Academic literature on the topic 'Biopolymer Film'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Biopolymer Film.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Biopolymer Film"
Idris, Maizlinda Izwana, Mohammed Firdaus Adzhari, Siti Natrah Abdul Bakil, Tee Chuan Lee, Mohamad Ali Selimin, and Hasan Zuhudi Abdullah. "Surface Properties of Alginate/Chitosan Biofilm for Wound Healing Application." Materials Science Forum 1010 (September 2020): 602–7. http://dx.doi.org/10.4028/www.scientific.net/msf.1010.602.
Full textOyekanmi, Adeleke A., N. I. Saharudin, Che Mohamad Hazwan, Abdul Khalil H. P. S., Niyi G. Olaiya, Che K. Abdullah, Tata Alfatah, Deepu A. Gopakumar, and Daniel Pasquini. "Improved Hydrophobicity of Macroalgae Biopolymer Film Incorporated with Kenaf Derived CNF Using Silane Coupling Agent." Molecules 26, no. 8 (April 13, 2021): 2254. http://dx.doi.org/10.3390/molecules26082254.
Full textMistretta, Maria Chiara, Luigi Botta, Rossella Arrigo, Francesco Leto, Giulio Malucelli, and Francesco Paolo La Mantia. "Bionanocomposite Blown Films: Insights on the Rheological and Mechanical Behavior." Polymers 13, no. 7 (April 5, 2021): 1167. http://dx.doi.org/10.3390/polym13071167.
Full textHamzah, Amir. "The Characteristics and The Making of Biopolymer Film from Oil Palm Trunk Starch (Elaeis guineensis Jacq.) Using Sorbitol Plasticizer." Journal of Chemical Natural Resources 1, no. 2 (August 28, 2019): 11–22. http://dx.doi.org/10.32734/jcnar.v1i2.1249.
Full textMorales-Jiménez, Mónica, Luisa Gouveia, Jorge Yáñez-Fernández, Roberto Castro-Muñoz, and Blanca Estela Barragán-Huerta. "Production, Preparation and Characterization of Microalgae-Based Biopolymer as a Potential Bioactive Film." Coatings 10, no. 2 (January 31, 2020): 120. http://dx.doi.org/10.3390/coatings10020120.
Full textLisitsyn, Andrey, Anastasia Semenova, Viktoria Nasonova, Ekaterina Polishchuk, Natalia Revutskaya, Ivan Kozyrev, and Elena Kotenkova. "Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation." Polymers 13, no. 10 (May 15, 2021): 1592. http://dx.doi.org/10.3390/polym13101592.
Full textShi, Jiayuan, and Bin Shi. "Environment-Friendly Design of Lithium Batteries Starting from Biopolymer-Based Electrolyte." Nano 16, no. 05 (April 7, 2021): 2130006. http://dx.doi.org/10.1142/s1793292021300061.
Full textFen, Yap Wing, Wan Mahmood Mat Yunus, Zainal Abdib Talib, and Nor Azah Yusof. "Biopolymer-Based Thin Film for Sensor Application." Advanced Materials Research 1107 (June 2015): 631–36. http://dx.doi.org/10.4028/www.scientific.net/amr.1107.631.
Full textMohan, TP, Kay Devchand, and K. Kanny. "Barrier and biodegradable properties of corn starch-derived biopolymer film filled with nanoclay fillers." Journal of Plastic Film & Sheeting 33, no. 3 (December 18, 2016): 309–36. http://dx.doi.org/10.1177/8756087916682553.
Full textRizal, Samsul, Tze Kiat Lai, Umar Muksin, N. G. Olaiya, C. K. Abdullah, Ikramullah, Esam Bashir Yahya, E. W. N. Chong, and H. P. S. Abdul Khalil. "Properties of Macroalgae Biopolymer Films Reinforcement with Polysaccharide Microfibre." Polymers 12, no. 11 (October 30, 2020): 2554. http://dx.doi.org/10.3390/polym12112554.
