Journal articles on the topic 'Biomaterial scaffold'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Biomaterial scaffold.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Bin, Rodica Cristescu, Douglas B. Chrisey, and Roger J. Narayan. "Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds." International Journal of Bioprinting 6, no. 1 (January 17, 2020): 19. http://dx.doi.org/10.18063/ijb.v6i1.211.
Full textChen, Suzan, Angela Auriat, Tongda Li, Taisa Stumpf, Ryan Wylie, Xiongbiao Chen, Stephanie Willerth, et al. "Advancements in Canadian Biomaterials Research in Neurotraumatic Diagnosis and Therapies." Processes 7, no. 6 (June 3, 2019): 336. http://dx.doi.org/10.3390/pr7060336.
Full textLim, Ye-Seon, Ye-Jin Ok, Seon-Yeong Hwang, Jong-Young Kwak, and Sik Yoon. "Marine Collagen as A Promising Biomaterial for Biomedical Applications." Marine Drugs 17, no. 8 (August 10, 2019): 467. http://dx.doi.org/10.3390/md17080467.
Full textJames, Roshan, Paulos Mengsteab, and Cato T. Laurencin. "Regenerative Engineering: Studies of the Rotator Cuff and other Musculoskeletal Soft Tissues." MRS Advances 1, no. 18 (2016): 1255–63. http://dx.doi.org/10.1557/adv.2016.282.
Full textKazimierczak, Paulina, Krzysztof Palka, and Agata Przekora. "Development and Optimization of the Novel Fabrication Method of Highly Macroporous Chitosan/Agarose/Nanohydroxyapatite Bone Scaffold for Potential Regenerative Medicine Applications." Biomolecules 9, no. 9 (September 1, 2019): 434. http://dx.doi.org/10.3390/biom9090434.
Full textAgbay, Andrew, John M. Edgar, Meghan Robinson, Tara Styan, Krista Wilson, Julian Schroll, Junghyuk Ko, Nima Khadem Mohtaram, Martin Byung-Guk Jun, and Stephanie M. Willerth. "Biomaterial Strategies for Delivering Stem Cells as a Treatment for Spinal Cord Injury." Cells Tissues Organs 202, no. 1-2 (2016): 42–51. http://dx.doi.org/10.1159/000446474.
Full textRoi, Alexandra, Lavinia Cosmina Ardelean, Ciprian Ioan Roi, Eugen-Radu Boia, Simina Boia, and Laura-Cristina Rusu. "Oral Bone Tissue Engineering: Advanced Biomaterials for Cell Adhesion, Proliferation and Differentiation." Materials 12, no. 14 (July 18, 2019): 2296. http://dx.doi.org/10.3390/ma12142296.
Full textBlanco-Elices, Cristina, Enrique España-Guerrero, Miguel Mateu-Sanz, David Sánchez-Porras, Óscar García-García, María Sánchez-Quevedo, Ricardo Fernández-Valadés, Miguel Alaminos, Miguel Martín-Piedra, and Ingrid Garzón. "In Vitro Generation of Novel Functionalized Biomaterials for Use in Oral and Dental Regenerative Medicine Applications." Materials 13, no. 7 (April 4, 2020): 1692. http://dx.doi.org/10.3390/ma13071692.
Full textVigneswari, Sevakumaran, Tana Poorani Gurusamy, H. P. S. Abdul Khalil, Seeram Ramakrishna, and Al-Ashraf Abdullah Amirul. "Elucidation of Antimicrobial Silver Sulfadiazine (SSD) Blend/Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) Immobilised with Collagen Peptide as Potential Biomaterial." Polymers 12, no. 12 (December 14, 2020): 2979. http://dx.doi.org/10.3390/polym12122979.
Full textWahl, Elizabeth A., Fernando A. Fierro, Thomas R. Peavy, Ursula Hopfner, Julian F. Dye, Hans-Günther Machens, José T. Egaña, and Thilo L. Schenck. "In VitroEvaluation of Scaffolds for the Delivery of Mesenchymal Stem Cells to Wounds." BioMed Research International 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/108571.
Full textDrewnowska, O., B. Turek, B. Carstanjen, and Z. Gajewski. "Chitosan – a promising biomaterial in veterinary medicine." Polish Journal of Veterinary Sciences 16, no. 4 (December 1, 2013): 843–48. http://dx.doi.org/10.2478/pjvs-2013-0119.
Full textBarreto, Rodrigo SN, Patricia Romagnolli, Paula Fratini, Andrea Maria Mess, and Maria Angelica Miglino. "Mouse placental scaffolds: a three-dimensional environment model for recellularization." Journal of Tissue Engineering 10 (January 2019): 204173141986796. http://dx.doi.org/10.1177/2041731419867962.
