Academic literature on the topic 'Biomaterial scaffold'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biomaterial scaffold.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biomaterial scaffold"
Zhang, Bin, Rodica Cristescu, Douglas B. Chrisey, and Roger J. Narayan. "Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds." International Journal of Bioprinting 6, no. 1 (January 17, 2020): 19. http://dx.doi.org/10.18063/ijb.v6i1.211.
Full textChen, Suzan, Angela Auriat, Tongda Li, Taisa Stumpf, Ryan Wylie, Xiongbiao Chen, Stephanie Willerth, et al. "Advancements in Canadian Biomaterials Research in Neurotraumatic Diagnosis and Therapies." Processes 7, no. 6 (June 3, 2019): 336. http://dx.doi.org/10.3390/pr7060336.
Full textLim, Ye-Seon, Ye-Jin Ok, Seon-Yeong Hwang, Jong-Young Kwak, and Sik Yoon. "Marine Collagen as A Promising Biomaterial for Biomedical Applications." Marine Drugs 17, no. 8 (August 10, 2019): 467. http://dx.doi.org/10.3390/md17080467.
Full textJames, Roshan, Paulos Mengsteab, and Cato T. Laurencin. "Regenerative Engineering: Studies of the Rotator Cuff and other Musculoskeletal Soft Tissues." MRS Advances 1, no. 18 (2016): 1255–63. http://dx.doi.org/10.1557/adv.2016.282.
Full textKazimierczak, Paulina, Krzysztof Palka, and Agata Przekora. "Development and Optimization of the Novel Fabrication Method of Highly Macroporous Chitosan/Agarose/Nanohydroxyapatite Bone Scaffold for Potential Regenerative Medicine Applications." Biomolecules 9, no. 9 (September 1, 2019): 434. http://dx.doi.org/10.3390/biom9090434.
Full textAgbay, Andrew, John M. Edgar, Meghan Robinson, Tara Styan, Krista Wilson, Julian Schroll, Junghyuk Ko, Nima Khadem Mohtaram, Martin Byung-Guk Jun, and Stephanie M. Willerth. "Biomaterial Strategies for Delivering Stem Cells as a Treatment for Spinal Cord Injury." Cells Tissues Organs 202, no. 1-2 (2016): 42–51. http://dx.doi.org/10.1159/000446474.
Full textRoi, Alexandra, Lavinia Cosmina Ardelean, Ciprian Ioan Roi, Eugen-Radu Boia, Simina Boia, and Laura-Cristina Rusu. "Oral Bone Tissue Engineering: Advanced Biomaterials for Cell Adhesion, Proliferation and Differentiation." Materials 12, no. 14 (July 18, 2019): 2296. http://dx.doi.org/10.3390/ma12142296.
Full textBlanco-Elices, Cristina, Enrique España-Guerrero, Miguel Mateu-Sanz, David Sánchez-Porras, Óscar García-García, María Sánchez-Quevedo, Ricardo Fernández-Valadés, Miguel Alaminos, Miguel Martín-Piedra, and Ingrid Garzón. "In Vitro Generation of Novel Functionalized Biomaterials for Use in Oral and Dental Regenerative Medicine Applications." Materials 13, no. 7 (April 4, 2020): 1692. http://dx.doi.org/10.3390/ma13071692.
Full textVigneswari, Sevakumaran, Tana Poorani Gurusamy, H. P. S. Abdul Khalil, Seeram Ramakrishna, and Al-Ashraf Abdullah Amirul. "Elucidation of Antimicrobial Silver Sulfadiazine (SSD) Blend/Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) Immobilised with Collagen Peptide as Potential Biomaterial." Polymers 12, no. 12 (December 14, 2020): 2979. http://dx.doi.org/10.3390/polym12122979.
Full textWahl, Elizabeth A., Fernando A. Fierro, Thomas R. Peavy, Ursula Hopfner, Julian F. Dye, Hans-Günther Machens, José T. Egaña, and Thilo L. Schenck. "In VitroEvaluation of Scaffolds for the Delivery of Mesenchymal Stem Cells to Wounds." BioMed Research International 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/108571.
