Dissertations / Theses on the topic 'Biometrics based recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 43 dissertations / theses for your research on the topic 'Biometrics based recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Fouad, Marwa. "Towards Template Security for Iris-based Biometric Systems." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22736.
Full textMohamed, Suliman M. "Fingerprint-based biometric recognition allied to fuzzy-neural feature classification." Thesis, Sheffield Hallam University, 2002. http://shura.shu.ac.uk/20071/.
Full textCadavid, Steven. "Human Identification Based on Three-Dimensional Ear and Face Models." Scholarly Repository, 2011. http://scholarlyrepository.miami.edu/oa_dissertations/516.
Full textIbrahim, Mina Ibrahim Samaan. "Wavelet based approaches for detection and recognition in ear biometrics." Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/340675/.
Full textEl, Seuofi Sherif M. "Performance Evaluation of Face Recognition Using Frames of Ten Pose Angles." Youngstown State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1198184813.
Full textMalavé, Laura Helena. "Silhouette based Gait Recognition: Research Resource and Limits." Scholar Commons, 2003. https://scholarcommons.usf.edu/etd/1423.
Full textKonuk, Baris. "Palmprint Recognition Based On 2-d Gabor Filters." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608138/index.pdf.
Full textin this way an online palmprint recognition system has been developed. Then a small palmprint database is formed via this system in Middle East Technical University. Results on this new database have also shown the success of the developed algorithm.
Fons, Lluís Mariano. "Hardware accelerators for embedded fingerprint-based personal recognition systems." Doctoral thesis, Universitat Rovira i Virgili, 2012. http://hdl.handle.net/10803/83493.
Full textEl desenvolupament de sistemes automàtics de reconeixement personal basats en tècniques biomètriques esdevé una realitat en l’era tecnològica actual. No només aquelles operacions que exigeixen un elevat nivell de seguretat sinó també moltes aplicacions quotidianes demanen l’existència de plataformes computacionals encarregades de reconèixer la identitat d’un individu a partir de l’anàlisi de les seves característiques fisiològiques i/o comportamentals. L’estat de l’art de la tècnica identifica dues limitacions importants en la implementació d’aquest tipus d’aplicacions: per una banda, és necessària la millora de la fiabilitat d’aquests sistemes en termes de precisió en el procés de reconeixement personal, seguretat i execució en temps real; i per altra banda, és necessari reduir notablement el cost dels sistemes electrònics encarregats del processat biomètric. Aquest treball té per objectiu la cerca de l’arquitectura adequada a nivell de sistema que permeti fer front a les limitacions de les aplicacions de reconeixement personal actuals. Es demostra que la proposta de sistemes empotrats basats en tècniques de codisseny hardware-software i dispositius lògics programables (i reconfigurables en temps d’execució) sobre FPGAs o SOPCs resulta ser una alternativa eficient en front d’aquells sistemes multiprocessadors existents basats en HPCs, GPUs o plataformes PC per al desenvolupament d’aquests tipus d’aplicacions que requereixen un alt nivell de prestacions a baix cost.
El desarrollo de sistemas automáticos de reconocimiento personal basados en técnicas biométricas se ha convertido en una realidad en la era tecnológica actual. No tan solo aquellas operaciones que requieren un alto nivel de seguridad sino también muchas otras aplicaciones cotidianas exigen la existencia de plataformas computacionales encargadas de verificar la identidad de un individuo a partir del análisis de sus características fisiológicas y/o comportamentales. El estado del arte de la técnica identifica dos limitaciones importantes en la implementación de este tipo de aplicaciones: por un lado, es necesario mejorar la fiabilidad que presentan estos sistemas en términos de precisión en el proceso de reconocimiento personal, seguridad y ejecución en tiempo real; y por otro lado, es necesario reducir notablemente el coste de los sistemas electrónicos encargados de dicho procesado biométrico. Este trabajo tiene por objetivo la búsqueda de aquella arquitectura adecuada a nivel de sistema que permita hacer frente a las limitaciones de los sistemas de reconocimiento personal actuales. Se demuestra que la propuesta basada en sistemas embebidos implementados mediante técnicas de codiseño hardware-software y dispositivos lógicos programables (y reconfigurables en tiempo de ejecución) sobre FPGAs o SOPCs resulta ser una alternativa eficiente frente a aquellos sistemas multiprocesador actuales basados en HPCs, GPUs o plataformas PC en el ámbito del desarrollo de aplicaciones que demandan un alto nivel de prestaciones a bajo coste
Kaloorazi, Maboud Farzaneh. "3D Ear Recognition Based on Force Field Transform." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4891.
