Academic literature on the topic 'Biometric data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biometric data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biometric data"
Chinyemba, Melissa K., and Jackson Phiri. "Gaps in the Management and Use of Biometric Data: A Case of Zambian Public and Private Institutions." Zambia ICT Journal 2, no. 1 (June 29, 2018): 35–43. http://dx.doi.org/10.33260/zictjournal.v2i1.49.
Full textAlam*, Varisha, and Dr Mohammad Arif. "Classification of Large Biometric Data in Database System." International Journal of Innovative Technology and Exploring Engineering 10, no. 10 (August 30, 2021): 1–8. http://dx.doi.org/10.35940/ijitee.d8592.08101021.
Full textRODRIGUES, Paulo Canas, Luiz Ricardo NAKAMURA, and Carlos Alberto de Bragança PEREIRA. "SPECIAL ISSUE ON BIOSTATISTICS AND BIOMETRY IN THE ERA OF DATA SCIENCE." REVISTA BRASILEIRA DE BIOMETRIA 39, no. 1 (March 30, 2021): 1–6. http://dx.doi.org/10.28951/rbb.v39i1.556.
Full textJacobsen, Katja Lindskov. "Biometric data flows and unintended consequences of counterterrorism." International Review of the Red Cross 103, no. 916-917 (April 2021): 619–52. http://dx.doi.org/10.1017/s1816383121000928.
Full textSrivastava, Prateek, and Rohit Srivastava. "A Multimodal Based Approach for Face and Unique Mark Based Combination for Confirmation of Human." International Journal of Business Analytics 6, no. 3 (July 2019): 16–28. http://dx.doi.org/10.4018/ijban.2019070102.
Full textRassolov, I. M., S. G. Chubukova, and I. V. Mikurova. "Biometrics in the Context of Personal Data and Genetic Information: Legal Issues." Lex Russica, no. 1 (January 1, 2019): 108–18. http://dx.doi.org/10.17803/1729-5920.2019.146.1.108-118.
Full textBok, Jin Yeong, Kun Ha Suh, and Eui Chul Lee. "Detecting Fake Finger-Vein Data Using Remote Photoplethysmography." Electronics 8, no. 9 (September 11, 2019): 1016. http://dx.doi.org/10.3390/electronics8091016.
Full textSridevi, T., P. Mallikarjuna Rao, and P. V. Ramaraju. "Wireless sensor data mining for e-commerce applications." Indonesian Journal of Electrical Engineering and Computer Science 14, no. 1 (December 25, 2018): 462. http://dx.doi.org/10.11591/ijeecs.v14.i1.pp462-470.
Full textHidayat, Taopik, Nurul Khasanah, Daniati Uki Eka Saputri, Umi Khultsum, and Risca Lusiana Pratiwi. "Klasifikasi Gambar Palmprint Berbasis Multi-Kelas Menggunakan Convolutional Neural Network." Jurnal Sistem Informasi 11, no. 1 (February 26, 2022): 01–06. http://dx.doi.org/10.51998/jsi.v11i1.474.
Full textLakhera, Manmohan, and Manmohan Singh Rauthan. "Securing Stored Biometric Template Using Cryptographic Algorithm." International Journal of Rough Sets and Data Analysis 5, no. 4 (October 2018): 48–60. http://dx.doi.org/10.4018/ijrsda.2018100103.
Full textDissertations / Theses on the topic "Biometric data"
McNulty, Peggy Sue. "Values issues in biometric data collection." Connect to Electronic Thesis (CONTENTdm), 2009. http://worldcat.org/oclc/525070842/viewonline.
Full textUgail, Hassan, and Eyad Elyan. "Efficient 3D data representation for biometric applications." IOS Press, 2007. http://hdl.handle.net/10454/2683.