Full textDissertations / Theses on the topic "Biomaterial scaffold"
Pipes, Toni M. "CHARACTERIZING THE REPRODUCIBILITY OF THE PROPERTIES OF ELECTROSPUN POLY(D,L-LACTIDE-CO-GLYCOLIDE) SCAFFOLDS FOR TISSUE-ENGINEERED BLOOD VESSEL MIMICS." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1194.
Full textBlackstone, Britani Nicole. "Biomaterial, Mechanical and Molecular Strategies to Control Skin Mechanics." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1406123409.
Full textThomas, John. "Development of a hybrid scaffold for cartilage tissue generation." Thesis, Kingston, Ont. : [s.n.], 2008. http://hdl.handle.net/1974/1194.
Full textKo, Henry Chung Hung Graduate School of Biomedical Engineering Faculty of Engineering UNSW. "Influence of scaffold geometries on spatial cell distribution." Publisher:University of New South Wales. Graduate School of Biomedical Engineering, 2009. http://handle.unsw.edu.au/1959.4/43342.
Full textCoverdale, Benjamin. "Incorporation of surfactants into electrospun scaffolds for improved bone tissue engineering applications." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/incorporation-of-surfactants-into-electrospun-scaffolds-for-improved-bone-tissue-engineering-applications(eb71f3b7-a4de-4b92-9113-29cf2b79aa9c).html.
Full textKido, Hueliton Wilian. "Biocompatibilidade da vitrocêramica bioativa (Biosilicato®): análises in vitro e in vivo." Universidade Federal de São Carlos, 2011. https://repositorio.ufscar.br/handle/ufscar/6995.
Full textUniversidade Federal de Minas Gerais
Due to limited availability of autogenous bone and of the risks associated with the use of bone allografts, new synthetic materials have been developed in order to replace the bone tissue lost due to trauma or pathological process. The bioactive materials in the form of scaffolds are synthetic materials promising for bone grafting. Several studies suggest that these biomaterials are able to stimulate the proliferation of osteoblasts and osteogenesis at the site of fracture. However, the feasibility of these biomaterials to a clinical application requires the investigation of their biocompatibility. In this context, this study aimed to evaluate the biocompatibility of a scaffold synthesized from a fully crystallized glass-ceramic bioactive quaternary system P2O5-Na2O-CaO-SiO2 (Biosilicate®), through histopathological analysis of the biomaterial implanted in the subcutaneous tissue of rats and the cytotoxicity and genotoxicity analysis of the biomaterial in cell cultures (OSTEO-1 and L929 cells). Histopathologic analysis of the biomaterial was performed using 65 Wistar rats male (210- 260 g), randomly divided into two groups, Control group (n = 3 animals per period) and Biosilicate group (n = 10 animals per period), evaluated at 7, 15, 30, 45 and 60 days after surgery. The animals of Biosilicate group underwent surgery and received a subcutaneous implant of Biosilicate® scaffolds. The animals of Control group underwent surgery but did not receive any biomaterial implant. The cytotoxicity analysis was performed to assess the effect of products leaching from Biosilicate® scaffolds (extracts) on cellular proliferation (MTT). The extracts were evaluated in various concentrations (100, 50, 25 and 12.5%) in experimental periods of 24, 72 and 120 hours in two cell lines (OSTEO-1 and L929). The genotoxicity analysis (comet assay) was performed to assess DNA damage in cells OSTEO-1 and L929 grown in contact with the Biosilicate® scaffolds in different periods of 24, 72 and 96 horas. The statistical analysis of parametrics data was performed by analysis of variance (ANOVA) followed by Tukey post-hoc and the analysis of nonparametrics data was performed by Mann-Whitney test. Both statistical tests were performed with a significance level of 5%. The results of histopathological analysis showed that the animals of the Control group did not present inflammation process, necrotic tissue and fibrous tissue. The animals of Biosilicato group showed a granulation tissue after 7 days of implantation. In the other periods (15, 30, 45 and 60 days) a chronic inflammation process of foreign body, marked by the presence of fibrous tissue and giant cells was observed. No infection or necrotic tissue was observed in any animal. In the analysis of cytotoxicity, it was observed that extracts of Biosilicato® scaffolds did not have any significant effect in reducing cell proliferation OSTEO-1 and L929, and that lower concentrations of the extracts (12.5 and 25%) stimulated the proliferation of both cells in periods of 72 and 120 hours. The analysis of genotoxicity showed that the Biosilicate® scaffolds did not induce DNA damage in the cell lines tested in all experimental periods. The results of this study showed that the Biosilicate® scaffolds presented biocompatibility in vivo and in vitro.