Full textphone number: 0700099273
Liu, Zongyi. "Gait-Based Recognition at a Distance: Performance, Covariate Impact and Solutions." Scholar Commons, 2004. https://scholarcommons.usf.edu/etd/1134.
Full textAlejo, Willy, Daniel Rodriguez, Guillermo Kemper, and Universidad Peruana de Ciencias Aplicadas (UPC). "A biometric method based on the matching of dilated and skeletonized IR images of the veins map of the dorsum of the hand." IEEE, 2015. http://hdl.handle.net/10757/556175.
Full textThis work proposes a biometric identification system that works together with a palm vein reader sensor and a hand-clenching support, designed to perform the capture the back of the hand. Several processing steps were performed: extraction of the region of interest, binarization, dilation, noise filtering, skeletonization, as well as extraction and verification of patterns based on the measurment of coincidence of vertical and horizontal displacements of skeletonized and dilated images. The proposed method achieved the following results: processing time post capture of 1.8 seconds, FRR of 0.47% and FAR of 0,00%, with a referential database of 50 people from a total of 1500 random captures.
Mohanty, Pranab. "Learning from biometric distances : performance and security related issues in face recognition systems." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002298.
Full textKomulainen, J. (Jukka). "Software-based countermeasures to 2D facial spoofing attacks." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526208732.
Full textTiivistelmä Kasvokuvaan perustuvan henkilöllisyyden tunnistamisen etuja ovat luonnollinen vuorovaikutus ja etätunnistus, minkä takia aihe on ollut erittäin aktiivinen tutkimusalue konenäön tutkimuksessa. Valitettavasti tavanomaiset kasvontunnistustekniikat ovat osoittautuneet haavoittuvaisiksi hyökkäyksille, joissa kameralle esitetään jäljennös kohdehenkilön kasvoista positiivisen tunnistuksen toivossa. Tässä väitöskirjassa tutkitaan erilaisia ohjelmistopohjaisia ratkaisuja keinotekoisten kasvojen ilmaisuun petkuttamisen estämiseksi. Työn ensimmäisessä osassa käytetään erilaisia matalan tason piirteitä kuvaamaan aitojen ja keinotekoisten kasvojen luontaisia staattisia ja dynaamisia eroavaisuuksia. Työn toisessa osassa esitetään toisiaan täydentäviä hyökkäystyyppikohtaisia vastakeinoja, jotta yleispätevien menetelmien puutteet voitaisiin ratkaista ongelmaa rajaamalla. Kasvojen staattisten ominaisuuksien esitys perustuu yleisesti tunnettuihin matalan tason piirteisiin, kuten paikallisiin binäärikuvioihin, Gabor-tekstuureihin ja suunnattujen gradienttien histogrammeihin. Pääajatuksena on kuvata aitojen ja keinotekoisten kasvojen laadun, heijastumisen ja varjostumisen eroavaisuuksia tekstuuria ja gradienttirakenteita analysoimalla. Lähestymistapaa laajennetaan myös tila-aika-avaruuteen, jolloin hyödynnetään samanaikaisesti sekä kasvojen ulkonäköä ja dynamiikkaa irroittamalla paikallisia binäärikuvioita tila-aika-avaruuden kolmelta ortogonaaliselta tasolta. Voidaan olettaa, ettei ole olemassa yksittäistä yleispätevää vastakeinoa, joka kykenee ilmaisemaan jokaisen tunnetun hyökkäystyypin, saati tuntemattoman. Näin ollen työssä keskitytään tarkemmin kahteen hyökkäystilanteeseen. Ensimmäisessä tapauksessa huijausapuvälineen reunoja ilmaistaan analysoimalla gradienttirakenteiden epäjatkuvuuksia havaittujen kasvojen ympäristössä. Jos apuvälineen reunat on piilotettu kameran näkymän ulkopuolelle, petkuttamisen ilmaisu toteutetaan yhdistämällä kasvojen ja taustan liikkeen korrelaation mittausta ja kasvojen tekstuurianalyysiä. Lisäksi työssä esitellään vastakeinojen yhdistämiseen avoimen lähdekoodin ohjelmisto, jonka avulla tutkitaan lähemmin menetelmien fuusion vaikutuksia. Tutkimuksessa esitetyt menetelmät on kokeellisesti vahvistettu alan viimeisimmillä julkisesti saatavilla olevilla tietokannoilla. Tässä väitöskirjassa käydään läpi kokeiden päähavainnot
Phang, Shiau Shing. "Investigating and developing a model for iris changes under varied lighting conditions." Thesis, Queensland University of Technology, 2007. https://eprints.qut.edu.au/16672/1/Shiau_Shing_Phang_Thesis.pdf.