Full textAn important issue in many of today's biometric applications is the development of efficient and accurate techniques for representing related 3D data. Such data is often available through the process of digitization of complex geometric objects which are of importance to biometric applications. For example, in the area of 3D face recognition a digital point cloud of data corresponding to a given face is usually provided by a 3D digital scanner. For efficient data storage and for identification/authentication in a timely fashion such data requires to be represented using a few parameters or variables which are meaningful. Here we show how mathematical techniques based on Partial Differential Equations (PDEs) can be utilized to represent complex 3D data where the data can be parameterized in an efficient way. For example, in the case of a 3D face we show how it can be represented using PDEs whereby a handful of key facial parameters can be identified for efficient storage and verification.
Lam, Lawrence G. "Digital Health-Data platforms : biometric data aggregation and their potential impact to centralize Digital Health-Data." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/106235.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (page 81).
Digital Health-Data is being collected at unprecedented rates today as biometric micro sensors continue to diffuse into our lives in the form of smart devices, wearables, and even clothing. From this data, we hope to learn more about preventative health so that we can spend less money on the doctor. To help users aggregate this perpetual growth of biometric "big" data, Apple HealthKit, Google Fit, and Samsung SAMI were each created with the hope of becoming the dominant design platform for Digital Health-Data. The research for this paper consists of citings from technology strategy literature and relevant journalism articles regarding recent and past developments that pertain to the wearables market and the digitization movement of electronic health records (EHR) and protected health information (PHI) along with their rules and regulations. The culmination of these citations will contribute to my hypothesis where the analysis will attempt to support my recommendations for Apple, Google, and Samsung. The ending chapters will encompass discussions around network effects and costs associated with multi-homing user data across multiple platforms and finally ending with my conclusion based on my hypothesis.
by Lawrence G. Lam.
S.M. in Engineering and Management
Stevenson, Brady Roos. "Analysis of Near-Infrared Phase Effects on Biometric Iris Data." BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/1299.
Full textKhanna, Tania. "Low power data acquisition for microImplant biometric monitoring of tremors." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78448.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 97-100).
In recent years, trends in the medical industry have created a growing demand for implantable medical devices. In particular, the need to provide doctors a means to continuously monitor biometrics over long time scales with increased precision is paramount to efficient healthcare. To make medical implants more attractive, there is a need to reduce their size and power consumption. Small medical implants would allow for less invasive procedures, greater comfort for patients, and increased patient compliance. Reductions in power consumption translate to longer battery life. The two primary limitations to the size of small medical implants are the batteries that provide energy to circuit and sensor components and the antennas that enable wireless communication to terminals outside of the body. The theory is applied in the context of the long term monitoring of Parkinson's tremors. This work investigates how to reduce the amount of data needing to acquire a signal by applying compressive sampling thereby alleviating the demand on the energy source. A low energy SAR ADC is designed using adiabatic charging to further reduce energy usage. This application is ideal for adiabatic techniques because of the low frequency of operation and the ease with which we can reclaim energy from discharging the capacitors. Keywords: SAR ADC, adiabatic, compressive sampling, biometric, implants
by Tania Khanna.
Ph.D.
Mai, Guangcan. "Biometric system security and privacy: data reconstruction and template protection." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/544.
Full textPisani, Paulo Henrique. "Biometrics in a data stream context." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08052017-141153/.