Full textDissertations / Theses on the topic "Biopolymer Film"
Mohammad, Zadeh Elham. "Physicochemical Properties and Antioxidant Activity of Enzymatic Modified Soy Protein Isolate Films with Lignin." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/83226.
Full textPh. D.
Campos, Natália di Loreto. "Produção e caracterização de filmes biodegradáveis ativos de amido de semente de jaca." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/74/74133/tde-07122017-152954/.
Full textIndiscriminate use of plastics has been generating environmental problems, like accumulation of materials, water pollution, as well as depleting a non-renewable resource (crude oil). This has been causing concern, therefore scientists and industries are seeking alternatives for these materials, for example, the employment of natural and/or biodegradable materials and the reuse of wasted byproducts. Starch is a natural polymer with many promising aspects, like its biodegradability, low cost and availability. Aiming at prolonging shelf-life of food products, starch has been investigated as a feedstock for development of edible active films and coatings. Besides acting as a barrier against gases and as mechanical protection, packages also may carry active substances (antioxidants, antimicrobials, etc.). The effects of the incorporation of (0.3; 0.5 and 1.0) g α-tocopherol/100 g filmogenic dispersion on the morphological, mechanical, optical, surface, water vapor permeability, barrier to UV/Visible light and antioxidant properties of jackfruit seed starch films were studied. Addition of α-tocopherol increased the tensile strength and the elastic modulus up to 0.5%. It also increased the water vapor barrier, possibly due to α-tocopherol\'s hydrophobic nature and because it caused a tortuosity effect in the polymer matrix, although the film solubility was not significantly affected. α-tocopherol improved the UV light barrier, especially in the wavelengths between (200 and 310) nm. The opacity and the color parameter b* increased significantly, which means that films with α-tocopherol became more opaque and yellowish. Surface hydrophobicity increased with the incorporation of α-tocopherol, especially for the 0.5% α-tocopherol film. The antioxidant activity increased significantly up to 0.5% α-tocopherol. The film without α-tocopherol presented no antioxidant capacity. Therefore, jackfruit seed starch films incorporated with α-tocopherol have potential to be used as edible active coatings for high fat content foods. Between the formulations produced, the one with 0.5% of α-tocopherol was the best, because it presented an antioxidant activity similar to the film with 1.0% of α-tocopherol and superior characteristics, like microstructural, mechanical, optical and surface properties.
Miranda, Kelvi Wilson Evaristo. "Antimicrobial film composed of lipid-based applicability in food." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16993.
Full textHydrocolloid and lipid-based films although they are considered technological innovations, have been studied since the mid-90s as potential replacements for synthetic polymers. This study aimed to develop composite films monolayer (Ms) and bilayers (Bs), with incorporation of acetic acid ester of monoglyceride (MGA) in different concentrations and rosemary essential oil peppermint, Lippia sidoides, for applicability in foods with high moisture content. In a previous experiment, it was determined the percentage of 40% (w/w) of plasticizer (D (-) sorbitol) for composite film formation (starch + lipid). Based on this film, it was prepared an experimental design, using plasticizer and various concentrations of AMS (0 to 20% w/w). The films were developed through casting with a thickness of 0.8 mm and dried at room temperature (25 ÂC Â 1 ÂC) 12-15 hours. Diffusion tests were performed on agar; physical properties (color, opacity, thickness, moisture and solubility); morphological (medium size, polydispersity â PdI â zeta potential, scanning electron microscopy - SEM, infrared spectroscopy and Fourier transform - IS-FT); barrier (permeability to water vapor - PWV); mechanical tests (tensile strength - TS, rupture elongation - RE - and elastic modulus - EM); termoanalÃtica (differential scanning calorimetry - DSC). Itâs believed that the films have shown a bacteriostatic studied in microorganisms (S. aureus, L. monocytogenes, E. coli, P. aeruginosa and S. Typhimurium). Color analysis showed statistical significance (p<0.05) between mono and bilayer films. The opacity, showed variations from 214.74 to 323.12 A.nm (Ms) and 161.69 to 411.54 A.nm (Bs), except for the treatments with 10% and 15% lipid that doesnât varied statistically (p<0.05) between Ms and Bs. The thicknesses resulted in asignificant difference (p<0.05) between treatments, ranging from 12% (Ms) and 48% (Bs). The films showed low solubility in aqueous media, with no separation of the layers. The Bs films presented stability of filmogenic solutions, combined with electrokinetic interactions of interaction between the layers, low solubility (16%), heat resistance, PdIbetween0.35 to 0.53; PVA around 2.232 g.mm/kPa.h.mÂ, whose mechanical tests demonstrated tha the Bs films are hard and low elasticity with respect to Ms films, development perspective of a non-flexible packaging with excellent application in food with high moisture content, animal and/or plant origin.