Full textPhang, Shiau Shing. "Investigating and developing a model for iris changes under varied lighting conditions." Queensland University of Technology, 2007. http://eprints.qut.edu.au/16672/.
Full textCastelano, Célio Ricardo. "Estudo comparativo da transformada wavelet no reconhecimento de padrões da íris humana." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-30112006-134736/.
Full textThis work presents a method for recognition of human beings by iris texture. The image of the eye is processed through gradient analysis, based on a random dispersion of seeds. So, it is extracted a feature vector for each iris based on wavelet transform in some levels of decomposition. To estimate the distances between these vectors it was used the Euclidean distance, and recall x precision curves are generated to measure the efficiency of the developed method. The results gotten with some wavelets families had demonstrated that the proposed methodology is capable to do human recognition through the iris with an efficient precision.
Font, Aragonès Xavier. "Visible, near infrared and thermal hand-based image biometric recognition." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/117685.
Full textEl Reconeixement Biomètric fa referència a la identi cació automàtica de persones fent us d'alguna característica o modalitat anatòmica (empremta digital) o d'alguna característica de comportament (signatura). És un aspecte fonamental en qualsevol procés relacionat amb la seguretat, la compartició de recursos o les transaccions electròniques entre d'altres. És converteix en un pas imprescindible abans de concedir l'autorització. Aquesta autorització, s'entén que protegeix recursos clau, permeten així, que aquests siguin utilitzats pels usuaris que han estat autoritzats a utilitzar-los o a tenir-hi accés. Els sistemes biomètrics poden funcionar en veri cació, on es resol la pregunta: Soc jo qui dic que soc? O en identi cació on es resol la qüestió: Qui soc jo? La comunitat cientí ca ha incrementat els seus esforços per millorar el rendiment dels sistemes biomètrics. En funció de l'aplicació, diverses solucions s'adrecen a treballar amb múltiples modalitats o combinant diferents mètodes de classi cació. Donat que incrementar el número de modalitats, representa a la vegada problemes pels usuaris, moltes d'aquestes aproximacions no arriben mai al mercat. La tesis contribueix principalment en tres grans àrees, totes elles amb el denominador comú següent: Reconeixement biometric a través de les mans. i) La primera d'elles constitueix la base de qualsevol estudi, les dades. Per poder interpretar, i establir un sistema de reconeixement biomètric prou robust amb un clar enfocament a múltiples fonts d'informació, però amb el mínim esforç per part de l'usuari es construeix aquesta Base de Dades de mans multi espectral. Les bases de dades biomètriques constitueixen un recurs molt preuat per a la recerca; sobretot si ofereixen algun element nou com es el cas. Imatges de mans en diferents espectres electromagnètics: en visible (VIS), en infraroig (NIR) i en tèrmic (TIR). Amb un total de 100 usuaris, i 10 mostres per usuari, constitueix un bon punt de partida per estudiar i posar a prova sistemes multi biomètrics enfocats a les mans. ii) El segon bloc s'adreça a les dues aproximacions existents en la literatura per a tractar les dades en brut. Aquestes dues aproximacions, anomenades Holística (tracta la imatge com un tot) i Geomètrica (utilitza càlculs geomètrics) de neixen el focus alhora d'extreure el vector de característiques. Abans de tractar alguna d'aquestes dues aproximacions, però, és necessària l'aplicació de diferents tècniques de preprocessat digital de la imatge per obtenir les regions d'interès desitjades. Diferents problemes presents a les imatges s'han hagut de solucionar de forma original per a cadascuna de les tipologies de les imatges presents: VIS, NIR i TIR. VIS: imatges sobre exposades, anells, mànigues, braçalets. NIR: Ungles pintades, distorsió en forma de soroll en les imatges TIR: Dits freds La segona àrea presenta aspectes innovadors, ja que a part de segmentar la imatge de la ma, es segmenten tots i cadascun dels dits (feature-based approach). Així aconseguim contrastar la seva capacitat de reconeixement envers la ma de forma completa. Addicionalment es presenta un conjunt de procediments geomètrics amb la idea de comparar-los amb els provinents de l'extracció holística. La tercera i última àrea contrasta el procediment de classi cació anomenat Biometric Dispersion Matcher (BDM) amb diferents situacions. La primera relacionada amb l'efectivitat respecte d'altres mètode de reconeixement, com ara l'Anàlisi Lineal Discriminant (LDA) o bé mètodes com KNN o la regressió logística. Les altres situacions que s'analitzen tenen a veure amb múltiples fonts d'informació, quan s'apliquen tècniques de normalització i/o estratègies de combinació (fusió) per millorar els resultats. Els resultats obtinguts no deixen lloc per a la confusió, i són certament prometedors en el sentit que posen a la llum la importància de combinar informació complementària per obtenir rendiments superiors.