Full textA crescente presença da Internet nas tarefas do dia a dia, juntamente com a evolução dos sistemas computacionais, contribuiu para aumentar a exposição dos dados. Esse cenário evidencia a necessidade de sistemas de autenticação de usuários mais seguros. Uma alternativa para lidar com isso é pelo uso de sistemas biométricos. Contudo, características biométricas podem mudar com o tempo, o que pode afetar o desempenho de reconhecimento devido a uma referência biométrica desatualizada. Esse efeito pode ser chamado de template ageing na área de sistemas biométricos adaptativos ou de mudança de conceito em aprendizado de máquina. Isso levanta a necessidade de adaptar automaticamente a referência biométrica com o tempo, uma tarefa executada por sistemas biométricos adaptativos. Esta tese estudou sistemas biométricos adaptativos considerando biometria em um contexto de fluxo de dados. Neste contexto, o teste é executado em um fluxo de dados biométrico, em que as amostras de consulta são apresentadas uma após a outra para o sistema biométrico. Um sistema biométrico adaptativo deve então classificar cada consulta e adaptar a referência biométrica. A decisão de executar a adaptação é tomada pelo sistema biométrico. Dentre as modalidades biométricas, esta tese foca em biometria comportamental, em particular em dinâmica da digitação e em biometria por acelerômetro. Modalidades comportamentais tendem a ser sujeitas a mudanças mais rápidas do que modalidades físicas. Entretanto, havia poucos estudos lidando com sistemas biométricos adaptativos para modalidades comportamentais, destacando uma lacuna para ser explorada. Ao longo da tese, diversos aspectos para aprimorar o projeto de sistemas biométricos adaptativos para modalidades comportamentais em um contexto de fluxo de dados foram discutidos: proposta de estratégias de adaptação para o algoritmo de classificação imunológico Self-Detector, combinação de modelos genuíno e impostor no framework do Enhanced Template Update e aplicação de normalização de scores em sistemas biométricos adaptativos. Com base na investigação desses aspectos, foi observado que a melhor escolha para cada aspecto estudado dos sistemas biométricos adaptativos pode ser diferente dependendo do conjunto de dados e, além disso, dependendo dos usuários no conjunto de dados. As diferentes características dos usuários, incluindo a forma como as características biométricas mudam com o tempo, sugerem que as estratégias de adaptação deveriam ser escolhidas por usuário. Isso motivou a proposta de um sistema biométrico adaptativo modular, chamado ModBioS, que pode escolher cada um desses aspectos por usuário. O ModBioS é capaz de generalizar diversos sistemas baseline e propostas apresentadas nesta tese em um framework modular, juntamente com a possibilidade de atribuir estratégias de adaptação diferentes por usuário. Resultados experimentais mostraram que o sistema biométrico adaptativo modular pode superar diversos sistemas baseline, enquanto que abre um grande número de oportunidades para trabalhos futuros.
Pratt, Jamie M. "The Effects of Worksite Health Promotion Programs on Employee Biometric Data." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/5752.
Full textAronsson, Erik. "Biometric Authentication and Penetration of Smartphones." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-37713.
Full textSinsel, Adam R. "Supporting the maritime information dominance: optimizing tactical network for biometric data sharing in maritime interdiction operations." Thesis, Monterey, California: Naval Postgraduate School, 2015. http://hdl.handle.net/10945/45257.
Full textThis research intends to improve information dominance in the maritime domain by optimizing tactical mobile ad hoc network (MANET) systems for wireless sharing of biometric data in maritime interdiction operations (MIO). Current methods for sharing biometric data in MIO are unnecessarily slow and do not leverage wireless networks at the tactical edge to maximize information dominance. Field experiments allow students to test wireless MANETs at the tactical edge. Analysis is focused on determining optimal MANET design and implementation. It considers various implementations with varied antenna selection, radio power, and frequency specifications, and two specific methods of integrating Department of Defense biometric collection devices to the wireless MANET, which utilizes a single (WR) MPU4 802.11 Wi-Fi access point to connect secure electronic enrollment kit II (SEEK II) biometric devices to the MANET, and tethers each SEEK device to a dedicated WR using a personal Ethernet connection. Biometric data is shared across the tactical network and transmitted to remote servers. Observations and analysis regarding network performance demonstrate that wireless MANETs can be optimized for biometric reach back and integrated with biometric devices to improve biometric data sharing in MIO.
Books on the topic "Biometric data"
Dunstone, Ted, and Neil Yager, eds. Biometric System and Data Analysis. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77627-9.
Full textConti, Massimo, Natividad Martínez Madrid, Ralf Seepold, and Simone Orcioni, eds. Mobile Networks for Biometric Data Analysis. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39700-9.
Full textNeil, Yager, ed. Biometric system and data analysis: Design, evaluation, and data mining. New York: Springer, 2009.
Find full textNational Research Council (U.S.). Whither Biometrics Committee, ed. Biometric recognition: Challenges and opportunities. Washington, D.C: National Academies Press, 2010.
Find full textKindt, Els J. Privacy and Data Protection Issues of Biometric Applications. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7522-0.