Devido a limitada disponibilidade de osso autógeno e dos riscos associados ao uso de osso alógeno, novos materiais sintéticos vêm sendo desenvolvidos com o objetivo de substituir o tecido ósseo perdido em decorrência de traumatismos ou processos patológicos. Os materiais bioativos na forma de scaffolds são materiais sintéticos promissores para enxertia óssea. Vários estudos sugerem que estes biomateriais são capazes de estimular a proliferação de osteoblastos e a osteogênese no local da fratura. No entanto, a viabilização destes biomateriais a uma aplicação clínica requer o emprego de testes que avaliem a sua biocompatibilidade. Dentro deste contexto, o presente estudo teve como objetivo avaliar a biocompatibilidade do scaffold sintetizado a partir de uma vitrocerâmica bioativa totalmente cristalizada do sistema quaternário P2O5-Na2O-CaO-SiO2 (Biosilicato®), por meio da análise histopatológica do biomaterial implantado no tecido subcutâneo de ratos, e pelas análises de citotoxicidade e genotoxicidade do biomaterial em cultura de células da linhagem OSTEO-1 e L929. A análise histopatológica do biomaterial foi realizada utilizando 65 ratos machos da linhagem Wistar (210-260 g), distribuídos aleatoriamente em dois grupos, Controle (n = 3 animais por período) e Biosilicato (n = 10 animais por período), avaliados em períodos distintos de 7, 15, 30, 45 e 60 dias. Os animais do grupo Biosilicato foram submetidos a uma cirurgia no tecido subcutâneo e receberam um implante de scaffold de Biosilicato®. Os animais do grupo Controle foram submetidos à mesma cirurgia, mas não receberam o implante do biomaterial. A análise de citotoxicidade foi realizada para avaliar os efeitos dos produtos da lixiviação dos scaffolds de Biosilicato® (extratos) na proliferação celular pelo ensaio MTT. Os extratos foram avaliados em várias concentrações (100, 50, 25 e 12,5%) em períodos experimentais de 24, 72 e 120 horas, utilizando duas linhagens celulares (OSTEO-1 e L929). A análise de genotoxicidade (ensaio cometa) foi realizada para avaliar os danos no DNA de células OSTEO-1 e L929 cultivadas em contato com scaffolds de Biosilicato® em períodos distintos de 24, 72 e 96 horas. A análise estatística dos dados paramétricos foi realizada pelo teste de variância (ANOVA), seguido do post-hoc de Tukey, e a análise dos dados não paramétricos foi realizada pelo teste de Mann-Whitney. Ambos os testes estatísticos foram realizados com nível de significância de 5%. Os resultados da análise histopatológica demonstraram que os animais do grupo Controle não apresentaram processo inflamatório, tecido necrótico ou tecido fibroso. Já os animais do grupo Biosilicato apresentaram um tecido de granulação após 7 dias de implantação e nos demais períodos (15, 30, 45 e 60 dias) apresentaram um processo inflamatório crônico de corpo estranho, marcado pela presença de tecido fibroso e células gigantes multinucleadas. Em todos os animais avaliados não foi evidenciado foco de infecção ou tecido necrótico. Na análise de citotoxicidade foi observado que os extratos dos scaffolds de Biosilicato® não possuem efeito significativo na redução da proliferação de células OSTEO-1 e L929, e que as menores concentrações dos extratos (12,5 e 25%) estimularam a proliferação de ambas às células nos períodos de 72 e 120 horas. Na análise de genotoxicidade foi evidenciado que os scaffolds de Biosilicato® não induzem danos do DNA de células de ambas às linhagens testadas em todos os períodos experimentais. Os resultados obtidos neste estudo demonstraram que os scaffolds de Biosilicato® apresentaram biocompatibilidade em experimentos in vivo e in vitro.