Datta, Ankur. "Gait Based Recognition." Honors in the Major Thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/436.
Full textBachelors
Engineering and Computer Science
Computer Science
Manohar, Vasant. "Video-Based Person Identification Using Facial Strain Maps as a Biometric." Scholar Commons, 2006. http://scholarcommons.usf.edu/etd/3797.
Full textNickel, Claudia [Verfasser], Johannes [Akademischer Betreuer] Buchmann, and Christoph [Akademischer Betreuer] Busch. "Accelerometer-based Biometric Gait Recognition for Authentication on Smartphones / Claudia Nickel. Betreuer: Johannes Buchmann ; Christoph Busch." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2012. http://d-nb.info/1106116119/34.
Full textJardini, Evandro de Araújo. "MFIS: algoritmo de reconhecimento e indexação em base de dados de impressões digitais em espaço métrico." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-04042008-143239/.
Full textThe problem of the traditional methods of people identification is that they are based on passwords which may to be forgotten, stolen, lost, copied, stored in an insecure way and be used by unauthorized person. Automatic biometric systems appeared to provide an alternative for the recognition of people in a more safe and efficienty way. One most biometrics techniques used is the fingerprint recognition. With the increasing use of fingerprints in biometric systems, large fingerprint databases emerged, and with them, the challenge to find the best and fastest way to recover informations. According to the challenges previously mentioned, this work presents two proposals: i) to develop a newmetric algorithm for the identification of fingerprints and ii) to use it to index a fingerprint database using a metric search tree. To prove the efficiency of the developed algorithm tests were performed on two fingerprint images databases from Fingerprint Verification Competition of years 2000 and 2002. The obtained results were compared to the results of the algorithm proposed by Bozorth and was evaluated by the Receiver Operating Characteristic curve and the Equal Error Rate, where the proposed method is of 4.9% against 7.2% of Bozorth and 2.0% of the algorithm proposed against 2.7% of the Bozorth in the databases of the yearsof 2000 and 2002. In the robustness tests, the proposed algorithm as able to identify a fingerprint with only 30% of the original size and when using an a indexed database, it obtained better performance in the recovery of small amounts of fingerprints of a single class.
Assaad, Firas Souhail. "Biometric Multi-modal User Authentication System based on Ensemble Classifier." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1418074931.
Full textChidambaram, Chidambaram. "A contribution for single and multiple faces recognition using feature-based approaches." Universidade Tecnológica Federal do Paraná, 2013. http://repositorio.utfpr.edu.br/jspui/handle/1/715.
Full textAmong biometric recognition systems, face biometrics plays an important role in research activities and security applications since face images can be acquired without any knowledge of individuals. Nowadays a huge amount of digital images and video sequences have been acquired mainly from uncontrolled conditions, frequently including noise, blur, occlusion and variation on scale and illumination. Because of these issues, face recognition (FR) is still an active research area and becomes a complex problem and a challenging task. In this context, the motivation comes from the fact that recognition of faces in digital images with complex background and databases of face images have become one of the successful applications of Computer Vision. Hence, the main goal of this work is to recognize one or more faces from still images with multiple faces and from a database of single faces obtained under different conditions. To work with multiple face images under varying conditions, a semi-supervised approach proposed based on the invariant and discriminative power of local features. The extraction of local features is done using Speeded-Up Robust Features (SURF). The search for regions from which optimal features can be extracted is fulfilled by an improved ABC algorithm. To fully exploit the proposed approach, an extensive experimental analysis was performed. Results show that this approach is robust and efficient for face recognition applications except for faces with non-uniform illumination. In the literature, a significant number of single FR researches are based on extraction of only one feature and machine learning approaches. Besides, existing feature extraction approaches broadly use either global or local features. To obtain relevant and complementary features from face images, a face recognition methodology should consider heterogeneous features and semi-global features. Therefore, a novel hierarchical semi-supervised FR approach is proposed based on extraction of global, semi-global and local features. Global and semi-global features are extracted using Color Angles (CA) and edge histogram descriptors (EHD) meanwhile only local features are extracted using SURF. An extensive experimental analysis using the three feature extraction methods was done first individually followed by a three-stage hierarchical scheme using the face images obtained under two different lighting conditions with facial expression and slight scale variation. Furthermore, the performance of the approach was also analyzed using global, semi-global and local features combinations for CA and EHD. The proposed approach achieves high recognition rates considering all image conditions tested in this work. In addition to this, the results emphasize the influence of local and semi-global features in the recognition performance. In both, single face and multiple faces approaches, the main achievement is the high performance obtained only from the discriminative capacity of extracted features without any training schemes.