Full textLevush, Ruth. Biometric data retention for passport applicants and holders. Washington, D.C.]: The Law Library of Congress, Global Legal Research Center, 2014.
Find full textBilan, Stepan, Mohamed Elhoseny, and D. Jude Hemanth, eds. Biometric Identification Technologies Based on Modern Data Mining Methods. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-48378-4.
Full textContinuous authentication using biometrics: Data, models, and metrics. Hershey, PA: Information Science Reference, 2012.
Find full textIsrael. Biometric means of identification: Complete translation of the new Law for the Inclusion of Biometric Means of Identification and Biometric Identity Data in Identity Documents and in a Data Base 5770-2009. Haifa, Israel: Aryeh Greenfield-A.G. Publications, 2010.
Find full textModi, Shimon K. Biometrics in identity management: Concepts to applications. Boston: Artech House, 2011.
Find full textBook chapters on the topic "Biometric data"
Wingard, Melissa. "Bolstering Biometric Data." In Digital Transformation in a Post-COVID World, 245–62. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003148715-13.
Full textLi, Xiang, Jinyu Gao, Xiaobin Chang, Yuting Mai, and Wei-Shi Zheng. "Person Re-identification with Data-Driven Features." In Biometric Recognition, 506–13. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12484-1_58.
Full textKevenaar, Tom. "Protection of Biometric Information." In Security with Noisy Data, 169–93. London: Springer London, 2007. http://dx.doi.org/10.1007/978-1-84628-984-2_11.
Full textHuang, Qianying, Yunsong Wu, Chenqiu Zhao, Xiaohong Zhang, and Dan Yang. "Category Guided Sparse Preserving Projection for Biometric Data Dimensionality Reduction." In Biometric Recognition, 539–46. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46654-5_59.
Full textLuo, Peng, Jinye Peng, Ziyu Guan, and Jianping Fan. "Hybrid Manifold Regularized Non-negative Matrix Factorization for Data Representation." In Biometric Recognition, 564–74. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46654-5_62.
Full textRatha, Nalini K., Miguel A. Figueroa-Villanueva, Jonathan H. Connell, and Ruud M. Bolle. "A Secure Protocol for Data Hiding in Compressed Fingerprint Images." In Biometric Authentication, 205–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-25976-3_19.
Full textAkula, Abhilash, Jeshwanth Ega, Kalyan Thota, and Gowtham. "Biometric Voting System." In Lecture Notes on Data Engineering and Communications Technologies, 231–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24643-3_28.
Full textYuan, Yunhao, Peng Lu, Zhiyong Xiao, Jianjun Liu, and Xiaojun Wu. "A Novel Supervised CCA Algorithm for Multiview Data Representation and Recognition." In Biometric Recognition, 702–9. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25417-3_82.
Full textDong, Jianmin, and Zhongmin Cai. "User Authentication Using Motion Sensor Data from Both Wearables and Smartphones." In Biometric Recognition, 756–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46654-5_83.
Full textGupta, Rahul, Naman Gupta, Tushar Gupta, Aditya Srivastava, Ritu Gupta, and Abhilasha Singh. "Gait Recognition Biometric System." In Proceedings of Data Analytics and Management, 29–40. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6289-8_4.
Full textConference papers on the topic "Biometric data"
Pisani, Paulo Henrique, and André C. P. L. F. De Carvalho. "Biometrics in a data stream context." In XXXI Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/ctd.2018.3650.
Full textVielhauer, Claus, and Ton Kalker. "Security for biometric data." In Electronic Imaging 2004, edited by Edward J. Delp III and Ping W. Wong. SPIE, 2004. http://dx.doi.org/10.1117/12.528261.
Full textKocherov, Y. N., D. V. Samoylenko, and E. E. Tikhonov. "Safe Storage of Biometric Data." In 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2020. http://dx.doi.org/10.1109/fareastcon50210.2020.9271161.
Full textBringer, Julien, and Hervé Chabanne. "Negative databases for biometric data." In the 12th ACM workshop. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1854229.1854242.