Full textLiu, Zheng, and Jun Wang. "Biological Influence of Nonswelling Microgels on Cartilage Induction of Mouse Adipose-Derived Stem Cells." BioMed Research International 2019 (October 13, 2019): 1–10. http://dx.doi.org/10.1155/2019/6508094.
Full textShick, Tang Mei, Aini Zuhra Abdul Kadir, Nor Hasrul Akhmal Ngadiman, and Azanizawati Ma’aram. "A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering." Journal of Bioactive and Compatible Polymers 34, no. 6 (September 25, 2019): 415–35. http://dx.doi.org/10.1177/0883911519877426.
Full textSun, Weizhen, David Alexander Gregory, Mhd Anas Tomeh, and Xiubo Zhao. "Silk Fibroin as a Functional Biomaterial for Tissue Engineering." International Journal of Molecular Sciences 22, no. 3 (February 2, 2021): 1499. http://dx.doi.org/10.3390/ijms22031499.
Full textRønning, Sissel B., Ragnhild S. Berg, Vibeke Høst, Eva Veiseth-Kent, Christian R. Wilhelmsen, Eirik Haugen, Henri-Pierre Suso, Paul Barham, Ralf Schmidt, and Mona E. Pedersen. "Processed Eggshell Membrane Powder Is a Promising Biomaterial for Use in Tissue Engineering." International Journal of Molecular Sciences 21, no. 21 (October 30, 2020): 8130. http://dx.doi.org/10.3390/ijms21218130.
Full textYang, Dong-Hwan, Gwang-Min Heo, Hong-Ju Park, Hee-Kyun Oh, and Min-Suk Kook. "Comparative Effectiveness of Surface Functionalized Poly-ε-Caprolactone Scaffold and β-TCP Mixed PCL Scaffold for Bone Regeneration." Journal of Nanoscience and Nanotechnology 20, no. 9 (September 1, 2020): 5349–55. http://dx.doi.org/10.1166/jnn.2020.17672.
Full textPrzekora, Agata. "Current Trends in Fabrication of Biomaterials for Bone and Cartilage Regeneration: Materials Modifications and Biophysical Stimulations." International Journal of Molecular Sciences 20, no. 2 (January 20, 2019): 435. http://dx.doi.org/10.3390/ijms20020435.
Full textMegat Abdul Wahab, Rohaya, Nurmimie Abdullah, Shahrul Hisham Zainal Ariffin, Che Azurahanim Che Abdullah, and Farinawati Yazid. "Effects of the Sintering Process on Nacre-Derived Hydroxyapatite Scaffolds for Bone Engineering." Molecules 25, no. 14 (July 8, 2020): 3129. http://dx.doi.org/10.3390/molecules25143129.
Full textNosouhian, Saeid, Amin Davoudi, Mansour Rismanchian, Sayed Mohammad Razavi, and Hamidreza Sadeghiyan. "Comparing Three Different Three-dimensional Scaffolds for Bone Tissue Engineering: An in vivo Study." Journal of Contemporary Dental Practice 16, no. 1 (January 2015): 25–30. http://dx.doi.org/10.5005/jp-journals-10024-1630.
Full textGraney, Pamela L., Seyed-Iman Roohani-Esfahani, Hala Zreiqat, and Kara L. Spiller. "In vitro response of macrophages to ceramic scaffolds used for bone regeneration." Journal of The Royal Society Interface 13, no. 120 (July 2016): 20160346. http://dx.doi.org/10.1098/rsif.2016.0346.
Full textGARZÓN-ALVARADO, DIEGO A., MARCO A. VELASCO, and CARLOS A. NARVÁEZ-TOVAR. "SELF-ASSEMBLED SCAFFOLDS USING REACTION–DIFFUSION SYSTEMS: A HYPOTHESIS FOR BONE REGENERATION." Journal of Mechanics in Medicine and Biology 11, no. 01 (March 2011): 231–72. http://dx.doi.org/10.1142/s021951941100396x.
Full textLacroix, Damien, Josep A. Planell, and Patrick J. Prendergast. "Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1895 (May 28, 2009): 1993–2009. http://dx.doi.org/10.1098/rsta.2009.0024.
Full textBettinger, Christopher J. "Synthesis and microfabrication of biomaterials for soft-tissue engineering." Pure and Applied Chemistry 81, no. 12 (October 31, 2009): 2183–201. http://dx.doi.org/10.1351/pac-con-09-07-10.
Full textWang, Zi, and Stephen J. Florczyk. "Freeze-FRESH: A 3D Printing Technique to Produce Biomaterial Scaffolds with Hierarchical Porosity." Materials 13, no. 2 (January 12, 2020): 354. http://dx.doi.org/10.3390/ma13020354.