Os filmes à base de hidrocÃloides e lipÃdios apesar de serem consideradas inovaÃÃes tecnolÃgicas, vÃm sendo estudados desde meados dos anos 90 como substitutos em potencial dos polÃmeros sintÃticos. Este trabalho objetivou desenvolver filmes compostos em monocamada (Ms) e bicamadas (Bs), com incorporaÃÃo de Ãster de monoglicerÃdeo de Ãcido acÃtico (MGA) em diferentes concentraÃÃes e, Ãleo essencial de alecrim-pimenta, Lippia sidoides, para aplicabilidade em alimentos com alto teor de umidade. Em experimento prÃvio, determinou-se o percentual de 40% (m/m) de plastificante (D (-) sorbitol) para formaÃÃo de filme composto (amido+lipÃdio). Com base neste filme, elaborou-se um delineamento experimental, utilizando-se plastificante e, diferentes concentraÃÃes de MGA (0 a 20%, m/m). Os filmes foram desenvolvidos atravÃs de casting, com espessura de 0,8 mm e secos à temperatura ambiente (25 ÂC  1 ÂC) entre 12-15 horas. Foram realizados teste de difusÃo em Ãgar; propriedade fÃsica (cor, opacidade, espessura, umidade e solubilidade); morfolÃgica (tamanho mÃdio, polidispersividade â PDI, potencial zeta, microscopia eletrÃnica de varredura â MEV, e espectroscopia no infravermelho com transformada de Fourier â FT-IR); barreira (permeabilidade ao vapor de Ãgua â PVA); ensaios mecÃnicos (resistÃncia à traÃÃo â RT, elongaÃÃo de ruptura â ER â e mÃdulo de elÃstico â ME); termoanalÃtica (calorimetria diferencial de varredura â DSC). Acredita-se que os filmes tenham apresentado aÃÃo bacteriostÃtica nos micro-organismos estudados (S. aureus, L. monocytogenes, E. coli, P. aeruginosa e S. Typhimurium). A cor apresentou diferenÃa estatÃstica (p<0,05) entre os filmes mono e bicamadas. A opacidade, apresentou variaÃÃes de 214,74 a323,12 A.nm (Ms) e, 161,69 a411,54 A.nm (Bs), exceto para os tratamentos com 10% e 15% de lipÃdio que nÃo variaram estatisticamente (p<0,05) entre Ms e Bs. A espessura resultou em uma diferenÃa significativa (p<0,05) entre os tratamentos, variando 12% (Ms) e 48% (Bs). Os filmes apresentaram baixa solubilidade em meio aquoso, sem que houvesse a separaÃÃo das camadas. Os filmes Bs apresentaram estabilidade das soluÃÃes filmogÃnicas, associado a interaÃÃes eletrocinÃticas de interaÃÃo entre as camadas, baixa solubilidade (16%), resistÃncia tÃrmica, PDI entre 0,35-0,53; PVA em torno de 2,232 g.mm/kPa.h.mÂ, cujos ensaios mecÃnicos demonstraram que os filmes Bs sÃo rÃgidos e com baixa elasticidade em relaÃÃo aos filmes Ms, evidenciando perspectiva de desenvolvimento de uma embalagem nÃo flexÃvel, com potencial de aplicaÃÃo em alimentos com alto teor de umidade.
