Academic literature on the topic 'Biomolecular systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biomolecular systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Biomolecular systems"

1

Miró, Jesús M., and Alfonso Rodríguez-Patón. "Biomolecular Computing Devices in Synthetic Biology." International Journal of Nanotechnology and Molecular Computation 2, no. 2 (2010): 47–64. http://dx.doi.org/10.4018/978-1-59904-996-0.ch014.

Full text
Abstract:
Synthetic biology and biomolecular computation are disciplines that fuse when it comes to designing and building information processing devices. In this chapter, we study several devices that are representative of this fusion. These are three gene circuits implementing logic gates, a DNA nanodevice and a biomolecular automaton. The operation of these devices is based on gene expression regulation, the so-called competitive hybridization and the workings of certain biomolecules like restriction enzymes or regulatory proteins. Synthetic biology, biomolecular computation, systems biology and stan
APA, Harvard, Vancouver, ISO, and other styles
2

Katrusiak, Andrzej, Michalina Aniola, Kamil Dziubek, Kinga Ostrowska, and Ewa Patyk. "Biomolecular systems under pressure." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C1188. http://dx.doi.org/10.1107/s2053273314088111.

Full text
Abstract:
Biological systems are often regarded as the ultimate goal of all knowledge in this respect that they can provide the clue for understanding the origin of life and the means for improving the life conditions and healthcare. Hence the interest in high-pressure behavior of organic and biomolecular systems. Such simple organic systems were among the first structural studies at high pressure at all. They included chloroform by Roger Fourme in 1968 [1] and benzene by Piermarini et al. in 1969, still with the use of photographic technique. The efficient studies on bio-macromolecular crystals had to
APA, Harvard, Vancouver, ISO, and other styles
3

Niranjan, Vidya, Purushotham Rao, Akshay Uttarkar, and Jitendra Kumar. "Protocol for the development of coarse-grained structures for macromolecular simulation using GROMACS." PLOS ONE 18, no. 8 (2023): e0288264. http://dx.doi.org/10.1371/journal.pone.0288264.

Full text
Abstract:
Coarse-grained simulations have emerged as a valuable tool in the study of large and complex biomolecular systems. These simulations, which use simplified models to represent complex biomolecules, reduce the computational cost of simulations and enable the study of larger systems for longer periods of time than traditional atomistic simulations. GROMACS is a widely used software package for performing coarse-grained simulations of biomolecules, and several force fields have been developed specifically for this purpose. In this protocol paper, we explore the advantages of using coarse-grained s
APA, Harvard, Vancouver, ISO, and other styles
4

Emenecker, Ryan J., Alex S. Holehouse, and Lucia C. Strader. "Biological Phase Separation and Biomolecular Condensates in Plants." Annual Review of Plant Biology 72, no. 1 (2021): 17–46. http://dx.doi.org/10.1146/annurev-arplant-081720-015238.

Full text
Abstract:
A surge in research focused on understanding the physical principles governing the formation, properties, and function of membraneless compartments has occurred over the past decade. Compartments such as the nucleolus, stress granules, and nuclear speckles have been designated as biomolecular condensates to describe their shared property of spatially concentrating biomolecules. Although this research has historically been carried out in animal and fungal systems, recent work has begun to explore whether these same principles are relevant in plants. Effectively understanding and studying biomol
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Li, Coucong Gong, Xinzhu Yuan, and Gang Wei. "Controlling the Self-Assembly of Biomolecules into Functional Nanomaterials through Internal Interactions and External Stimulations: A Review." Nanomaterials 9, no. 2 (2019): 285. http://dx.doi.org/10.3390/nano9020285.

Full text
Abstract:
Biomolecular self-assembly provides a facile way to synthesize functional nanomaterials. Due to the unique structure and functions of biomolecules, the created biological nanomaterials via biomolecular self-assembly have a wide range of applications, from materials science to biomedical engineering, tissue engineering, nanotechnology, and analytical science. In this review, we present recent advances in the synthesis of biological nanomaterials by controlling the biomolecular self-assembly from adjusting internal interactions and external stimulations. The self-assembly mechanisms of biomolecu
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, Paul E., and B. Montgomery Pettitt. "Modeling Solvent in Biomolecular Systems." Journal of Physical Chemistry 98, no. 39 (1994): 9700–9711. http://dx.doi.org/10.1021/j100090a002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rhodes, William. "Coferent dynamics in biomolecular systems." Journal of Molecular Liquids 41 (October 1989): 165–80. http://dx.doi.org/10.1016/0167-7322(89)80076-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rowe, Rhianon K., and P. Shing Ho. "Relationships between hydrogen bonds and halogen bonds in biological systems." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 73, no. 2 (2017): 255–64. http://dx.doi.org/10.1107/s2052520617003109.

Full text
Abstract:
The recent recognition that halogen bonding (XB) plays important roles in the recognition and assembly of biological molecules has led to new approaches in medicinal chemistry and biomolecular engineering. When designing XBs into strategies for rational drug design or into a biomolecule to affect its structure and function, we must consider the relationship between this interaction and the more ubiquitous hydrogen bond (HB). In this review, we explore these relationships by asking whether and how XBs can replace, compete against or behave independently of HBs in various biological systems. The
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Yue, Lei Ren, Hongzhen Peng, Linjie Guo, and Lihua Wang. "DNA-Programmed Biomolecular Spatial Pattern Recognition." Chemosensors 11, no. 7 (2023): 362. http://dx.doi.org/10.3390/chemosensors11070362.

Full text
Abstract:
Molecular recognition based on non-covalent interactions between two or more molecules plays a crucial role in biological systems. Specific biological molecule recognition has been widely applied in biotechnology, clinical diagnosis, and treatment. The efficiency and affinity of molecular recognition are greatly determined by the spatial conformation of biomolecules. The designability of DNA nanotechnology makes possible the precise programming of the spatial conformation of biomolecules including valency and spacing, further achieving spatial pattern recognition regulation between biomolecule
APA, Harvard, Vancouver, ISO, and other styles
10

Ren, Pengyu, Jaehun Chun, Dennis G. Thomas, et al. "Biomolecular electrostatics and solvation: a computational perspective." Quarterly Reviews of Biophysics 45, no. 4 (2012): 427–91. http://dx.doi.org/10.1017/s003358351200011x.

Full text
Abstract:
AbstractAn understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzy
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!