Bekli, Zeid, and William Ouda. "A performance measurement of a Speaker Verification system based on a variance in data collection for Gaussian Mixture Model and Universal Background Model." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20122.
Full textMendes, Wender Cabral. "Reconhecimento de pessoas pela marcha usando redução de dimensionalidade de contornos no domínio da frequência." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/5931.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-15T13:25:32Z (GMT) No. of bitstreams: 2 Dissertação - Weder Cabral Mendes - 2016.pdf: 1214460 bytes, checksum: 14588573f8f81fe4836a9945adacf37d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-08-15T13:25:32Z (GMT). No. of bitstreams: 2 Dissertação - Weder Cabral Mendes - 2016.pdf: 1214460 bytes, checksum: 14588573f8f81fe4836a9945adacf37d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-03-31
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Gait recognition via computer vision attracted increasing interest for its noninvasive characteristic and mainly for your advantage of recognizing people at distance. Recognition is performing extracting features included in gait, this features are extracted from images sequence of people walking. The main challenges of gait recognition is to extract characteristics with unique information for each person, in additional, the use of accessories and clothes difficult the feature extraction process. This paper proposes a gait recognition method using information of people’s contours transformed in domain frequence by Discrete Fourier Transform. A lot of data are generated from the contours, thereby, three different techniques for dimensionality reduction CDA (Class Discrimination Ability), PCA (Principal Component Analysis) and PLS (Partial Least Squares) are employed to reduce the dimensionality of data and generate characteristics that are relevant to the recongnition system. Two classifiers, KNN (K-Nearest Neighbor) and LDA (Linear Discriminant Analysis) classify the characteristics that are returned by the dimensionality reduction methods. The accuracy are achieved by the combination of the dimensionality reduction methods and classifiers, the highest accuracy was 92:67%, which was achieved with the combination between the LDA and PCA (LDAPCA). Therefore, the results show that the information contained in the contours of silhouette are discriminant to recognize people by their gait.
O reconhecimento de pessoas através da marcha humana via visão computacional tem ganhado destaque por ser uma técnica biométrica não invasiva e principalmente por sua vantagem de reconhecer pessoas à distância. O reconhecimento é realizando extraindo características contidas na marcha de cada pessoa, essas características são extraídas de sequências de imagens da pessoa caminhando. Os principais desafios dessa técnica biométrica está em extrair as características com informações que consigam diferenciar uma pessoa da outra, além disso, o uso de acessórios e vestimentas dificultam o processo de extração de características. Este trabalho propõe um método de reconhecimento baseado na marcha humana utilizando informações dos contornos das pessoas transformados para o domínio da frequência por meio da Transformada Discreta de Fourier. Como são geradas muitos dados a partir dos contornos, três técnicas diferentes de redução de dimensionalidade CDA (Class Discrimination Ability), PCA (Principal Component Analysis) e PLS (Partial Least Squares) são empregadas para reduzir a quantidade de dados e gerar características que sejam relevantes para o sistema de reconhecimento. Dois classificadores, KNN (K-Nearest Neighbor) e LDA (Linear Discriminant Analysis) classificam as características retornadas pelos métodos de redução de dimensionalidade. As taxas de acurácia são obtidas pelos resultados gerados entre a combinação dos métodos de redução de dimensionalidade e os classificadores, a maior taxa de acurácia foi de 92;67%, a qual foi alcançada com a combinação entre o LDA e PCA (LDAPCA). Dessa forma, conclui-se que as informações contidas no contorno da silhueta no domínio da frequência são discriminantes para reconhecer pessoas através da marcha.
