Academic literature on the topic 'Biomass energy – Zambia'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biomass energy – Zambia.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biomass energy – Zambia"

1

Merven, Bruno, Alison Hughes, and Stephen Davis. "An analysis of energy consumption for a selection of countries in the Southern African Development Community." Journal of Energy in Southern Africa 21, no. 1 (February 1, 2010): 11–24. http://dx.doi.org/10.17159/2413-3051/2010/v21i1a3246.

Full text
Abstract:
This paper examines the energy consumption, supply and resources of some of the countries in the Southern African Development Community (SADC) in 2005, the base year for this analysis. The region is rich in energy resources and currently enjoys relatively stable and affordable electricity. Except in the case of Botswana, Mauritius, Namibia and South Africa, final energy demand is dominated by the residential sector in the form of biomass. Energy consumption or final energy demand in Angola, Botswana, Mozambique, South Africa, Tanzania, Zambia and Zimbabwe is projected to 2030 using a Long Range Energy Alternatives Plan-ning (LEAP) model in a ‘business as usual’ scenario, the other countries being left out because of poor quality data. The projections are carried out by relating historic sectoral GDP and population growth in each country to energy demand and then using the historical link and the projections of these drivers to project energy demand. The analysis under this ‘business as usual’ scenario seems to indicate that we can expect to see a large increase in consumption in these countries, especially in the form of biomass and electricity. In both cases, supply is a concern. Having established what the present resources are; what some of the supply elements are currently in place; what the base-year demand is; and some basic relationships between demand and socio-economic drivers, this paper sets the stage for further studies that include the future energy supply; regional trade; and scenario analysis using indicators of sustainable development for the region. However, further analysis of the regional energy system, is only valuable if it is supported by good data. A reliable energy balance is needed for the countries not modelled here, and in the case of the modelled countries, better data is also needed, especially in the use biomass.
APA, Harvard, Vancouver, ISO, and other styles
2

Kaoma, Mwansa, and Shabbir H. Gheewala. "Sustainability performance of lignocellulosic biomass-to-bioenergy supply chains for Rural Growth Centres in Zambia." Sustainable Production and Consumption 28 (October 2021): 1343–65. http://dx.doi.org/10.1016/j.spc.2021.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Khatiwada, Dilip, Pallav Purohit, and Emmanuel Kofi Ackom. "Mapping Bioenergy Supply and Demand in Selected Least Developed Countries (LDCs): Exploratory Assessment of Modern Bioenergy’s Contribution to SDG7." Sustainability 11, no. 24 (December 11, 2019): 7091. http://dx.doi.org/10.3390/su11247091.

Full text
Abstract:
Bioenergy can play an important role in achieving the agreed United Nations Sustainable Development Goals (SDGs) and implementing the Paris Agreement on Climate Change, thereby advancing climate goals, food security, better land use, and sustainable energy for all. In this study, we assess the surplus agricultural residues availability for bioelectricity in six least developed countries (LDCs) in Asia and Africa, namely Bangladesh, Lao-PDR, and Nepal in Asia; and Ethiopia, Malawi, and Zambia in Africa, respectively. The surplus agricultural residues have been estimated using residue-to-product ratio (RPR), agricultural residues lost in the collection, transportation and storage, and their alternative applications. We use a linear regression model to project the economic potential of bioelectricity. The contribution of bioelectricity for meeting the LDCs’ electricity requirements is estimated in a time frame between 2017 and 2030. Our results reveal that the surplus biomass feedstock available from the agriculture sector could provide the total current electricity demand in Malawi alone, followed by Nepal (45%), Bangladesh (29%), Lao People’s Democratic Republic (Lao-PDR) (29%), Ethiopia (27%), and Zambia (13%). This study also explores the complementarity and synergies of bioelectricity, SDG7, and their interlinkages with other SDGs. Findings from the study show that providing access to sustainable energy in the LDCs to meet the SDG7 by 2030 might be a challenge due to limited access to technology, infrastructure, and finance. Site-specific investigations on how much agricultural residues could be extracted in an environmentally benign manner for bioelectricity and increased investment in the bioenergy sector are key potential solutions in a myriad of options required to harness the full energy potential in the LDCs.
APA, Harvard, Vancouver, ISO, and other styles
4

Price, Martin, Melinda Barnard-Tallier, and Karin Troncoso. "Stacked: In Their Favour? The Complexities of Fuel Stacking and Cooking Transitions in Cambodia, Myanmar, and Zambia." Energies 14, no. 15 (July 23, 2021): 4457. http://dx.doi.org/10.3390/en14154457.

