Academic literature on the topic 'Biomimetics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biomimetics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biomimetics"
Terrier, Mathias, and Emmanuel. "BiomiMETRIC Assistance Tool: A Quantitative Performance Tool for Biomimetic Design." Biomimetics 4, no. 3 (July 10, 2019): 49. http://dx.doi.org/10.3390/biomimetics4030049.
Full textSpeck, Olga, and Thomas Speck. "Biomimetics and Education in Europe: Challenges, Opportunities, and Variety." Biomimetics 6, no. 3 (August 4, 2021): 49. http://dx.doi.org/10.3390/biomimetics6030049.
Full textGraeff, Eliot, Nicolas Maranzana, and Améziane Aoussat. "Engineers’ and Biologists’ Roles during Biomimetic Design Processes, Towards a Methodological Symbiosis." Proceedings of the Design Society: International Conference on Engineering Design 1, no. 1 (July 2019): 319–28. http://dx.doi.org/10.1017/dsi.2019.35.
Full textZhang, Zhijun, Qigan Wang, and Shujun Zhang. "Review of Computational Fluid Dynamics Analysis in Biomimetic Applications for Underwater Vehicles." Biomimetics 9, no. 2 (January 28, 2024): 79. http://dx.doi.org/10.3390/biomimetics9020079.
Full textWommer, Kirsten, and Kristina Wanieck. "Biomimetic Research for Applications Addressing Technical Environmental Protection." Biomimetics 7, no. 4 (October 28, 2022): 182. http://dx.doi.org/10.3390/biomimetics7040182.
Full textKohsaka, Ryo, Yoshinori Fujihira, and Yuta Uchiyama. "Biomimetics for business? Industry perceptions and patent application." Journal of Science and Technology Policy Management 10, no. 3 (October 2, 2019): 597–616. http://dx.doi.org/10.1108/jstpm-05-2018-0052.
Full textWanieck, Kristina, Leandra Hamann, Marcel Bartz, Eike Uttich, Markus Hollermann, Manfred Drack, and Heike Beismann. "Biomimetics Linked to Classical Product Development: An Interdisciplinary Endeavor to Develop a Technical Standard." Biomimetics 7, no. 2 (March 30, 2022): 36. http://dx.doi.org/10.3390/biomimetics7020036.
Full textBhushan, Bharat. "Nature's Nanotechnology." Mechanical Engineering 134, no. 12 (December 1, 2012): 28–32. http://dx.doi.org/10.1115/1.2012-dec-1.
Full textUchiyama, Yuta, Eduardo Blanco, and Ryo Kohsaka. "Application of Biomimetics to Architectural and Urban Design: A Review across Scales." Sustainability 12, no. 23 (November 24, 2020): 9813. http://dx.doi.org/10.3390/su12239813.
Full textJatsch, Anne-Sophie, Shoshanah Jacobs, Kirsten Wommer, and Kristina Wanieck. "Biomimetics for Sustainable Developments—A Literature Overview of Trends." Biomimetics 8, no. 3 (July 11, 2023): 304. http://dx.doi.org/10.3390/biomimetics8030304.
Full textDissertations / Theses on the topic "Biomimetics"
Petrie, Timothy Andrew. "Biomimetic integrin-specific surface to direct osteoblastic function and tissue healing." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29628.
Full textCommittee Chair: Andres Garcia; Committee Member: Andrew Lyon; Committee Member: Barbara Boyan; Committee Member: Johnna Temenoff; Committee Member: Todd McDevitt. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Evans, Richard. "Carbohydrate biomimetics." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534195.
Full textLi, Xuehe. "Self-assembly, Templation and biomimetics." ScholarWorks@UNO, 2002. http://louisdl.louislibraries.org/u?/NOD,25.
Full textTitle from electronic submission form. Vita. "A dissertation ... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry"--Dissertation t.p. Includes bibliographical references.
Gong, Jiachang. "Biomimetics and host-guest chemistry." ScholarWorks@UNO, 2004. http://louisdl.louislibraries.org/u?/NOD,186.