Full textPeng, Zhiyu, Pei Tang, Li Zhao, Lina Wu, Xiujuan Xu, Haoyuan Lei, Min Zhou, Changchun Zhou, and Zhengyong Li. "Advances in biomaterials for adipose tissue reconstruction in plastic surgery." Nanotechnology Reviews 9, no. 1 (May 27, 2020): 385–95. http://dx.doi.org/10.1515/ntrev-2020-0028.
Full textKwon, Doo Yeon, Joon Yeong Park, Bun Yeoul Lee, and Moon Suk Kim. "Comparison of Scaffolds Fabricated via 3D Printing and Salt Leaching: In Vivo Imaging, Biodegradation, and Inflammation." Polymers 12, no. 10 (September 26, 2020): 2210. http://dx.doi.org/10.3390/polym12102210.
Full textKazimierczak, Paulina, Joanna Kolmas, and Agata Przekora. "Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite." International Journal of Molecular Sciences 20, no. 15 (August 6, 2019): 3835. http://dx.doi.org/10.3390/ijms20153835.
Full textChavarría-Bolaños, Daniel, Diana Villalobos, and José Roberto Vega-Baudrit. "3D polymeric scaffolds for oral tissue regeneration." Ciencias Veterinarias 37, no. 3 (December 27, 2019): 28. http://dx.doi.org/10.15359/rcv.37-3.10.
Full textPrzekora, Agata, Maïté Audemar, Joanna Pawlat, Cristina Canal, Jean-Sébastien Thomann, Cédric Labay, Michal Wojcik, et al. "Positive Effect of Cold Atmospheric Nitrogen Plasma on the Behavior of Mesenchymal Stem Cells Cultured on a Bone Scaffold Containing Iron Oxide-Loaded Silica Nanoparticles Catalyst." International Journal of Molecular Sciences 21, no. 13 (July 3, 2020): 4738. http://dx.doi.org/10.3390/ijms21134738.
Full textLeng, Ling, Jie Ma, Xuer Sun, Baolin Guo, Fanlu Li, Wei Zhang, Mingyang Chang, et al. "Comprehensive proteomic atlas of skin biomatrix scaffolds reveals a supportive microenvironment for epidermal development." Journal of Tissue Engineering 11 (January 2020): 204173142097231. http://dx.doi.org/10.1177/2041731420972310.
Full textLee, Chung-Sung, Soyon Kim, Jiabing Fan, Hee Sook Hwang, Tara Aghaloo, and Min Lee. "Smoothened agonist sterosome immobilized hybrid scaffold for bone regeneration." Science Advances 6, no. 17 (April 2020): eaaz7822. http://dx.doi.org/10.1126/sciadv.aaz7822.
Full textShen, Zhi Juan, Qiao Zhao, and Yong Zhang. "The Research about Biological Materials and Exercise-Induced Articular Cartilage Injury." Advanced Materials Research 788 (September 2013): 52–56. http://dx.doi.org/10.4028/www.scientific.net/amr.788.52.
Full textKozusko, Steven D., Charles Riccio, Micheline Goulart, Joel Bumgardner, Xi Lin Jing, and Petros Konofaos. "Chitosan as a Bone Scaffold Biomaterial." Journal of Craniofacial Surgery 29, no. 7 (October 2018): 1788–93. http://dx.doi.org/10.1097/scs.0000000000004909.
Full textCristallini, Caterina, Elisa Cibrario Rocchietti, Mariacristina Gagliardi, Leonardo Mortati, Silvia Saviozzi, Elena Bellotti, Valentina Turinetto, Maria Paola Sassi, Niccoletta Barbani, and Claudia Giachino. "Micro- and Macrostructured PLGA/Gelatin Scaffolds Promote Early Cardiogenic Commitment of Human Mesenchymal Stem Cells In Vitro." Stem Cells International 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/7176154.
Full textKazimierczak, Paulina, Malgorzata Koziol, and Agata Przekora. "The Chitosan/Agarose/NanoHA Bone Scaffold-Induced M2 Macrophage Polarization and Its Effect on Osteogenic Differentiation In Vitro." International Journal of Molecular Sciences 22, no. 3 (January 23, 2021): 1109. http://dx.doi.org/10.3390/ijms22031109.
Full textMadry, Henning, Jagadeesh Kumar Venkatesan, Natalia Carballo-Pedrares, Ana Rey-Rico, and Magali Cucchiarini. "Scaffold-Mediated Gene Delivery for Osteochondral Repair." Pharmaceutics 12, no. 10 (September 29, 2020): 930. http://dx.doi.org/10.3390/pharmaceutics12100930.