Яновська, Ганна Олександрівна, Анна Александровна Яновская, Hanna Oleksandrivna Yanovska, and А. М. Міннібаєва. "Синтез біополімерних плівок для застосування в косметології." Thesis, Сумський державний університет, 2016. http://essuir.sumdu.edu.ua/handle/123456789/45548.
Full textPuaud, Max. "Mechanical properties of biopolymer films." Thesis, University of Nottingham, 2000. http://eprints.nottingham.ac.uk/11624/.
Full textPaes, Sabrina Silva. "Understanding the mechanical properties of biopolymer films." Thesis, University of Nottingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490994.
Full textJiménez, Marco Alberto. "Propiedades de films de almidón de maíz. Influencia de la incorporación de lípidos, biopolímeros y compuestos bioactivos." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/28214.
Full textSe han desarrollado y caracterizado films biodegradables a base de almidón de maíz y glicerol como plastificante, evaluando al mismo tiempo el efecto de la adición de componentes lipídicos (ácido palmítico, esteárico y oleico), otros polímeros (hidroxipropilmetilcelulosa y caseinato de sodio) y compuestos bioactivos (¿-tocoferol, aceite esencial de naranja y D-limoneno) sobre las propiedades de los films (propiedades barrera al vapor de agua y al oxígeno, ópticas, mecánicas, micro y nanoestructurales). Asimismo se evaluó la influencia del tiempo de almacenamiento en las propiedades de los films. La adición de ácidos grasos no mejoró notablemente la permeabilidad al vapor de agua excepto en el caso de los films con ácidos grasos saturados y solo en films no almacenados. Los resultados de difracción de rayos X mostraron que la cristalinidad aumentó con el tiempo de almacenamiento, incrementándose la rigidez, y disminuyendo el brillo de los films. Del mismo modo, la cristalinidad afectó a la capacidad de sorción de agua de los films en función de la humedad relativa y la temperatura. La temperatura de transición vítrea de los films de almidón se vio afectada por la adición de ácidos grasos saturados pero no por la adición de ácido oleico. La presencia de dichos componentes promovió la formación de estructuras cristalinas tipo V, indicando la formación de complejos entre los lípidos y las cadenas de amilosa e inhibiendo la formación de otros tipos de formas cristalinas. Se analizó también el efecto de la incorporación de otros biopolímeros en la posible mejora de la funcionalidad de los films de almidón. En las mezclas con hidroxipropilmetilcelulosa (HPMC), se inhibió la retrogradación del almidón en los films composite, pero se observó un efecto negativo en las propiedades barrera de los mismos, que fueron más permeables, principalmente al oxígeno. La adición de HPMC produjo separación de fases en los films (observada por microscopía electrónica de barrido). Por el contrario, la incorporación de caseinato de sodio (NaCas) permitió formar films homogéneos y menos permeables al oxígeno. Los films presentaron una resistencia mecánica algo menor que los films de almidón puro pero una mayor flexibilidad sin incrementar los valores de permeabilidad al vapor de agua. La reorganización de las cadenas de los polímeros con el tiempo de almacenamiento provocó la disminución de la resistencia mecánica, la deformabilidad y el brillo de los films composite. Atendiendo a los efectos observados, se eligió como formulación más adecuada el film composite formado por almidón y NaCas con un ratio de polímeros del 50:50. El film composite de almidón y NaCas (50:50) se estudió como matriz para la incorporación de compuestos bioactivos como son el ¿-tocoferol y el aceite esencial de naranja o su principal componente, el D-limoneno. El efecto de la adición de ¿-tocoferol se comparó con la influencia de la adición de ácido oleico y también con la adición de ambos compuestos. La adición de lípidos provocó una separación de fases entre el almidón y el NaCas debido a la diferente interacción entre cada polímero y los lípidos. Asimismo la adición de ácido oleico incrementó significativamente la permeabilidad al oxígeno, al contrario que el ¿-tocoferol, que además impartió a los films una elevada capacidad antioxidante. La incorporación de aceite esencial de naranja y D-limoneno se realizó utilizando nanoliposomas de lecitina de soja y lecitina de colza que encapsularon los compuestos activos. La incorporación de nanoliposomas en los films se realizó directamente en las dispersiones acuosas sin posterior homogeneización para evitar su ruptura. La adición de los compuestos bioactivos en forma de nanoliposomas no confirió capacidad antimicrobiana a los films, salvo en el caso de los nanoliposomas de lecitina de soja con aceite esencial, debido probablemente a la dificultad de los compuestos encapsulados para difundir en el film por la gran estabilidad de los liposomas y a la baja actividad antilisteria del D-limoneno y el aceite esencial de naranja.