Full text
Abstract:
It remains unclear whether the decision to cook with both polluting and cleaner-burning fuels (‘fuel stacking’) serves as a transition phase towards the full adoption of clean-cooking practices, or whether stacking allows households to enhance fuel security and choose from a variety of cooking technologies and processes. This paper offers a unique contribution to the debate by positioning fuel stacking as the central research question in the exploration of existing household survey data. This research analyses the World Bank’s Multi-Tier Framework survey data concerning energy access and cooking practices in Cambodia, Myanmar, and Zambia. Its novel approach uses fuel expenditure data to group urban households according to the intensity of biomass consumption (wood, charcoal) relative to modern fuel consumption (electricity, gas). The research explores how different fuel-stacking contexts are associated with factors related to household finances, composition, experiences of electricity, and attitudes towards modern fuels. This study shows the diversity of characteristics and behaviours associated with fuel stacking in urban contexts, thus demonstrating the need for fuel stacking to feature prominently in future data collection activities. The paper ends with five key recommendations for further research into fuel stacking and its role in clean-cooking transitions.
APA, Harvard, Vancouver, ISO, and other styles
5

Leach, Matthew, Chris Mullen, Jacquetta Lee, Bartosz Soltowski, Neal Wade, Stuart Galloway, William Coley, Shafiqa Keddar, Nigel Scott, and Simon Batchelor. "Modelling the Costs and Benefits of Modern Energy Cooking Services—Methods and Case Studies." Energies 14, no. 12 (June 8, 2021): 3371. http://dx.doi.org/10.3390/en14123371.

Full text
Abstract:
Globally, 2.8 billion people still cook with biomass, resulting in health, environmental, and social challenges; electric cooking is a key option for a transition to modern energy cooking services. However, electric cooking is assumed to be too expensive, grids can be unreliable and the connection capacity of mini-grids and solar home systems is widely assumed to be insufficient. Developments in higher performance and lower cost batteries and solar photovoltaics can help, but they raise questions of affordability and environmental impacts. The range of issues is wide, and existing studies do not capture them coherently. A new suite of models is outlined that represents the technical, economic, human, and environmental benefits and impacts of delivering electric cooking services, with a life-cycle perspective. This paper represents the first time this diverse range of approaches has been brought together. The paper illustrates their use through combined application to case studies for transitions of households from traditional fuels to electric cooking: for urban grid-connected households in Zambia; for mini-grid connected households in Tanzania; and for off-grid households in Kenya. The results show that electric cooking can be cost-effective, and they demonstrate overall reductions in human and ecological impacts but point out potential impact ‘hotspots’. The network analysis shows that electric cooking can be accommodated to a significant extent on existing grids, due partly to diversity effects in the nature and timing of cooking practices.
APA, Harvard, Vancouver, ISO, and other styles
6

Chidumayo, E. N. "Woody biomass structure and utilisation for charcoal production in a Zambian Miombo woodland." Bioresource Technology 37, no. 1 (January 1991): 43–52. http://dx.doi.org/10.1016/0960-8524(91)90110-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Biomass energy – Zambia"

1

Matakala, Litiya. "Biofuel policies : what can Zambia learn from leading biofuel producers." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/5748.