Full textTitle from electronic submission form. "A dissertation ... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry."--Dissertation t.p. Vita. Includes bibliographical references.
Haase, Nicholas Rudy. "The development, characterization, and application of a biomimetic method of enzyme immobilization." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45802.
Full textWolff, Annalena [Verfasser]. "Biomimetics and functional nanostructures / Annalena Wolff." Bielefeld : Universitätsbibliothek Bielefeld, 2014. http://d-nb.info/1048677117/34.
Full textUvieghara, Mathias N. "Paper-based Biochemical and Chemical Amplification Techniques for Bio-detection." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/UviegharaMN2007.pdf.
Full textVarpness, Zachary Bradley. "Biomimetic synthesis of catalytic materials." Diss., Montana State University, 2007. http://etd.lib.montana.edu/etd/2007/varpness/VarpnessZ0807.pdf.
Full textMulcahey, Thomas Ian. "Autonomous cricket biosensors for acoustic localization." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33833.
Full textMontenegro, Rivelino V. D. "Crystallization, biomimetics and semiconducting polymers in confined systems." Phd thesis, Universität Potsdam, 2003. http://opus.kobv.de/ubp/volltexte/2005/76/.
Full textKristallisation, Biomimetik und halbleitende Polymere in räumlich begrenzten Systemen:
Öl und Wasser mischen sich nicht, man kann aber aus beiden Flüssigkeiten Emulsionen herstellen, bei denen Tröpfchen der einen Flüssigkeit in der anderen Flüssigkeit vorliegen. Das heißt, es können entweder Öltröpfchen in Wasser oder Wassertröpfchen in Öl erzeugt werden. Aus täglichen Erfahrungen, z.B. beim Kochen weiß man jedoch, dass sich eine Emulsion durch Schütteln oder Rühren herstellen lässt, diese jedoch nicht besonders stabil ist. Mit Hilfe von hohen Scherenergien kann man nun sehr kleine, in ihrer Größe sehr einheitliche und außerdem sehr stabile Tröpfchen von 1/10000 mm erhalten. Eine solche Emulsion wird Miniemulsion genannt.
In der Dissertation wurden nun z.B. Miniemulsionen untersucht, die aus kleinen Wassertröpfchen in einem Öl bestehen. Es konnte gezeigt werden, dass das Wasser in diesen Tröpfchen, also in den räumlich begrenzten Systemen, nicht bei 0 °C, sondern bei -22 °C kristallisierte. Wie lässt sich das erklären? Wenn man einen Eimer Wasser hat, dann bildet sich normalerweise bei 0 °C Eis, da nämlich in dem Wasser einige (manchmal ganz wenige) Keime (z.B. Schutzteilchen, ein Fussel etc.) vorhanden sind, an denen sich die ersten Kristalle bilden. Wenn sich dann einmal ein Kristall gebildet hat, kann das Wasser im gesamten Eimer schnell zu Eis werden. Ultrareines Wasser würde bei -22 °C kristallisieren. Wenn man jetzt die Menge Wasser aus dem Eimer in kleine Tröpfchen bringt, dann hat man eine sehr, sehr große Zahl, nämlich 1017 Tröpfchen, in einem Liter Emulsion vorliegen. Die wenigen Schmutzpartikel verteilen auf sehr wenige Tröpfchen, die anderen Tröpfchen sind ultrarein. Daher kristallisieren sie erst bei -22 °C.
Im Rahmen der Arbeit konnte auch gezeigt werden, dass die Miniemulsionen genutzt werden können, um kleine Gelatine-Partikel, also Nanogummibärchen, herzustellen. Diese Nanogummibärchen quellen bei Erhöhung der Temperatur auf ca. 38 °C an. Das kann ausgenutzt werden, um zum Beispiel Medikamente zunächst in den Partikeln im menschlichen Körper zu transportieren, die Medikamente werden dann an einer gewünschten Stelle freigelassen. In der Arbeit wurde auch gezeigt, dass die Gelatine-Partikel genutzt werden können, um die Natur nachzuahnen (Biomimetik). Innerhalb der Partikel kann nämlich gezielt Knochenmaterial aufgebaut werden kann. Die Gelatine-Knochen-Partikel können dazu genutzt werden, um schwer heilende oder komplizierte Knochenbrüche zu beheben. Gelatine wird nämlich nach einigen Tagen abgebaut, das Knochenmaterial kann in den Knochen eingebaut werden.