Jiménez Marco, A. (2013). Propiedades de films de almidón de maíz. Influencia de la incorporación de lípidos, biopolímeros y compuestos bioactivos [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/28214
TESIS
Premiado
Tasker, Alison Louise. "Water resistance properties of water-based biopolymer films." Thesis, University of Leeds, 2013. http://etheses.whiterose.ac.uk/5847/.
Full textRocca, Smith Jeancarlo Renzo. "A contribution of understanding the stability of commercial PLA films for food packaging and its surface modifications." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCK004/document.
Full textPoly(lactic acid) (PLA) is a biodegradable and renewable polyester, which is considered as the most promising eco-friendly substitute of conventional plastics. It is mainly used for food packaging applications, but some drawbacks still reduce its applications. On the one hand, its low barrier performance to gases (e.g. O2 and CO2) limits its use for applications requiring low gas transfer, such as modified atmosphere packaging (MAP) or for carbonate beverage packaging. On the other hand, its natural water sensitivity, which contributes to its biodegradation, limits its use for high moisture foods with long shelf life.Other biopolymers such as wheat gluten (WG) can be considered as interesting materials able to increase the PLA performances. WG is much more water sensitive, but it displays better gas barrier properties in dry surroundings. This complementarity in barrier performances drove us to study the development of multilayer complexes PLA-WG-PLA and to open unexplored application scenarios for these biopolymers.This project was thus intended to better understand how food components and use conditions could affect the performances of PLA films, and how these performances could be optimized by additional processing such as surface modifications (e.g. corona treatment and coatings).To that aim, three objectives were targeted:- To study the stability of industrially scale produced PLA films in contact with different molecules (CO2 and water) and in contact with vapour or liquid phases, with different pH, in order to mimic a wide range of food packaging applications.- To better understand the impact of some industrial processes such as corona or hot press treatments on PLA.- To combine PLA with WG layer to produce high barrier and biodegradable complexes.Different approaches coming from food engineering and material engineering were adopted. PLA films were produced at industrial scale by Taghleef Industries with specific surface treatments like corona. Wheat gluten films, coatings and layers were developed and optimized at lab scale as well as the 3-layers PLA-WG-PLA complexes. Different technologies able to mimic industrial processes were considered such as hot press, high pressure homogenization, ultrasounds, wet casting and spin coating. The physical and chemical properties of PLA films were then studied at the bulk and surface levels, from macroscopic to nanometer scale. The functional properties like permeability to gases (e.g. O2 and CO2) and water, gas and vapour sorption, mechanical and surface properties were also investigated.Exposed to CO2, PLA films exhibited a linear sorption behaviour with pressure, but the physical modifications induced by high pressure did not affect its use for food packaging. However, when exposed to moisture in both liquid and vapour state (i.e. environments from 50 to 100 % relative humidity (RH)), PLA was significantly degraded after two months at 50 °C (accelerated test) due to hydrolysis. This chemical deterioration was evidenced by a significant decrease of the molecular weight, which consequently induced a loss of transparency and an increase of the crystallinity. The hydrolysis was accelerated when the chemical potential of water was increased, and it was surprisingly higher for vapour compared to liquid state. In addition, pH did not affect the rate of hydrolysis.Knowing much better the limitation of PLA films, the challenge was to improve its functional properties by combining them with WG, as a high gas barrier bio-sourced and biodegradable polymer. The use of high pressure homogenization produced homogeneous WG coatings, with improved performances. This process was thus selected for making 3 layer complexes by assembly of a wheat gluten layer between two layers of PLA, together with corona treatment and hot press technologies.Corona treatment applied to PLA physically and chemically modified its surface at the nanometer scale (...)