Full text
Abstract:
Thesis (MDF (Development Finance))--University of Stellenbosch, 2009.
ENGLISH ABSTRACT: Price volatility and high dependency on imported petroleum fuel has prompted the Zambian government to look into renewable fuels as part of an energy diversification program. With growing global interest in biofuels as a transportation fuel, the Zambian government intends to introduce bioethanol and biodiesel as renewable fuels in the transportation sector. While it seems feasible to produce both the feedstocks and biofuels to meet local demand, a regulatory framework and industry support mechanisms have not yet been formulated. The policy and regulatory frameworks encompass a multitude of actors, networks and institutions all playing distinct and important roles. Incorporating the differing interests of all these stakeholders is an involving process that requires detailed analysis of agriculture, environmental, energy, socioeconomic and taxation policies. This study attempts to contribute to the biofuels policy formulation process in Zambia. It analyses biofuel policies in leading biofuels producing countries and identifies aspects that the Zambian government should consider incorporating in its own policies to ensure a viable biofuels industry. Biofuel policies in Brazil, Germany and the United States of America were analysed using a detailed case study and extensive literature review. Furthermore, a detailed analysis of the Zambian agriculture sector and the demand for petroleum fuel puts into context the potential demand and challenges likely to be faced. By understanding the history and development of biofuels in the case study countries, best practices, problems faced, policy innovations and industry support mechanisms were identified to inform policy formulation in Zambia. This does not only provide valuable insights and lessons but also ensures that time and resources are not wasted by reinventing the wheel. The comparative analysis of policies and support mechanisms in the three case study countries showed that articulating a clear policy objective, government support in the form of subsidies, wide stakeholder involvement and industry regulation have all played a critical role in the development of the industry. However, the extent to which all these factors have helped to shape the industry in Brazil, Germany and the USA is neither equal nor static. Countries are continuously adapting their policies and support mechanisms to environmental, energy and economic conditions.
AFRIKAANSE OPSOMMING: Die onbestendigheid van pryse en die groot mate van afhanklikheid van ingevoerde petroleumbrandstof het die Zambiese regering aangespoor om ondersoek in te stel na hernubare brandstof as deel van 'n energiediversifiseringsprogram. In die lig van die groeiende globale belangstelling in biobrandstof as vervoerbrandstof, beplan die Zambiese regering om bioetanol en biodiesel as hernubare brandstof in die vervoersektor te begin gebruik. Al lyk dit prakties uitvoerbaar om sowel die voerstof as die biobrandstof te vervaardig om in die plaaslike aanvraag te voorsien, is 'n reguleringsraamwerk en ondersteuningsmeganismes vir die industrie nog nie geskep nie. 'n Menigte rolspelers, netwerke en instellings, wat almal verskillende en belangrike rolle speel, sal betrokke wees by die beleidsformulering en reguleringsraamwerk. Om die uiteenlopende belange van al die betrokke partye in ag te neem is 'n ingewikkelde proses wat sal vereis dat 'n uitvoerige analise gemaak word van landbou-, omgewings-, energie-, sosio-ekonomiese en belastingbeleidsrigtings. Die doelwit van hierdie studie is om 'n bydrae te lewer tot die formuleringsproses van die biobrandstofbeleid in Zambie. Dit analiseer die biobrandstofbeleid van die vooraanstaande lande wat biobrandstof vervaardig, en identifiseer aspekte wat die Zambiese regering in sy beleid behoort in te sluit om 'n lewensvatbare biobrandstofindustrie te verseker. Die biobrandstofbeleid van Brasilie, Duitsland en die Verenigde State van Amerika (VSA) is geanaliseer met behulp van uitvoerige gevallestudies en 'n grondige literatuurstudie. Verder plaas 'n noukeurige analise van die Zambiese landbousektor en die aanvraag na petroleumbrandstof die potensiele aanvraag en uitdagings wat waarskynlik hanteer sal meet word in konteks. Deur insig te verkry in die geskiedenis en ontwikkeling van biobrandstof in die lande waar die gevallestudies gedoen is, kon die beste gebruike, moontlike probleme, nuwe beleidsrigtings en ondersteuningsmeganismes in die bedryf geidentifiseer word om die beleid in Zambie te help formuleer. Dit bied nie slegs waardevolle insig en leergeleenthede nie, maar verseker ook dat tyd en hulpbronne nie vermors word deur die wiel van voor af uit te vind nie. Die vergelykende analise van die beleidsrigtings en ondersteuningsmeganismes in die drie lande waar die gevallestudies gedoen is, het getoon dat 'n duidelik geformuleerde beleidsdoelwit, ondersteuning van die regering in die vorm van subsidies, die algemene betrokkenheid van belanghebbendes en die regulering van die industrie alles 'n uiters belangrike rol gespeel het in die ontwikkeling van hierdie industrie. Die mate waarin al hierdie faktore die industrie in Brasilie, Duitsland en die VSA help vorm het, het egter gewissel en was nooit staties nie. Lande pas voortdurend hulle beleid en ondersteuningsmeganismes aan by omgewings-, energie- en ekonomiese toestande.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Biomass energy – Zambia"

1

Mandota, Simba. Biofuel development, land use, and livelihoods in southern Africa: A synthesis of cases from Botswana, Malawi, Mozambique, Namibia, South Africa, Zambia and Zimbabwe. Harare]: Community Technology Development Trust, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Biomass energy – Zambia"

1

Makai, L., and S. P. Daniel Chowdhury. "Energy solution of Zambia from micro hybric biomass — Solar photovoltaic power plants." In 2017 IEEE AFRICON. IEEE, 2017. http://dx.doi.org/10.1109/afrcon.2017.8095664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography