Journal articles on the topic 'Biomaterials; Medical polymers; Bone implants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Biomaterials; Medical polymers; Bone implants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Katsanevakis, Eleni, Xue Jun Wen, Dong Lu Shi, and Ning Zhang. "Biomineralization of Polymer Scaffolds." Key Engineering Materials 441 (June 2010): 269–95. http://dx.doi.org/10.4028/www.scientific.net/kem.441.269.
Full textVojtěch, Dalibor, Jiří Kubásek, Jaroslav Čapek, and Iva Pospíšilová. "Novel Trends in the Development of Metallic Materials for Medical Implants." Key Engineering Materials 647 (May 2015): 59–65. http://dx.doi.org/10.4028/www.scientific.net/kem.647.59.
Full textJackson, Nicolette, Michel Assad, Derick Vollmer, James Stanley, and Madeleine Chagnon. "Histopathological Evaluation of Orthopedic Medical Devices: The State-of-the-art in Animal Models, Imaging, and Histomorphometry Techniques." Toxicologic Pathology 47, no. 3 (2019): 280–96. http://dx.doi.org/10.1177/0192623318821083.
Full textJames, Kenneth, and Joachim Kohn. "New Biomaterials For Tissue Engineering." MRS Bulletin 21, no. 11 (1996): 22–26. http://dx.doi.org/10.1557/s0883769400031808.
Full textMihai, Simona, and Viviana Filip. "New Design Concept for Reducing Torque Wear on Implant." Applied Mechanics and Materials 658 (October 2014): 453–58. http://dx.doi.org/10.4028/www.scientific.net/amm.658.453.
Full textAversa, Raffaella, Roberto Sorrentino, and Antonio Apicella. "New Biomimetic Hybrid Nanocomposites for early Fixation Prostheses." Advanced Materials Research 1088 (February 2015): 487–94. http://dx.doi.org/10.4028/www.scientific.net/amr.1088.487.
Full textOriňaková, Renáta, Radka Gorejová, Zuzana Orságová Králová, and Andrej Oriňak. "Surface Modifications of Biodegradable Metallic Foams for Medical Applications." Coatings 10, no. 9 (2020): 819. http://dx.doi.org/10.3390/coatings10090819.
Full textSingh, Gurpreet, Yubraj Lamichhane, Amandeep Singh Bhui, Sarabjeet Singh Sidhu, Preetkanwal Singh Bains, and Prabin Mukhiya. "SURFACE MORPHOLOGY AND MICROHARDNESS BEHAVIOR OF 316L IN HAP-PMEDM." Facta Universitatis, Series: Mechanical Engineering 17, no. 3 (2019): 445. http://dx.doi.org/10.22190/fume190510040s.
Full textJi, Yang, Xiaoming Yu, and Hao Zhu. "Fabrication of Mg Coating on PEEK and Antibacterial Evaluation for Bone Application." Coatings 11, no. 8 (2021): 1010. http://dx.doi.org/10.3390/coatings11081010.
Full textde Groot, K., J. G. C. Wolke, and J. A. Jansen. "Calcium phosphate coatings for medical implants." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 212, no. 2 (1998): 137–47. http://dx.doi.org/10.1243/0954411981533917.
Full textKasir, Rafid, Varadraj N. Vernekar, and Cato T. Laurencin. "Inductive biomaterials for bone regeneration." Journal of Materials Research 32, no. 6 (2017): 1047–60. http://dx.doi.org/10.1557/jmr.2017.39.
Full textRico-Llanos, Gustavo A., Sara Borrego-González, Miguelangel Moncayo-Donoso, José Becerra, and Rick Visser. "Collagen Type I Biomaterials as Scaffolds for Bone Tissue Engineering." Polymers 13, no. 4 (2021): 599. http://dx.doi.org/10.3390/polym13040599.
Full textTÖrmälä, P., T. Pohjonen, and P. Rokkanen. "Bioabsorbable polymers: Materials technology and surgical applications." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 212, no. 2 (1998): 101–11. http://dx.doi.org/10.1243/0954411981533872.
Full textCavalu, Simona. "Acrylic Bone Cements: New Insight and Future Perspective." Key Engineering Materials 745 (July 2017): 39–49. http://dx.doi.org/10.4028/www.scientific.net/kem.745.39.
Full textRokkanen, P., O. Böstman, E. Hirvensalo, et al. "Totally Biodegradable Implants for Bone Fixation and Ligament Repair." MRS Bulletin 25, no. 1 (2000): 21–24. http://dx.doi.org/10.1557/s0883769400064976.
Full textMohan, Dumitru, Valentin Munteanu, Horatiu Moisa, and A. V. Ciurea. "A Medical Insight on the of Biomaterials for Cranioplasty Surgery." Key Engineering Materials 638 (March 2015): 205–9. http://dx.doi.org/10.4028/www.scientific.net/kem.638.205.
Full textSingha, Balraj, Gurpreet Singh, and Buta Singh Sidhu. "Current Trends in Bio-Implants’ Research." Asian Journal of Engineering and Applied Technology 7, no. 2 (2018): 57–59. http://dx.doi.org/10.51983/ajeat-2018.7.2.955.
Full textLumbau, Aurea Immacolata, Silvio Mario Meloni, Marco Tallarico, et al. "Implant Placement Following Crestal Sinus Lift with Sequential Drills and Osteotomes: Five Years after Final Loading Results from a Retrospective Study." Journal of Functional Biomaterials 12, no. 1 (2021): 10. http://dx.doi.org/10.3390/jfb12010010.
Full textPetrovova, Eva, Marek Tomco, Katarina Holovska, et al. "PHB/CHIT Scaffold as a Promising Biopolymer in the Treatment of Osteochondral Defects—An Experimental Animal Study." Polymers 13, no. 8 (2021): 1232. http://dx.doi.org/10.3390/polym13081232.
Full textTanodekaew, Siriporn, Somruethai Channasanon, and Pakkanun Kaewkong. "Heat-curing polylactide for bone implants: Preparation and investigation on properties relevant to degradation." Journal of Bioactive and Compatible Polymers 34, no. 6 (2019): 464–78. http://dx.doi.org/10.1177/0883911519881715.
Full textGugliandolo, Agnese, Luigia Fonticoli, Oriana Trubiani, et al. "Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials." International Journal of Molecular Sciences 22, no. 10 (2021): 5236. http://dx.doi.org/10.3390/ijms22105236.
Full textZeng, Qiang, Yiwen Zhu, Bingran Yu, et al. "Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants." Biomacromolecules 19, no. 7 (2018): 2805–11. http://dx.doi.org/10.1021/acs.biomac.8b00399.
Full textWöltje, Michael, Ronny Brünler, Melanie Böbel, et al. "Functionalization of Silk Fibers by PDGF and Bioceramics for Bone Tissue Regeneration." Coatings 10, no. 1 (2019): 8. http://dx.doi.org/10.3390/coatings10010008.
Full textScarano, Antonio, Tiziana Orsini, Fabio Di Carlo, Luca Valbonetti, and Felice Lorusso. "Graphene-Doped Poly (Methyl-Methacrylate) (Pmma) Implants: A Micro-CT and Histomorphometrical Study in Rabbits." International Journal of Molecular Sciences 22, no. 3 (2021): 1441. http://dx.doi.org/10.3390/ijms22031441.
Full textNavarro, M., A. Michiardi, O. Castaño, and J. A. Planell. "Biomaterials in orthopaedics." Journal of The Royal Society Interface 5, no. 27 (2008): 1137–58. http://dx.doi.org/10.1098/rsif.2008.0151.
Full textGao, Xing, Manon Fraulob, and Guillaume Haïat. "Biomechanical behaviours of the bone–implant interface: a review." Journal of The Royal Society Interface 16, no. 156 (2019): 20190259. http://dx.doi.org/10.1098/rsif.2019.0259.
Full textTrevisan, Francesco, Flaviana Calignano, Alberta Aversa, et al. "Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications." Journal of Applied Biomaterials & Functional Materials 16, no. 2 (2017): 57–67. http://dx.doi.org/10.5301/jabfm.5000371.
Full textGill, Rana. "A Bibliometric Analysis and Visualisation of Research Trends in Toxicity of Chromium Implants." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (2021): 126–30. http://dx.doi.org/10.17762/turcomat.v12i2.689.
Full textKawatra, Rahul, and Puneet Maheshwari. "A comparative study of surgical outcomes of ossiculoplasty using biomaterials and autologous implants." Bangladesh Journal of Otorhinolaryngology 19, no. 1 (2013): 29–35. http://dx.doi.org/10.3329/bjo.v19i1.12619.
Full textChou, Da-Tren, Daeho Hong, Sinan Oksuz, et al. "Corrosion and bone healing of Mg-Y-Zn-Zr-Ca alloy implants: Comparative in vivo study in a non-immobilized rat femoral fracture model." Journal of Biomaterials Applications 33, no. 9 (2019): 1178–94. http://dx.doi.org/10.1177/0885328219825568.
Full textIviglia, Giorgio, Saeid Kargozar, and Francesco Baino. "Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration." Journal of Functional Biomaterials 10, no. 1 (2019): 3. http://dx.doi.org/10.3390/jfb10010003.
Full textJia, Wei-Tao, Qiang Fu, Wen-Hai Huang, Chang-Qing Zhang, and Mohamed N. Rahaman. "Comparison of Borate Bioactive Glass and Calcium Sulfate as Implants for the Local Delivery of Teicoplanin in the Treatment of Methicillin-Resistant Staphylococcus aureus-Induced Osteomyelitis in a Rabbit Model." Antimicrobial Agents and Chemotherapy 59, no. 12 (2015): 7571–80. http://dx.doi.org/10.1128/aac.00196-15.
Full textSchupbach, Peter, Roland Glauser, and Sebastian Bauer. "Al2O3 Particles on Titanium Dental Implant Systems following Sandblasting and Acid-Etching Process." International Journal of Biomaterials 2019 (June 2, 2019): 1–11. http://dx.doi.org/10.1155/2019/6318429.
Full textPavlov, O. D., V. V. Pastukh, and M. Yu Karpinsky. "The problem of using composite biodegradable implants for the treatment of bone fractures (literature review)." TRAUMA 22, no. 2 (2021): 5–16. http://dx.doi.org/10.22141/1608-1706.2.22.2021.231952.
Full textRaddatz, Lukas, Marline Kirsch, Dominik Geier, et al. "Comparison of different three dimensional-printed resorbable materials: In vitro biocompatibility, In vitro degradation rate, and cell differentiation support." Journal of Biomaterials Applications 33, no. 2 (2018): 281–94. http://dx.doi.org/10.1177/0885328218787219.
Full textBăilă, Diana Irinel. "Researches Concerning the Phenomena at the Interface for the Sintered Compacts of Titan-Hydroxyapatite." Advanced Materials Research 856 (December 2013): 164–68. http://dx.doi.org/10.4028/www.scientific.net/amr.856.164.
Full textTalpos, Serban, Tareq Hajaj, Costin Timofte, et al. "Implant Surgery Using Bio-compatible Guides." Materiale Plastice 55, no. 1 (2018): 38–41. http://dx.doi.org/10.37358/mp.18.1.4959.
Full textZhukova, P. A., F. S. Senatov, M. Yu Zadorozhnyy, N. S. Chmelyuk, and V. A. Zaharova. "Polymer Composite Materials Based on Polylactide with a Shape Memory Effect for “Self-Fitting” Bone Implants." Polymers 13, no. 14 (2021): 2367. http://dx.doi.org/10.3390/polym13142367.