LEDs werden heute bereits vielfältig verwendet. LEDs bestehen aus Halbleitern, wie z.B. Silizium. Neuerdings werden dazu auch halbleitende Polymere eingesetzt. Das große Problem bei diesen Materialien ist, dass sie aus Lösungsmitteln aufgebracht werden. Im Rahmen der Doktorarbeit wurde gezeigt, dass der Prozess der Miniemulsionen genutzt werden kann, um umweltfreundlich diese LEDs herzustellen. Man stellt dazu nun wässrige Dispersionen mit den Polymerpartikeln her. Damit hat man nicht nur das Lösungsmittel vermieden, das hat nun noch einen weiteren Vorteil: man kann nämlich diese Dispersion auf sehr einfache Art verdrucken, im einfachsten Fall verwendet man einfach einen handelsüblichen Tintenstrahldrucker.
The colloidal systems are present everywhere in many varieties such as emulsions (liquid droplets dispersed in liquid), aerosols (liquid dispersed in gas), foam (gas in liquid), etc. Among several new methods for the preparation of colloids, the so-called miniemulsion technique has been shown to be one of the most promising. Miniemulsions are defined as stable emulsions consisting of droplets with a size of 50-500 nm by shearing a system containing oil, water, a surfactant, and a highly water insoluble compound, the so-called hydrophobe
1. In the first part of this work, dynamic crystallization and melting experiments are described which were performed in small, stable and narrowly distributed nanodroplets (confined systems) of miniemulsions. Both regular and inverse systems were examined, characterizing, first, the crystallization of hexadecane, secondly, the crystallization of ice. It was shown for both cases that the temperature of crystallization in such droplets is significantly decreased (or the required undercooling is increased) as compared to the bulk material. This was attributed to a very effective suppression of heterogeneous nucleation. It was also found that the required undercooling depends on the nanodroplet size: with decreasing droplet size the undercooling increases.
2. It is shown that the temperature of crystallization of other n-alkanes in nanodroplets is also significantly decreased as compared to the bulk material due to a very effective suppression of heterogeneous nucleation. A very different behavior was detected between odd and even alkanes. In even alkanes, the confinement in small droplets changes the crystal structure from a triclinic (as seen in bulk) to an orthorhombic structure, which is attributed to finite size effects inside the droplets. An intermediate metastable rotator phase is of less relevance for the miniemulsion droplets than in the bulk. For odd alkanes, only a strong temperature shift compared to the bulk system is observed, but no structure change. A triclinic structure is formed both in bulk and in miniemulsion droplets.
3. In the next part of the thesis it is shown how miniemulsions could be successfully applied in the development of materials with potential application in pharmaceutical and medical fields. The production of cross-linked gelatin nanoparticles is feasible. Starting from an inverse miniemulsion, the softness of the particles can be controlled by varying the initial concentration, amount of cross-link agent, time of cross-linking, among other parameters. Such particles show a thermo-reversible effect, e.g. the particles swell in water above 37 °C and shrink below this temperature. Above 37 °C the chains loose the physical cross-linking, however the particles do not loose their integrity, because of the chemical cross-linking. Those particles have potential use as drug carriers, since gelatin is a natural polymer derived from collagen.
4. The cross-linked gelatin nanoparticles have been used for the biomineralization of hydroxyapatite (HAP), a biomineral, which is the major constituent of our bones. The biomineralization of HAP crystals within the gelatin nanoparticles results in a hybrid material, which has potential use as a bone repair material.