Qiu, Weiguo. "Fabrication and Characterization of Recombinant Silk-elastinlike Protein Fibers for Tissue Engineering Applications." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/201490.
Full textArmelin, Paulo Roberto Gabbai. "Avaliação da biocompatibilidade e do efeito no reparo ósseo de um scaffold manufaturado a partir de um material vítreo fibroso." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/7182.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-15T13:55:56Z (GMT) No. of bitstreams: 1 TesePRGA.pdf: 5283158 bytes, checksum: c57ad9ff767d07147f784d369b1084cf (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-15T13:56:08Z (GMT) No. of bitstreams: 1 TesePRGA.pdf: 5283158 bytes, checksum: c57ad9ff767d07147f784d369b1084cf (MD5)
Made available in DSpace on 2016-09-15T13:56:17Z (GMT). No. of bitstreams: 1 TesePRGA.pdf: 5283158 bytes, checksum: c57ad9ff767d07147f784d369b1084cf (MD5) Previous issue date: 2015-03-27
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Millions of bone fractures occur annually worldwide and the consequent bone repair process is complex, involving many biological events until it reaches the restoration of the tissue integrity. During that process some problems can occur due to delays in the bone healing, which does not allow the proper joining of the tissue. Thus, it is necessary to search for new technologies that work in restoring the integrity of the bone tissue and that promote the osteoconduction and the osteoinduction. In this sense, the use of bioactive materials in the bone repair process is a promising alternative. Following this, two studies (I and II) were developed in order to investigate a new fibrous glassy scaffold, and these studies were based in three lines of research: (i) the characterization of the new fibrous glassy scaffold; (ii) the biocompatibility evaluation of this bioactive material; (iii) the analysis of the biological performance of this new scaffold in the bone repair. More specifically, in the study I the developed scaffolds were characterized in terms of porosity, mineralization and morphological features. Additionally, fibroblast and osteoblast cells were seeded in contact with extracts of the scaffolds to assess cell proliferation and genotoxicity after 24, 72 and 144 h. Finally, scaffolds were placed subcutaneously in rats for 15, 30 and 60 days. In regards to study II, the morphological structure of the scaffolds upon incubation in phosphate buffered saline (PBS) (via scanning electron microscope) was assessed after 1, 7 and 14 days and, also, the in vivo tissue response to the new biomaterial was evaluated using implantation in rat tibial defects. The histopathological, immunohistochemistry and biomechanical analyzes after 15, 30 and 60 days of implantation were performed to investigate the effects of the material on bone repair. The scaffolds presented interconnected porous structures (porosity of ~75%), and the precursor bioglass could mineralize a hydroxycarbonate apatite (HCA) layer in SBF after only 12 h. The PBS incubation indicated that the fibers of the glassy scaffold degraded over time. With regards to the biological investigations, the biomaterial elicited increased fibroblast and osteoblast cell proliferation, and no DNA damage was observed. The in vivo experiment showed degradation of the biomaterial over time, with soft tissue ingrowth into the degraded area and the presence of multi-nucleated giant cells around the implant. At day 60, the scaffolds were almost completely degraded, and an organized granulation tissue filled the area. Additionally, the histological analysis of the implants in the bone defects revealed a progressive degradation of the material with increasing implantation time and also its substitution by granulation tissue and woven bone. Histomorphometry showed a higher amount of newly formed bone area in the control group (CG) compared to the biomaterial group (BG) 15 days post-surgery. After 30 and 60 days, CG and BG showed a similar amount of newly formed bone. The novel biomaterial enhanced the expression of RUNX-2 and RANK-L, and also improved the mechanical properties of the tibial callus at day 15 after surgery. These results indicate that the new fibrous glassy scaffold is bioactive, non-cytotoxic, biocompatible and promising for using in bone tissue engineering.
