Journal articles on the topic 'Biomedical engineering. Electronics. Instrumentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Biomedical engineering. Electronics. Instrumentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kouhalvandi, Lida, Ladislau Matekovits, and Ildiko Peter. "Amplifiers in Biomedical Engineering: A Review from Application Perspectives." Sensors 23, no. 4 (2023): 2277. http://dx.doi.org/10.3390/s23042277.
Full textB. "Applying Software Engineering Methodology for Designing Biomedical Software Devoted To Electronic Instrumentation." Journal of Computer Science 8, no. 10 (2012): 1601–14. http://dx.doi.org/10.3844/jcssp.2012.1601.1614.
Full textRozmi, Muhammad Syamil, and Marzita Hj Mansor. "Development and Evaluation of an Interactive 360 Degree Video for Biomedical Instrumentation Course." International Journal of Multimedia and Recent Innovation (IJMARI) 5, no. 1 (2023): 1–19. http://dx.doi.org/10.36079/lamintang.ijmari-0501.467.
Full textSandhu, A., and H. Handa. "Practical Hall sensors for biomedical instrumentation." IEEE Transactions on Magnetics 41, no. 10 (2005): 4123–27. http://dx.doi.org/10.1109/tmag.2005.855339.
Full textMontes-Cebrián, Yaiza, Albert Álvarez-Carulla, Jordi Colomer-Farrarons, Manel Puig-Vidal, and Pere Ll Miribel-Català. "Self-Powered Portable Electronic Reader for Point-of-Care Amperometric Measurements." Sensors 19, no. 17 (2019): 3715. http://dx.doi.org/10.3390/s19173715.
Full textTronstad, Christian, Maryam Amini, Dominik R. Bach, and Ørjan G. Martinsen. "Current trends and opportunities in the methodology of electrodermal activity measurement." Physiological Measurement 43, no. 2 (2022): 02TR01. http://dx.doi.org/10.1088/1361-6579/ac5007.
Full textYe, Runxin. "Advancements And Applications of Finfet Technology in Modern Semiconductor Engineering." Highlights in Science, Engineering and Technology 96 (May 5, 2024): 54–60. http://dx.doi.org/10.54097/65yg1431.
Full textQu, Wenchao, Syed Kamrul Islam, Mohamed R. Mahfouz, Mohammad R. Haider, Gary To, and Salwa Mostafa. "Microcantilever Array Pressure Measurement System for Biomedical Instrumentation." IEEE Sensors Journal 10, no. 2 (2010): 321–30. http://dx.doi.org/10.1109/jsen.2009.2034134.
Full textHan, Ningning, Xin Yao, Yifan Wang, et al. "Recent Progress of Biomaterials-Based Epidermal Electronics for Healthcare Monitoring and Human–Machine Interaction." Biosensors 13, no. 3 (2023): 393. http://dx.doi.org/10.3390/bios13030393.
Full textMomox, Ernesto, and Luz María Alonso-Valerdi. "A MATLAB GUI for Engineering Education in the Undergraduate Laboratory." International Journal of Information and Education Technology 13, no. 5 (2023): 861–66. http://dx.doi.org/10.18178/ijiet.2023.13.5.1880.
Full textRen, Yi, Minghui Duan, Rui Guo, and Jing Liu. "Printed Transformable Liquid-Metal Metamaterials and Their Application in Biomedical Sensing." Sensors 21, no. 19 (2021): 6329. http://dx.doi.org/10.3390/s21196329.
Full textGao, Yuan, Hanchu Zhang, Bowen Song, Chun Zhao, and Qifeng Lu. "Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface." Biosensors 13, no. 8 (2023): 787. http://dx.doi.org/10.3390/bios13080787.
Full textMendes Junior, José Jair Alves, Daniel Prado Campos, Lorenzo Coelho de Andrade Villela De Biassio, et al. "AD8232 to Biopotentials Sensors: Open Source Project and Benchmark." Electronics 12, no. 4 (2023): 833. http://dx.doi.org/10.3390/electronics12040833.