Ganapathi, Tejaswini. "Color Image Based Face Recognition." Thesis, 2008. http://hdl.handle.net/1807/17169.
Full textLiu, Chia-Tsun, and 劉家村. "A New Approach to Biometrics Recognition based on Finger Crease Patterns." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/64361497362504088625.
Full text國立中央大學
資訊工程研究所
93
Biometric identification is one of the popular research fields recently. Some of those use the features of hands like fingerprint, hand geometry, palmprint and vein of palm-dorsum. Palmprint has several features, which include principal lines, wrinkles and ridges. Also, the whole stick of finger is full of the similar structure of features (i.e. principal lines, wrinkles and ridges). In this dissertation, a new approach is introduced. In the image of the palm, we try to use Finger Crease Patterns on the central area of four fingers (little finger, ring finger, middle finger and forefinger) as regions of Interest (ROI). Next we computed the wavelet energy feature (WEF) through the use of wavelet transform. Finally, the back propagation neural network (BPNN) is applied for verification.
Fatemian, Seyedeh Zahra. "A Wavelet-based Approach to Electrocardiogram (ECG) and Phonocardiogram (PCG) Subject Recognition." Thesis, 2009. http://hdl.handle.net/1807/18293.
Full textKong, Adams. "Palmprint Identification Based on Generalization of IrisCode." Thesis, 2007. http://hdl.handle.net/10012/2708.
Full textYAN, MAO-JUN, and 顏卯君. "Pathological Feature-Based ECG Biometric Recognition." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/546mfx.
Full text真理大學
資訊工程學系碩士班
105
The biometric recognition technologies focus on the physiological or behavioral characteristics to provide the functionality of human identity verification by adopting pattern recognition algorithms. These technologies are quite advantageous and become an active research field since it is unnecessary to bring any external identity and is not easy to duplicate. In this research, a human identity verification process is provided based on the biometric features of heart activities. In this study, we exploit the medical definition of heart disease characteristics, such as atrial hypertrophy, sinus rhythm, atrioventricular block and other symptoms, as our characterization of identity called pathological features. Our proposal incorporates these pathological characteristics of heart activities to define a set of features from ECG data. This feature set is then cross validated by several classifier models to observe the performance of the features. In our control and experimental group experiments, it is found that the recognition process based on the classification model created from pathological features is actually advantageous than traditional methods. The well-known rhythm database, MIT-BIH arrhythmia database, MIT-BIH normal sinus rhythm database and QT database are used to obtain the basic point of each cardiac cycle (PQRST), as the pathological features to take the benchmark. The result shows that the proposed method reached a higher verification accuracy than the traditional wavelet method. This result actually presents the excellence of the pathological features for biometric recognition. This paper also demonstrated an experimental ECG identification system based on ECG signal sensor AD8232 and embedded microcomputer Banana Pi to prove the feasibility of our biometric recognition method.
Chih, Yu-Ting, and 池御婷. "Machine Learning-Based Electrocardiography (ECG) Biometric Recognition." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/81765430593108810469.
Full textDeng, Peter Shaohua, and 鄧少華. "Biometric-based Pattern Recognition -- Handwritten Signature Verification and Face Recognition." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/79526579531096548003.