Milhões de fraturas ósseas ocorrem anualmente no mundo todo e o processo de reparo é complexo, envolvendo muitos eventos biológicos até que se atinja a restauração da integridade do tecido. Problemas nessa regeneração podem ocorrer, levando a não união óssea. Assim, faz-se necessária a busca por novas tecnologias que atuem na restauração da integridade do tecido ósseo e promovam a osteocondução e a osteoindução. Para tanto, uma alternativa promissora é a utilização de materiais bioativos para o reparo ósseo. Seguindo essa linha, foram realizados dois estudos (I e II) acerca de um novo scaffold vítreo fibroso, sendo estes estudos baseados em três linhas de investigação: (i) caracterização do novo scaffold vítreo fibroso; (ii) avaliação da biocompatibilidade desse material bioativo e (iii) análise do desempenho biológico desse novo scaffold no reparo ósseo. Mais especificamente, no estudo I foi feita a caracterização dos scaffolds em termos de porosidade, mineralização e características morfológicas. Adicionalmente, fibroblastos e osteoblastos foram cultivados em contato com extratos dos scaffolds para avaliação da proliferação celular e genotoxicidade após 24, 72 e 144 h. Finalmente, nesse mesmo estudo, os scaffolds foram implantados subcutaneamente em ratos por 15, 30 e 60 dias. No que se refere ao estudo II, foram feitas avaliações da estrutura morfológica dos scaffolds (via microscopia eletrônica de varredura) imersos em tampão fosfato salino (PBS) após 1, 7 e 14 dias, além de investigações do efeito no reparo ósseo do novo scaffold utilizando implantação do mesmo em defeitos ósseos tibiais em ratos. Análises histopatológicas, imunohistoquímicas e biomecânicas foram realizadas 15, 30 e 60 dias após a implantação. Os scaffolds apresentaram estruturas altamente porosas (porosidade de ~75%) e interconectadas, e o biovidro precursor mineralizou uma camada de hidroxicarbonatoapatita (HCA) em SBF (simulated body fluid) após o curto período de 12 h. A incubação em PBS indicou que as fibras do scaffold apresentaram sinais de degradação com o passar do tempo. Sobre os testes biológicos, o novo biomaterial levou a um aumento da proliferação de fibroblastos e osteoblastos, e nenhum dano ao DNA foi observado. Os experimentos de implantação do material no subcutâneo indicaram degradação do biomaterial acompanhada do crescimento interno de tecido mole e presença de células gigantes multinucleadas ao redor do implante. Após 60 dias, os scaffolds estavam quase completamente absorvidos e um tecido de granulação organizado preenchia a área de implantação. Adicionalmente, as análises histológicas dos scaffolds em defeitos ósseos revelaram uma degradação progressiva do biomaterial e substituição do mesmo por tecido de granulação e tecido ósseo neoformado. A histomorfometria mostrou uma maior quantidade de osso neoformado no grupo controle (CG) comparado ao grupo biomaterial (BG) 15 dias após a cirurgia. No entanto, depois de 30 e 60 dias, CG e BG apresentaram quantidades similares de osso neoformado. Além disso, o novo biomaterial aumentou a expressão de RUNX-2 e RANK-L, e também melhorou as propriedades mecânicas do calo tibial 15 dias após a cirurgia. Os resultados indicam que o novo scaffold vítreo fibroso é bioativo, não-citotóxico, biocompatível e promissor para utilização na engenharia do reparo ósseo.
Xie, Sibai. "Characterization and Fabrication of Scaffold Materials for Tissue Engineering." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1366303111.
Full textLima, Patricia Rodrigues de. "Biopolímero de Fibrina como arcabouço biológico para células-tronco mesenquimais como potencial produtor osteogênico." Botucatu, 2019. http://hdl.handle.net/11449/182206.
Full textResumo: Desenvolvido em 1990 por um grupo de pesquisadores do Centro de Estudo de Venenos e Animais Peçonhentos (CEVAP), no Estado de São Paulo, Brasil, o Biopolímero de Fibrina (BPF) possuía o principal objetivo de ser um adesivo à base de fibrina sem o uso de sangue humano, a fim de evitar a transmissão de doenças infecciosas por meio deste insumo. Após diversas pesquisas com o BPF, comprovou-se não somente sua capacidade adesiva, como também sua ação coagulante, sua ação como auxiliar no reparo ósseo e cartilaginoso e sua função como arcabouço para células-tronco mesenquimais (CTMs), devido ao fato de que o BPF possui uma estrutura tridimensional adequada. Em estudos recentes e ao exercer essa função, tal material não afetou o microambiente biológico das células, ou seja, permitiu a adesão, proliferação e diferenciação celular, e aderência e crescimento destas. Tais características, apresentadas pelo BPF, são desejáveis na maioria dos biopolímeros utilizáveis, o que ressalta a importância do aprofundamento das pesquisas com BPF e suas interações em experimentos in vivo. Assim, no capítulo 1 realizamos uma ampla revisão na literatura sobre biopolímeros de fibrina, células-tronco e reparação de tecido ósseo. No capítulo 2 é apresentado o artigo científico “Arcabouço de fibrina para células-tronco mesenquimais como potencial osteogênico”.