Full textFarrar, Emily J. "Implementing a Design Thinking Project in a Biomedical Instrumentation Course." IEEE Transactions on Education 63, no. 4 (2020): 240–45. http://dx.doi.org/10.1109/te.2020.2975558.
Full textKampik, Marian, Michał Grzenik, Krzysztof Musioł, et al. "Interlaboratory Comparison of Thermal AC Voltage Standards." Measurement Science Review 19, no. 6 (2019): 279–82. http://dx.doi.org/10.2478/msr-2019-0036.
Full textCao, Jinwei, Xin Li, Yiwei Liu, Guang Zhu, and Run-Wei Li. "Liquid Metal-Based Electronics for On-Skin Healthcare." Biosensors 13, no. 1 (2023): 84. http://dx.doi.org/10.3390/bios13010084.
Full textGazzola, Daniele, Valentino Angeletti, Carlotta Guiducci, Luca Benini, and Bruno Samorì. "A High-Precision, Low-Cost Hybrid System for Biomedical Multi-Marker Diagnostic Applications." International Journal of Biological Markers 24, no. 3 (2009): 201. http://dx.doi.org/10.1177/172460080902400327.
Full textShinar, Ruth, and Joseph Shinar. "Organic Electronics—Microfluidics/Lab on a Chip Integration in Analytical Applications." Sensors 23, no. 20 (2023): 8488. http://dx.doi.org/10.3390/s23208488.
Full textKing, P. "Design and Development of Medical Electronic Instrumentation - [Book review." IEEE Engineering in Medicine and Biology Magazine 25, no. 3 (2006): 10–11. http://dx.doi.org/10.1109/memb.2006.1636338.
Full textFernandes, Catarina, and Irene Taurino. "Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient Biomedical Implants." Sensors 22, no. 8 (2022): 3062. http://dx.doi.org/10.3390/s22083062.
Full textLange, Frédéric, Luca Giannoni, and Ilias Tachtsidis. "The Use of Supercontinuum Laser Sources in Biomedical Diffuse Optics: Unlocking the Power of Multispectral Imaging." Applied Sciences 11, no. 10 (2021): 4616. http://dx.doi.org/10.3390/app11104616.
Full textPal, Reena, Najbeen Bano, Dr Shiksha Jain, and Er Deepika Verma. "Literature Review on Ring Oscillator for Biomedical Application Using CMOS." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (2023): 4858–62. http://dx.doi.org/10.22214/ijraset.2023.52724.
Full textYen, C. J., W. Y. Chung, and M. C. Chi. "Micro-Power Low-Offset Instrumentation Amplifier IC Design for Biomedical System Applications." IEEE Transactions on Circuits and Systems I: Regular Papers 51, no. 4 (2004): 691–99. http://dx.doi.org/10.1109/tcsi.2004.826208.
Full textPsychalinos, Costas, Shahram Minaei, and Leila Safari. "Ultra low-power electronically tunable current-mode instrumentation amplifier for biomedical applications." AEU - International Journal of Electronics and Communications 117 (April 2020): 153120. http://dx.doi.org/10.1016/j.aeue.2020.153120.
Full textAttfield, S. F., M. Warren-Forward, T. Wilton, and A. Sambatakakis. "Measurement of soft tissue imbalance in total knee arthroplasty using electronic instrumentation." Medical Engineering & Physics 16, no. 6 (1994): 501–5. http://dx.doi.org/10.1016/1350-4533(94)90076-0.
Full textRen, Yi, Qi He, Tongyi Xu, Weiguan Zhang, Zhengchun Peng, and Bo Meng. "Recent Progress in MXene Hydrogel for Wearable Electronics." Biosensors 13, no. 5 (2023): 495. http://dx.doi.org/10.3390/bios13050495.
Full textSolé Morillo, Ángel, Joan Lambert Cause, Vlad-Eusebiu Baciu, Bruno da Silva, Juan C. Garcia-Naranjo, and Johan Stiens. "PPG EduKit: An Adjustable Photoplethysmography Evaluation System for Educational Activities." Sensors 22, no. 4 (2022): 1389. http://dx.doi.org/10.3390/s22041389.
Full textMorello, Rosario. "Use of TEDS to Improve Performances of Smart Biomedical Sensors and Instrumentation." IEEE Sensors Journal 15, no. 5 (2015): 2497–504. http://dx.doi.org/10.1109/jsen.2014.2356613.
Full textKarami Horestani, Fatemeh, Zahra Karami Horastani, and Niclas Björsell. "A Band-Pass Instrumentation Amplifier Based on a Differential Voltage Current Conveyor for Biomedical Signal Recording Applications." Electronics 11, no. 7 (2022): 1087. http://dx.doi.org/10.3390/electronics11071087.
Full textLee, Jungjoon, Sungha Jeon, Hyeonyeob Seo, Jung Tae Lee, and Seongjun Park. "Fiber-Based Sensors and Energy Systems for Wearable Electronics." Applied Sciences 11, no. 2 (2021): 531. http://dx.doi.org/10.3390/app11020531.
Full textHarťanský, René, Martin Mierka, Mikuláš Bittera, et al. "Novel Method of Contactless Sensing of Mechanical Quantities." Measurement Science Review 20, no. 3 (2020): 150–56. http://dx.doi.org/10.2478/msr-2020-0018.
Full textJubete, Elena, Oscar A. Loaiza, Estibalitz Ochoteco, Jose A. Pomposo, Hans Grande, and Javier Rodríguez. "Nanotechnology: A Tool for Improved Performance on Electrochemical Screen-Printed (Bio)Sensors." Journal of Sensors 2009 (2009): 1–13. http://dx.doi.org/10.1155/2009/842575.
Full textHan, Yuntao, Yunwei Cui, Xuxian Liu, and Yaqun Wang. "A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices." Biosensors 13, no. 9 (2023): 896. http://dx.doi.org/10.3390/bios13090896.
Full textDieck-Assad, Graciano, José Manuel Rodríguez-Delgado, and Omar Israel González Peña. "Excel Methods to Design and Validate in Microelectronics (Complementary Metal–Oxide–Semiconductor, CMOS) for Biomedical Instrumentation Application." Sensors 21, no. 22 (2021): 7486. http://dx.doi.org/10.3390/s21227486.
Full textGu, Junlin, Yunfei Shen, Shijia Tian, Zhaoguo Xue, and Xianhong Meng. "Recent Advances in Nanowire-Based Wearable Physical Sensors." Biosensors 13, no. 12 (2023): 1025. http://dx.doi.org/10.3390/bios13121025.
Full textXin, Jiwu, Abdul Basit, Sihui Li, Sylvain Danto, Swee Chuan Tjin, and Lei Wei. "Inorganic Thermoelectric Fibers: A Review of Materials, Fabrication Methods, and Applications." Sensors 21, no. 10 (2021): 3437. http://dx.doi.org/10.3390/s21103437.
Full textAjayan, J., S. Sreejith, M. Manikandan, Wen-Cheng Lai, and Sumit Saha. "Terahertz sensors for next generation biomedical and other industrial electronics applications: A critical review." Sensors and Actuators A: Physical 369 (April 2024): 115169. http://dx.doi.org/10.1016/j.sna.2024.115169.
Full textRoubal, Z., K. Bartušek, Z. Szabó, P. Drexler, and J. Überhuberová. "Measuring Light Air Ions in a Speleotherapeutic Cave." Measurement Science Review 17, no. 1 (2017): 27–36. http://dx.doi.org/10.1515/msr-2017-0004.