Full textDe A. S. M., Juliana, and Márjory Da Costa-Abreu. "An evaluation of a three-modal hand-based database to forensic-based gender recognition." In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. Sociedade Brasileira de Computação, 2019. http://dx.doi.org/10.5753/sbseg.2019.13989.
Full textLakhera, Manmohan. "Enhancing security of stored biometric data." In 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH). IEEE, 2014. http://dx.doi.org/10.1109/cipech.2014.7019043.
Full textLionnie, Regina, Said Attamimi, Wahju Sediono, and Mudrik Alaydrus. "Biometric Identification with Limited Data Set." In 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS). IEEE, 2018. http://dx.doi.org/10.1109/eeccis.2018.8692859.
Full textAntal, Margit, and Gyozo Nemes. "Gender recognition from mobile biometric data." In 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE, 2016. http://dx.doi.org/10.1109/saci.2016.7507379.
Full textÖzkaynak, Fatih. "From Biometric Data to Cryptographic Primitives." In the 2017 International Conference. New York, New York, USA: ACM Press, 2017. http://dx.doi.org/10.1145/3143344.3143355.
Full textHanda, Jigyasa, Saurabh Singh, and Shipra Saraswat. "Approaches of Behavioural Biometric Traits." In 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence). IEEE, 2019. http://dx.doi.org/10.1109/confluence.2019.8776905.
Full textReports on the topic "Biometric data"
Wilson, C. L., P. J. Grother, and R. Chandramouli. Biometric data specification for personal identity verification. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.sp.800-76.
Full textWilson, C. L., P. J. Grother, and R. Chandramouli. Biometric data specification for personal identity verification. Gaithersburg, MD: National Institute of Standards and Technology, 2007. http://dx.doi.org/10.6028/nist.sp.800-76-1.
Full textPodio, Fernando L., Dylan Yaga, and Christofer J. McGinnis. BioCTS 2012: Advanced Conformance Test Architectures and Test Suites for Biometric Data Interchange Formats and Biometric Information Records. Gaithersburg, MD: National Institute of Standards and Technology, September 2012. http://dx.doi.org/10.6028/nist.ir.7877.
Full textPodio, Fernando L., Dylan Yaga, and Mark Jerde. Conformance test architecture for biometric data interchange formats - version beta 2.0. Gaithersburg, MD: National Institute of Standards and Technology, 2011. http://dx.doi.org/10.6028/nist.ir.7771.
Full textBossuroy, Thomas, Clara Delavallade, and Vincent Pons. Biometric Tracking, Healthcare Provision, and Data Quality: Experimental Evidence from Tuberculosis Control. Cambridge, MA: National Bureau of Economic Research, October 2019. http://dx.doi.org/10.3386/w26388.
Full textWu, Jin Chu, and Charles L. Wilson. Using Chebyshev's inequality to determine sample size in biometric evaluation of fingerprint data. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ir.7273.
Full textCheng, Su Lan, Ross J. Micheals, and Z. Q. John Lu. Comparison of confidence intervals for large operational biometric data by parametric and non-parametric methods. Gaithersburg, MD: National Institute of Standards and Technology, 2010. http://dx.doi.org/10.6028/nist.ir.7740.
Full textNewton, Elaine, Gerry Coleman, and Patrice Yuh. Information systems-data format for the interchange of fingerprint, facial, & other biometric information- part 2 :. Gaithersburg, MD: National Institute of Standards and Technology, 2008. http://dx.doi.org/10.6028/nist.sp.500-275.
Full textPodio, Fernando L., Dylan Yaga, and Christofer J. McGinnis, eds. Conformance Testing Methodology for ANSI/NIST-ITL 1-2011, Data Format for the Interchange of Fingerprint, Facial and Other Biometric Information (Release 1.0). Gaithersburg, MD: National Institute of Standards and Technology, August 2012. http://dx.doi.org/10.6028/nist.sp.500-295.
Full textWing, Bradford J. Data Format for the Interchange of Fingerprint, Facial and Other Biometric Information ANSI/NIST-ITL 1-2011 NIST Special Publication 500-290 Edition 2. National Institute of Standards and Technology, August 2013. http://dx.doi.org/10.6028/nist.sp.500-290e2.
Full text