Full text國立中央大學
資訊工程研究所
88
In this dissertation, two biometric-based pattern recognition problems were studied, i.e., off-line handwritten signature verification and human face recognition. Biometrics, by definition, is the automated technique of measuring a physical characteristic or person trait of an individual and comparing the characteristic or trait to a database for purposes of recognizing or authenticating that individual. Biometrics uses physical characteristics, defined as the things we are, and personal traits, defined as the things we behave, including facial thermographs, chemical composition of body odor, retina and iris, fingerprints, hand geometry, skin pores, wrist/hand veins, handwritten signature, keystrokes or typing, and voiceprint. To deal with the first biometric-based pattern recognition problem, i.e., off-line handwritten signature verification. Wavelet theory, zero-crossing, dynamic time warping, and nonlinear integer programming form the main body of our methodology. The proposed system can automatically identify useful features which consistently exist within different signatures of the same person and, based on these features, verify whether a signature is a forgery or not. The system starts with a closed-contour tracing algorithm. The curvature data of the traced closed contours are decomposed into multiresolutional signals using wavelet transforms. Then the zero-crossings corresponding to the curvature data are extracted as features for matching. Moreover, a statistical measurement is devised to decide systematically which closed contours and their associated frequency data of a writer are most stable of a writer are most stable and discriminating. Based on these data, the optimal threshold value which controls the accuracy of the feature extraction process is calculated. The proposed approach can be applied to both on-line and off-line signature verification systems. The second biometric-based pattern recognition problem we deal with is human face recognition; we applied the minimum classification error (MCE) technique proposed by Juang and Katagiri[11]. In this technique, the classical discriminant analysis methodology is blended with the classification rule in a new functional form and is used as the design objective criterion to be optimized by numerical search algorithm. In our work, the MCE formulation is incorporated into a three-layer neural network classifier called multilayer perceptron (MLP). Unlike the traditional probabilistic-based Bayes decision technique, the proposed approach is not necessary to assume the probability model of each class. Besides, the classifier works well even when the size of a training set is small. Moreover, no matter in normal environment or harsh environment, the MCE-based method is superior to the minimum sum-squared error (MSE) based method which is commonly used in traditional neural network classifier. Finally, by incorporating a fast face detection algorithm into the system to help for extracting the face-only image from a complex background, the MCE-based face recognition system is robust to image acquired from harsh environment. Experimental results confirm that our approach outperforms the previous approaches.
Serrano, Luís Miguel dos Santos. "Hand-based biometric recognition system for mobile devices." Master's thesis, 2011. http://hdl.handle.net/10071/8235.
Full textSantos, Gil Melfe Mateus. "Biometric recognition in unconstrained environments." Doctoral thesis, 2015. http://hdl.handle.net/10400.6/4041.
Full textAo ser humano está associado, pela sua natureza, um conjunto de características físicas e comportamentais que o caracterizam. O estudo dessas características permitiu o desenvolvimento de um considerável número de sistemas e aplicações – sistemas biométricos. A utilização de sistemas biométricos tem vindo a aumentar ao longo dos últimos anos, principalmente na área da segurança: autenticação, controlo de acesso, identificação criminal, etc. Sendo um sector de elevada exigência, é natural que se dê maior destaque às características biométricas que permitam atingir uma elevada distinção entre os sujeitos, sendo pouco propensas a falsificação. Contudo, estas restrições acarretam um impacto significativo quer na usabilidade do sistema quer na sua flexibilidade, sendo necessário de um elevado grau de cooperação por parte do utilizador. É neste contexto que a íris é apresentada como a característica biométrica por excelência. Os sistemas de reconhecimento biométrico que utilizam a íris como característica principal baseiam-se essencialmente na abordagem pioneira proposta por John Daugman. Esta abordagem demonstrou ser uma excelente opção para cenários cooperativos de reconhecimento em que as imagens possam ser adquiridas no infravermelho. Contudo, nem sempre a cooperação por parte dos indivíduos é expectável. Nesses casos, sistemas com elevadas restrições na aquisição deixam de ser viáveis. Linhas de investigação mais recentes tentam contornar este problema, seguindo duas possíveis abordagens: adaptação dos métodos existentes aos novos cenários e desafios; e procura de novas características biométricas que melhor se adaptem a esta realidade. É nesta última abordagem que a região periocular (i.e., o olho e a região circundante) se assume como uma das características mais promissoras: aproxima-se do método de reconhecimento usado naturalmente e de forma espontânea pelo ser humano; tem uma localização privilegiada em relação à íris, facilitando a aquisição simultânea de ambos os sinais biométricos; e tem, tal como corroborado pela literatura, um conjunto de características promissoras, passíveis de ser usadas para efeitos de reconhecimento. O objectivo principal destes trabalhos de doutoramento é então desenvolver (ou adaptar) um sistema de reconhecimento biométrico, especialmente adequado para ambientes não-controlados (i.e., in the wild). Tal sistema, pelos seus requisitos e especificidades, deverá usar como característica preferencial de reconhecimento a região periocular, dado que esta permite uma maior flexibilização e facilidade de aquisição em condições particularmente adversas, minimizando assim as restrições de funcionamento. Os indivíduos poderão ser reconhecidos a distâncias superiores, em movimento, com condições de iluminação irregulares, e usando informação adquirida no espectro de luz visível. Por forma a atingir este objectivo, uma série de etapas intermédias foi estabelecida. Começou por se estudar a íris enquanto sinal biométrico, prestando especial atenção à vertente nãocooperativa e ao funcionamento no comprimento de onda visível. Este estudo englobou também os efeitos da luz visível no processo de reconhecimento, tendo sido levada a cabo uma análise da reflectância da íris em função do comprimento de onda de diferentes iluminantes. Tendo sido observado que a íris não se apresenta como sinal ideal ao reconhecimento in the wild, foram estudadas características biométricas emergentes, prestando especial atenção à região periocular. Da literatura analisada, os métodos mais relevantes foram implementados e testados contra um mesmo conjunto de dados. Finalmente, várias contribuições foram propostas e aceites pela comunidade científica, com aplicação em diferentes ambientes não-controlados, tendo sido a última a conceptualização de um sistema biométrico capaz de trabalhar nas condições desafiantes a que nos propúnhamos.