Full textFleming, Joe, Tazdin Amietszajew, and Alexander Roberts. "In-situ electronics and communications for intelligent energy storage." HardwareX 11 (April 2022): e00294. http://dx.doi.org/10.1016/j.ohx.2022.e00294.
Full textKaushal, Jyoti Bala, Pratima Raut, and Sanjay Kumar. "Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications." Biosensors 13, no. 11 (2023): 976. http://dx.doi.org/10.3390/bios13110976.
Full textRoriz, Paulo, Susana Silva, Orlando Frazão, and Susana Novais. "Optical Fiber Temperature Sensors and Their Biomedical Applications." Sensors 20, no. 7 (2020): 2113. http://dx.doi.org/10.3390/s20072113.
Full textHayatleh, K., S. Zourob, R. Nagulapalli, et al. "A High-Performance Skin Impedance Measurement Circuit for Biomedical Applications." Journal of Circuits, Systems and Computers 28, no. 07 (2019): 1950110. http://dx.doi.org/10.1142/s021812661950110x.
Full textMystkowska, Joanna, Anna Powojska, Dawid Łysik, et al. "The Effect of Physiological Incubation on the Properties of Elastic Magnetic Composites for Soft Biomedical Sensors." Sensors 21, no. 21 (2021): 7122. http://dx.doi.org/10.3390/s21217122.
Full textCheong, Yew-Kiat, Xiao-Wei Ng, and Wan-Young Chung. "Hazardless Biomedical Sensing Data Transmission Using VLC." IEEE Sensors Journal 13, no. 9 (2013): 3347–48. http://dx.doi.org/10.1109/jsen.2013.2274329.
Full textRairigh, Daniel J., Garrett A. Warnell, Chao Xu, Edward T. Zellers, and Andrew J. Mason. "CMOS Baseline Tracking and Cancellation Instrumentation for Nanoparticle-Coated Chemiresistors." IEEE Transactions on Biomedical Circuits and Systems 3, no. 5 (2009): 267–76. http://dx.doi.org/10.1109/tbcas.2009.2023511.
Full textPham, Xuan Thanh, Xuan Thuc Kieu, and Manh Kha Hoang. "Ultra-Low Power Programmable Bandwidth Capacitively-Coupled Chopper Instrumentation Amplifier Using 0.2 V Supply for Biomedical Applications." Journal of Low Power Electronics and Applications 13, no. 2 (2023): 37. http://dx.doi.org/10.3390/jlpea13020037.
Full textAndris, Peter, Tomáš Dermek, Daniel Gogola, Jiří Přibil, and Ivan Frollo. "Analysis of NMR Signal for Static Magnetic Field Standard." Measurement Science Review 22, no. 2 (2022): 80–83. http://dx.doi.org/10.2478/msr-2022-0010.
Full textSabiri, Issa, Hamid Bouyghf, Abdelhadi Raihani, and Brahim Ouacha. "Optimal design of CMOS current mode instrumentation amplifier using bio-inspired method for biomedical applications." Indonesian Journal of Electrical Engineering and Computer Science 25, no. 1 (2022): 120. http://dx.doi.org/10.11591/ijeecs.v25.i1.pp120-129.
Full textPing, Bingyi, Zihang Zhang, Qiushi Liu, Minghao Li, Qingxiu Yang, and Rui Guo. "Liquid Metal Fibers with a Knitted Structure for Wearable Electronics." Biosensors 13, no. 7 (2023): 715. http://dx.doi.org/10.3390/bios13070715.
Full textJorsch, Carola, Ulrike Schmidt, David Ulkoski, Carmen Scholz, Margarita Guenther, and Gerald Gerlach. "Implantable biomedical sensor array with biocompatible hermetic encapsulation." Journal of Sensors and Sensor Systems 5, no. 2 (2016): 229–35. http://dx.doi.org/10.5194/jsss-5-229-2016.
Full text