Abstract: Developed in 1990 by a group of researchers from the Center for the Study of Venomous and Poisonous Animals (CEVAP) in the State of São Paulo, Brazil, the Fibrin Biopolymer (GMP) had the main objective of being a fibrin-based adhesive without the use of human blood in order to avoid the transmission of infectious diseases by means of this input. After several investigations with BPF, it was verified not only its adhesive capacity, but also its coagulant action, its action as an aid in bone and cartilage repair and its function as a framework for mesenchymal stem cells (MSCs), due to the fact that the BPF has an adequate three-dimensional structure. In recent studies and in carrying out this function, such material did not affect the biological microenvironment of the cells, that is, it allowed cell adhesion, proliferation and differentiation, and adhesion and growth of these cells. These characteristics, presented by BPF, are desirable in most usable biopolymers, which underscores the importance of deepening GMP research and its interactions in in vivo experiments. Thus, in Chapter 1 we conducted a broad review in the literature on biopolymers of fibrin, stem cells and repair of bone tissue. In chapter 2 the scientific paper "Fibrin scaffold for mesenchymal stem cells as osteogenic potential" is presented.
Doutor
Books on the topic "Biomaterial scaffold"
Li, Qing, and Yiu-Wing Mai, eds. Biomaterials for Implants and Scaffolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53574-5.
Full textSeminar and Meeting on Ceramics, Cells, and Tissues (12th 2009 Faenza, Italy). Ceramics, cells, and tissues: Surface-reactive biomaterials as scaffolds and coatings, interactions with cells and tissues. Rome: Consiglio nazionale delle ricerche, 2009.
Find full textLi, Qing, and Yiu-Wing Mai. Biomaterials for Implants and Scaffolds. Springer, 2016.
Find full textLi, Qing, and Yiu-Wing Mai. Biomaterials for Implants and Scaffolds. Springer, 2018.
Find full textKhang, Gilson, Moon Suk Kim, and Hai Bang Lee. A Manual for Biomaterials/Scaffold Fabrication Technology. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/6408.
Full textGilson, Khang, Kim Moon Suk, and Lee Hai Bang, eds. A manual for biomaterials: Scaffold fabrication technology. Singapore: World Scientific, 2007.
Find full textWohlbier, Thomas. Nanohybrids. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901076.
Full text(Editor), Gilson Khang, Moon Suk Kim (Editor), and Hai Bang Lee (Editor), eds. A Manual for Biomaterials/Scaffold Fabrication Technology (Manuals in Biomedical Research) (Manuals in Biomedical Research). World Scientific Publishing Company, 2007.
Find full textBiomaterials For Tissue Engineering Applications A Review Of The Past And Future Trends. Springer, 2011.
Find full textBook chapters on the topic "Biomaterial scaffold"
Seidi, Azadeh, and Murugan Ramalingam. "Protocols for Biomaterial Scaffold Fabrication." In Integrated Biomaterials in Tissue Engineering, 1–23. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118371183.ch1.
Full textKoseki, Hironobu, and Shiro Kajiyama. "Biomaterial-Related Surgical Site Infection: Anti-infectious Metal Coating on Biomaterials." In Kenzan Method for Scaffold-Free Biofabrication, 165–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58688-1_13.
Full textShimomura, Kazunori, Yu Moriguchi, Norihiko Sugita, Kota Koizumi, Yukihiko Yasui, Hideki Yoshikawa, and Norimasa Nakamura. "Current Strategies in Osteochondral Repair with Biomaterial Scaffold." In Musculoskeletal Research and Basic Science, 387–403. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20777-3_23.