Martins, Diogo Santos. "Biometric recognition based on the texture along palmprint lines." Master's thesis, 2011. http://hdl.handle.net/10216/61287.
Full textNickel, Claudia. "Accelerometer-based Biometric Gait Recognition for Authentication on Smartphones." Phd thesis, 2012. https://tuprints.ulb.tu-darmstadt.de/3014/4/20120620_Dissertation_Nickel_final.pdf.
Full textMartins, Diogo Santos. "Biometric recognition based on the texture along palmprint lines." Dissertação, 2011. http://hdl.handle.net/10216/61287.
Full textAl-Waisy, Alaa S., Rami S. R. Qahwaji, Stanley S. Ipson, Shumoos Al-Fahdawi, and Tarek A. M. Nagem. "A multi-biometric iris recognition system based on a deep learning approach." 2017. http://hdl.handle.net/10454/15682.
Full textMultimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris- V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person.
Wu, Jia-Yang, and 吳家揚. "Non-Invasive Blood Glucose Estimation and Biometric Recognition Method Based on Photoplethysmography Signal." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/mbermw.
Full textChiang, Yao-Shan, and 江樂山. "Palm-Print and Hand-Shape Biometric Recognition System Based on Wavelet Transform and Statistical Moments." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/65358393795776210022.
Full text國立暨南國際大學
電機工程學系
93
With an increasing emphasis on security, personal authentication based on biometrics has been receiving extensive attention over the past decade. Among many different biometric technologies, this thesis examines palm-print and hand-shape technique for personal identification and develops a good performance recognition system based on human hand features. It is implemented and tested on VIP-CC Lab. hand image database. The proposed system includes four modules: image acquisition, image pre-processing, feature extraction, and recognition modules. First, the system captures a hand image using digital camera, then uses some image processing algorithms to localize the region of the interest of palm-print and hand-geometry from the hand image via image pre-processing module. The feature extraction module adopts the gradient direction (i.e., angle) of the two different wavelet transforms in the palm-print phase, and adopts the statistical moments in the hand-shape to extract the discriminating texture features. The system encodes the feature to generate its palm-print codes by binary gray coding, and uses invariant moment vector in hand-geometry phase. Finally, the system applies these feature codes and vector for matching in recognition module. Experimental results show that the system has an encouraging performance on the VIP-CC Lab. database(including 210 images from 30 classes). The proposed system adopts two different wavelet transform and statistical moments to extract palm-print and hand-shape features, then uses the gradient direction coding to generate the feature codes. We attain the recognition rates up to 95.00% and 98.33%(according to equal error rate, EER), respectively. Even under the circumstance of false acceptance rate(FAR) 0%, the system still approaches the recognition rate above 89.17%(acceptance of authentic, AA). This thesis analyzes the experimented results and verifies the related inferences of the proposed system for providing useful information for further research.
Moolla, Yaseen. "Handwritten signature verification using locally optimized distance-based classification." Thesis, 2012. http://hdl.handle.net/10413/10112.
Full textThesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2012.
"The statistical evaluation of minutiae-based automatic fingerprint verification systems." Thesis, 2006. http://library.cuhk.edu.hk/record=b6074180.
Full textChen, Jiansheng.
"November 2006."
Adviser: Yiu-Sang Moon.
Source: Dissertation Abstracts International, Volume: 68-08, Section: B, page: 5343.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2006.
Includes bibliographical references (p. 110-122).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.
Bhat, Srikrishna K. K. "A Study Of Utility Of Smile Profile For Face Recognition." Thesis, 2006. http://hdl.handle.net/2005/359.
Full text