5. In the last part of this work we have shown that layers of conjugated semiconducting polymers can be deposited from aqueous dispersion prepared by the miniemulsion process. Dispersions of particles of different conjugated semiconducting polymers such as a ladder-type poly(para-phenylene) and several soluble derivatives of polyfluorene could be prepared with well-controlled particle sizes ranging between 70 - 250 nm. Layers of polymer blends were prepared with controlled lateral dimensions of phase separation on sub-micrometer scales, utilizing either a mixture of single component nanoparticles or nanoparticles containing two polymers. From the results of energy transfer it is demonstrated that blending two polymers in the same particle leads to a higher efficiency due to the better contact between the polymers. Such an effect is of great interest for the fabrication of opto-electronic devices such as light emitting diodes with nanometer size emitting points and solar cells comprising of blends of electron donating and electron accepting polymers.
Books on the topic "Biomimetics"
Mehmet, Sarikaya, and Aksay Ilhan A, eds. Biomimetics: Design and processing of materials. Woodbury, N.Y: AIP Press, 1995.
Find full textBhushan, Bharat. Biomimetics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28284-8.
Full textBhushan, Bharat. Biomimetics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71676-3.
Full textBhushan, Bharat. Biomimetics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25408-6.
Full textRamalingam, Murugan, Xiumei Wang, Guoping Chen, Peter Ma, and Fu-Zhai Cui, eds. Biomimetics. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118810408.
Full textEhrlich, Hermann, ed. Extreme Biomimetics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45340-8.
Full textLiu, Jia. Biomimetics Through Nanoelectronics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68609-7.
Full textBurrington, James D., and Douglas S. Clark, eds. Biocatalysis and Biomimetics. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/bk-1989-0392.
Full textGruber, Petra. Biomimetics in Architecture. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0332-6.
Full textPersiani, Sandra. Biomimetics of Motion. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93079-4.
Full textBook chapters on the topic "Biomimetics"
House, Dustin, and Dongqing Li. "Biomimetics." In Encyclopedia of Microfluidics and Nanofluidics, 103–4. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_85.
Full textBhushan, Bharat. "Biomimetics." In Encyclopedia of Nanotechnology, 337–46. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_171.
Full textVallet-Regí, María. "Biomimetics." In Bio-Ceramics with Clinical Applications, 17–22. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118406748.ch2.
Full textHouse, Dustin, and Dongqing Li. "Biomimetics." In Encyclopedia of Microfluidics and Nanofluidics, 1–2. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_85-3.
Full textKheyraddini Mousavi, Arash, Zayd Chad Leseman, Manuel L. B. Palacio, Bharat Bhushan, Scott R. Schricker, Vishnu-Baba Sundaresan, Stephen Andrew Sarles, et al. "Biomimetics." In Encyclopedia of Nanotechnology, 290–98. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_171.
Full textKhan, Ferdous, and Sheikh Rafi Ahmad. "Biomimetic Polysaccharides and Derivatives for Cartilage Tissue Regeneration." In Biomimetics, 1–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118810408.ch1.
Full textChen, Guoping, Hongxu Lu, and Naoki Kawazoe. "Biomimetic ECM Scaffolds Prepared from Cultured Cells." In Biomimetics, 243–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118810408.ch10.
Full textSivakumar, Ponnurengam Malliappan, Di Zhou, Tae Il Son, and Yoshihiro Ito. "Design and Synthesis of Photoreactive Polymers for Biomedical Applications." In Biomimetics, 253–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118810408.ch11.
Full textAhadian, Samad, Murugan Ramalingam, and Ali Khademhosseini. "The Emerging Applications of Graphene Oxide and Graphene in Tissue Engineering." In Biomimetics, 279–99. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118810408.ch12.
Full textCai, Qiang, and Ce Peng. "Biomimetic Preparation and Morphology Control of Mesoporous Silica." In Biomimetics, 301–27. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118810408.ch13.
Full textConference papers on the topic "Biomimetics"
Rodriguez-Leal, Ernesto, Jian S. Dai, and Gordon R. Pennock. "The Duality of Biomimetics and Artiomimetics in the Creative Process of Design." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-50035.