Full textSaito, Shunsuke, Y. Oyake, and Teruo Asaoka. "Fabrication of Titanium Fiber Scaffold for Biomaterial Use." In Advances in Science and Technology, 131–34. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-14-1.131.
Full textHannula, Markus, Nathaniel Narra, Kaarlo Paakinaho, Anne-Marie Haaparanta, Minna Kellomäki, and Jari Hyttinen. "µCT Based Characterization of Biomaterial Scaffold Microstructure Under Compression." In IFMBE Proceedings, 165–69. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-9023-3_30.
Full textRohman, Géraldine, Salah Ramtani, Sylvie Changotade, Credson Langueh, Yves Roussigné, Florent Tétard, Fréderic Caupin, and Philippe Djemia. "Dynamical Viscoelastic Properties of Poly(Ester-Urethane) Biomaterial for Scaffold Applications." In Lecture Notes in Mechanical Engineering, 1–8. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24247-3_1.
Full textSchumann, Detlef, Andrew K. Ekaputra, Christopher X. F. Lam, and Dietmar W. Hutmacher. "Biomaterials/Scaffolds." In Methods in Molecular Medicine™, 101–24. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-443-8_6.
Full textIto, Yoshihiro. "Growth Factors on Biomaterial Scaffolds." In Biological Interactions on Materials Surfaces, 173–97. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-98161-1_9.
Full textSultana, Naznin, Mohd Izzat Hassan, and Mim Mim Lim. "Scaffolding Biomaterials." In Composite Synthetic Scaffolds for Tissue Engineering and Regenerative Medicine, 1–11. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09755-8_1.
Full textTateishi, Tetsuya, and Guo Ping Chen. "Biodegradable Polymer Scaffold for Tissue Engineering." In Advanced Biomaterials VI, 59–62. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-967-9.59.
Full textConference papers on the topic "Biomaterial scaffold"
Sebastine, I. M., and D. J. Williams. "Requirements for the Manufacturing of Scaffold Biomaterial With Features at Multiple Scales." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82515.
Full textStone, James J. S., Andrew R. Thoreson, Kurt L. Langner, Jay M. Norton, Daniel J. Stone, Francis W. Wang, Shawn W. O’Driscoll, and Kai-Nan An. "Computer-Aided Design, Manufacturing, and Modeling of Polymer Scaffolds for Tissue Engineering." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81621.
Full textNain, Amrinder S., Eric Miller, Metin Sitti, Phil Campbell, and Cristina Amon. "Fabrication of Single and Multi-Layer Fibrous Biomaterial Scaffolds for Tissue Engineering." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67964.
Full textLu, Lin, Robert S. Dembzynski, Mark J. Mondrinos, David Wootton, Peter I. Lelkes, and Jack Zhou. "Manufacturing System Development for Fabrication of Bone Scaffold." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80937.
Full textElcin, Huseyn. "FUNCTION AND SAFETY EVALUATION OF 3D TECHNOLOGY TO PREPARE BONE REPAIR BIOMATERIALS." In International Trends in Science and Technology. RS Global Sp. z O.O., 2021. http://dx.doi.org/10.31435/rsglobal_conf/28022021/7433.
Full textGeisler, Chris G., Ho-Lung Li, David M. Wootton, Peter I. Lelkes, and Jack G. Zhou. "Soft Biomaterial Study for 3-D Tissue Scaffold Printing." In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34274.
Full textLu, Lin, David Wootton, Peter I. Lelkes, and Jack Zhou. "Study of Structured Porogen Method for Bone Scaffold Fabrication." In ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72134.
Full textGilchrist, Christopher L., David S. Ruch, Dianne Little, and Farshid Guilak. "Nano-Scale and Micro-Scale Substrate Architectures Direct Collagen Alignment in Tendon Neo-Tissue Formation." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14474.
Full textHarley, Brendan A. C. "Collagen Scaffold-Membrane Composites for Mimicking Orthopedic Interfaces." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-54026.
Full textKhoda, A. K. M. B., and Bahattin Koc. "Functionally Heterogeneous Porous Scaffold Design for Tissue Engineering." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86927.
Full text