Full textHeimann, Robert B. "Silicon Nitride, a Close to Ideal Ceramic Material for Medical Application." Ceramics 4, no. 2 (2021): 208–23. http://dx.doi.org/10.3390/ceramics4020016.
Full textTeske, Michael, Katharina Wulf, Joschka Fink, et al. "Controlled biodegradation of metallic biomaterials by plasma polymer coatings using hexamethyldisiloxane and allylamine monomers." Current Directions in Biomedical Engineering 5, no. 1 (2019): 315–17. http://dx.doi.org/10.1515/cdbme-2019-0079.
Full textMunir, G., G. Koller, L. Di Silvio, M. J. Edirisinghe, W. Bonfield, and J. Huang. "The pathway to intelligent implants: osteoblast response to nano silicon-doped hydroxyapatite patterning." Journal of The Royal Society Interface 8, no. 58 (2010): 678–88. http://dx.doi.org/10.1098/rsif.2010.0548.
Full textÖzcan, Mutlu, Dachamir Hotza, Márcio Celso Fredel, Ariadne Cruz, and Claudia Angela Maziero Volpato. "Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry." Journal of Composites Science 5, no. 3 (2021): 78. http://dx.doi.org/10.3390/jcs5030078.
Full textSubramani, Karthikeyan. "Titanium Surface Modification Techniques for Implant Fabrication – From Microscale to the Nanoscale." Journal of Biomimetics, Biomaterials and Tissue Engineering 5 (February 2010): 39–56. http://dx.doi.org/10.4028/www.scientific.net/jbbte.5.39.
Full textSingh, Devendra Kumar, and Rajesh Kumar Verma. "Contemporary Development on the Performance and Functionalization of Ultra High Molecular Weight Polyethylene (UHMWPE) for Biomedical Implants." Nano LIFE 11, no. 03 (2021): 2130009. http://dx.doi.org/10.1142/s1793984421300090.
Full textGoga, Firuta, Edit Forizs, George Borodi, et al. "Behavior of Doped Hydroxyapatites During the Heat Treatment." Revista de Chimie 68, no. 12 (2018): 2907–13. http://dx.doi.org/10.37358/rc.17.12.6004.
Full textSideris, Anders, Gordon Wallace, Matthew Lam, et al. "268 Smart polymer implants as an emerging technology for treating airway collapse in OSA: a proof of concept study." Sleep 44, Supplement_2 (2021): A107—A108. http://dx.doi.org/10.1093/sleep/zsab072.267.
Full textBano, Shaher, Memoona Akhtar, Muhammad Yasir, et al. "Synthesis and Characterization of Silver–Strontium (Ag-Sr)-Doped Mesoporous Bioactive Glass Nanoparticles." Gels 7, no. 2 (2021): 34. http://dx.doi.org/10.3390/gels7020034.
Full textWattanutchariya, Wassanai, and Teerawat Sangkas. "Effect of forming condition on compressive strength of hydroxyapatite-bioactive glass compact rod." MATEC Web of Conferences 192 (2018): 01002. http://dx.doi.org/10.1051/matecconf/201819201002.
Full textÇetin Altındal, Damla, Eric N. James, David L. Kaplan, and Menemşe Gümüşderelioğlu. "Melatonin-induced osteogenesis with methanol-annealed silk materials." Journal of Bioactive and Compatible Polymers 34, no. 3 (2019): 291–305. http://dx.doi.org/10.1177/0883911519847489.
Full textGherasim, Oana, Gianina Popescu-Pelin, Paula Florian, et al. "Bioactive Ibuprofen-Loaded PLGA Coatings for Multifunctional Surface Modification of Medical Devices." Polymers 13, no. 9 (2021): 1413. http://dx.doi.org/10.3390/polym13091413.
Full text