Full textYusup, Eliza M., Shahruddin Mahzan, Baharuddin Mohammad, and Wan Rosli Wan Daud. "A Novel Approach for Bone Scaffold from Oil Palm Empty Fruit Bunch-Cellulose Phosphate / Glass Material." Advanced Materials Research 748 (August 2013): 180–83. http://dx.doi.org/10.4028/www.scientific.net/amr.748.180.
Full textBonfield, William. "Designing porous scaffolds for tissue engineering." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1838 (November 29, 2005): 227–32. http://dx.doi.org/10.1098/rsta.2005.1692.
Full textPrakasam, Mythili, Ali Chirazi, Grzegorz Pyka, Anna Prokhodtseva, Daniel Lichau, and Alain Largeteau. "Fabrication and Multiscale Structural Properties of Interconnected Porous Biomaterial for Tissue Engineering by Freeze Isostatic Pressure (FIP)." Journal of Functional Biomaterials 9, no. 3 (August 24, 2018): 51. http://dx.doi.org/10.3390/jfb9030051.
Full textToh, S. L., T. K. H. Teh, S. Vallaya, and J. C. H. Goh. "Novel Silk Scaffolds for Ligament Tissue Engineering Applications." Key Engineering Materials 326-328 (December 2006): 727–30. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.727.
Full textZhang, Yu, Peng Song Li, Dao Yu Chen, Hai Chao Dong, Jing Jing Zhang, Mei Ling Zhuang, Ke Dong Song, and Tian Qing Liu. "Application of Chitosan as Scaffold Material of Construction In Vitro." Materials Science Forum 893 (March 2017): 53–56. http://dx.doi.org/10.4028/www.scientific.net/msf.893.53.
Full textMadike, Lerato N., Michael Pillay, and Ketul C. Popat. "Antithrombogenic properties of Tulbaghia violacea–loaded polycaprolactone nanofibers." Journal of Bioactive and Compatible Polymers 35, no. 2 (February 5, 2020): 102–16. http://dx.doi.org/10.1177/0883911520903748.
Full textGautam, Sneh, and Sonu Ambwani. "Tissue Engineering: New Paradigm of Biomedicine." Biosciences Biotechnology Research Asia 16, no. 3 (September 20, 2019): 521–32. http://dx.doi.org/10.13005/bbra/2766.
Full textSaito, Shunsuke, Y. Oyake, and Teruo Asaoka. "Fabrication of Titanium Fiber Scaffold for Biomaterial Use." Advances in Science and Technology 57 (September 2008): 131–34. http://dx.doi.org/10.4028/www.scientific.net/ast.57.131.
Full textYuliati, Anita, Yuliana Merlindika, Elly Munadziroh, Aditya Ari, Mahardhika P. El Fadhlallah, Devi Rianti, Dwi M. Ariani, and Nadia Kartikasari. "Mechanical Strength and Porosity of Carbonate Apatite-Chitosan-Gelatine Scaffold in Various Ratio as a Biomaterial Candidate in Tissue Engineering." Key Engineering Materials 829 (December 2019): 173–81. http://dx.doi.org/10.4028/www.scientific.net/kem.829.173.
Full textFinch, L., S. Harris, C. Adams, J. Sen, J. Tickle, N. Tzerakis, and DM Chari. "WP1-22 DuraGen™ as an encapsulating material for neural stem cell delivery." Journal of Neurology, Neurosurgery & Psychiatry 90, no. 3 (February 14, 2019): e7.2-e7. http://dx.doi.org/10.1136/jnnp-2019-abn.22.
Full textSheehy, Eamon J., Mark Lemoine, Declan Clarke, Arlyng Gonzalez Vazquez, and Fergal J. O’Brien. "The Incorporation of Marine Coral Microparticles into Collagen-Based Scaffolds Promotes Osteogenesis of Human Mesenchymal Stromal Cells via Calcium Ion Signalling." Marine Drugs 18, no. 2 (January 23, 2020): 74. http://dx.doi.org/10.3390/md18020074.
Full textSiddiqui, Ahad M., Rosa Brunner, Gregory M. Harris, Alan Lee Miller, Brian E. Waletzki, Ann M. Schmeichel, Jean E. Schwarzbauer, et al. "Promoting Neuronal Outgrowth Using Ridged Scaffolds Coated with Extracellular Matrix Proteins." Biomedicines 9, no. 5 (April 27, 2021): 479. http://dx.doi.org/10.3390/biomedicines9050479.
Full textYang, Xiao Zhan, and Zhen Sheng Li. "Electrospun Hydroxyapatite/BMP-2 Grafted PLLA Nanofibers for Guided Bone Rebuilding Scaffold." Advanced Materials Research 1095 (March 2015): 322–25. http://dx.doi.org/10.4028/www.scientific.net/amr.1095.322.
Full text