org/10.1139/bcb-2017-0150.
Full textScott, Israel M., Gabe M. Rubinstein, Gina L. Lipscomb, et al. "A New Class of Tungsten-Containing Oxidoreductase in Caldicellulosiruptor, a Genus of Plant Biomass-Degrading Thermophilic Bacteria." Applied and Environmental Microbiology 81, no. 20 (2015): 7339–47. http://dx.doi.org/10.1128/aem.01634-15.
Full textB, Thamilmaraiselvi, Steffi PF, Sathammaipriya N, and Sangeetha K. "Low cost pretreatment of lignocellulosic waste by white rot fungi for ethanol production using Saccharomyces cerevisiae." International Journal of Research in Pharmaceutical Sciences 9, no. 1 (2018): 18. http://dx.doi.org/10.26452/ijrps.v9i1.1152.
Full textFarinas, Cristiane S. "Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector." Renewable and Sustainable Energy Reviews 52 (December 2015): 179–88. http://dx.doi.org/10.1016/j.rser.2015.07.092.
Full textGuo, Haipeng, Houming Chen, Lu Fan, et al. "Enzymes produced by biomass-degrading bacteria can efficiently hydrolyze algal cell walls and facilitate lipid extraction." Renewable Energy 109 (August 2017): 195–201. http://dx.doi.org/10.1016/j.renene.2017.03.025.
Full textRizk, Mazen, Garabed Antranikian, and Skander Elleuche. "End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes." Biochemical and Biophysical Research Communications 428, no. 1 (2012): 1–5. http://dx.doi.org/10.1016/j.bbrc.2012.09.142.
Full textOntañon, Ornella M., Soma Bedő, Silvina Ghio, et al. "Optimisation of xylanases production by two Cellulomonas strains and their use for biomass deconstruction." Applied Microbiology and Biotechnology 105, no. 11 (2021): 4577–88. http://dx.doi.org/10.1007/s00253-021-11305-y.
Full text