Full textJennings, Alan L., and Raul Ordonez. "Biomimetic learning, not learning biomimetics: A survey of developmental learning." In NAECON 2010 - IEEE National Aerospace and Electronics Conference. IEEE, 2010. http://dx.doi.org/10.1109/naecon.2010.5712917.
Full textLim, Chaeguk, Inchae Park, and Byungun Yoon. "Technology development tools in biomimetics utilizing TRIZ: Biomimetic-TRIZ matrix." In 2015 Portland International Conference on Management of Engineering and Technology (PICMET). IEEE, 2015. http://dx.doi.org/10.1109/picmet.2015.7273167.
Full textItham Mahajan, Rajini. "THE INEVITABLE ORDER: Revisiting the Calibrated Biomimetics of Le Corbusier’s Modulor." In LC2015 - Le Corbusier, 50 years later. Valencia: Universitat Politècnica València, 2015. http://dx.doi.org/10.4995/lc2015.2015.895.
Full textMenon, Carlo, and Nicholas Lan. "Biomimetics for Space Engineering." In 57th International Astronautical Congress. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.iac-06-d3.p.03.
Full textSimmons, Wilbur C. "Biomimetics and smart materials." In Far East and Pacific Rim Symposium on Smart Materials, Structures, and MEMS, edited by Alex Hariz, Vijay K. Varadan, and Olaf Reinhold. SPIE, 1997. http://dx.doi.org/10.1117/12.293572.
Full textDai, Z. D., W. B. Wang, H. Zhang, M. Yu, A. H. Ji, H. Tan, C. Guo, J. Q. Gong, and J. R. Sun. "Biomimetics on gecko locomotion." In DESIGN AND NATURE 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/dn080031.
Full text"Biomimetics and bionics robotics." In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013. http://dx.doi.org/10.1109/iecon.2013.6700180.
Full textSimmons, Wilbur C. "Biomimetics and smart materials." In Far East and Pacific Rim Symposium on Smart Materials, Structures, and MEMS, edited by Alex Hariz, Vijay K. Varadan, and Olaf Reinhold. SPIE, 1997. http://dx.doi.org/10.1117/12.293528.
Full textTseng, Wei-Yu, Jefferey S. Fisher, Javier L. Prieto, Kentaro Rinaldi, and Abraham P. Lee. "Biomimetics Microfluidic Tactile Sensor Array." In ASME 2008 3rd Frontiers in Biomedical Devices Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/biomed2008-38078.
Full textReports on the topic "Biomimetics"
Tew, Gregory, Meagan Corrigan, Dahui Liu, and Richard Scott. Biomimetics for Treating Biofilm-Embedded Infections. Fort Belvoir, VA: Defense Technical Information Center, December 2012. http://dx.doi.org/10.21236/ada581334.
Full textMou, Chung-Yuan. Applications of Nanotechnology in Biomimetics and Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, October 2007. http://dx.doi.org/10.21236/ada473229.
Full textSolomon, Latasha, Yirong Pu, and Allyn Hubbard. Acoustic Transient Localization: A Comparative Analysis of the Conventional Time Difference of Arrival Versus Biomimetics. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada512484.
Full textMuthukumar, Murugappan. Modeling Biomimetic Mineralization. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada567213.
Full textTurner, Kimberly L. Multi-Scale Biomimetic Adhesives. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada495360.
Full textStone, Morley O. Biomimetic Infrared (IR) Sensors. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada406041.
Full textCranford, Ted W., and Wesley R. Elsberry. Biomimetic Dolphin Sonar Source. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada422271.
Full textGraff, G. L., A. A. Campbell, and N. R. Gordon. Biomimetic thin film synthesis. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/105133.
Full textBalazs, Anna C., George M. Whitesides, C. Jeffrey Brinker, Igor S. Aranson, Paul Chaikin, Zvonimir Dogic, Sharon Glotzer, et al. Designing Biomimetic, Dissipative Material Systems. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1235400.
Full textTew, Gregory N., and Lachelle Arnt. Biomimetic Polymers with Antimicrobial Activity. Fort Belvoir, VA: Defense Technical Information Center, March 2003. http://dx.doi.org/10.21236/ada414733.
Full text