I materiali plastici convenzionali trovano impiego in tutti campi della nostra vita, specialmente nel settore del packaging alimentare, ed in seguito all’utilizzo contaminano e danneggiano il nostro ecosistema. Materiali plastici derivanti da risorse naturali e biodegradabili, come acido polilattico (PLA), sono attualmente disponibili sul mercato anche se caratterizzati da performances inferiori.Questo progetto di dottorato è mirato 1) allo studio della stabilità di film di PLA a varie condizioni di stoccaggio come temperatura, umidità relativa, pH, o esposizione a vapori o gas; 2) a comprendere meglio le influenze di alcuni processi industriali come trattamento corona e hot press nelle proprietà dei film di PLA; 3) a sviluppare complessi multistrato tra film di PLA e di glutine che abbiano proprietà barriera più elevate rispetto ai singoli film.Gli imballaggi a base di PLA sono stati prodotti da Taghleef Industries, produttore leader nel settore e dotato di infrastrutture atte ai trattamenti di modificazione di superfice come il trattamento corona. I film a base di glutine e i coatings sono stati sviluppati e ottimizzati su scala di laboratorio, così come i complessi trilaminari PLA-glutine-PLA.Le proprietà fisiche e chimiche dei film di PLA sono state investigate a livello di superficie, così come a livello di bulk. Diverse tecniche analitiche, provenienti dal campo delle scienze dei materiali e delle scienze degli alimenti, sono state adottate in questo progetto di dottorato come calorimetria differenziale a scansione (DSC), termogravimetria (TGA), cromatografia di esclusione molecolare (SEC), microscopia a forza atomica (AFM), microscopia elettronica a scansione (SEM), spettrofotometria infrarossa a trasformata di Fourier in riflettanza totale attenuata (ATR-FTIR) e spettroscopia fotoelettronica a raggi X (XPS).Le proprietà funzionali come le permeabilità al vapore acqueo (H2O), all’ossigeno (O2), al diossido di carbonio (CO2) o all’elio (He) sono state investigate, cosi come l’assorbimento di gas e/o vapori, le proprietà meccaniche e le proprietà di superfice.Nonostante i film di PLA assorbano linearmente CO2 a pressioni crescenti, l’assorbimento di tale gas è ridotto a basse pressioni in modo da non modificare le sue proprietà fisiche – come contrariamente osservato quando il PLA è esposto a CO2 ad alte pressioni – e da non influenzare negativamente il suo utilizzo come imballaggio alimentare. Ad ogni modo, quando i film di PLA sono esposti ad ambienti umidi, o quando sono immersi in acqua liquida, sono significativamente degradati per idrolisi dopo due mesi di stoccaggio a 50 °C (test accelerato). Questo deterioramento chimico è stato evidenziato da una significativa riduzione del peso molecolare del PLA che, conseguentemente, induce una sua perdita di trasparenza e ne incrementa la sua cristallinità. Inoltre, è stato evidenziato che il pH non influenza la velocità di idrolisi. Quest’informazione ha importanza pratica per possibili utilizzi di PLA come imballaggio di alimenti ad alta umidità.Il glutine è stato scelto per le sue alte proprietà barriera, quando è protetto da ambienti ad alta umidità. Si è visto che l’incorporazione di lipidi non porta con sé grandi miglioramenti nelle performances dei film a base di glutine. Invece, l’utilizzo della tecnologia di omogeneizzazione ad alte pressioni permette una migliore dispersione del glutine, ottenendo film più omogenei e con migliori proprietà funzionali. Questa tecnologia è stata quindi scelta per produrre i complessi multistrato, intercalando i film di glutine tra due film di PLA, usando il trattamento hot press (10 MPa, 130 °C, 10 min). Si è osservato che il trattamento hot press modifica le proprietà dei film di PLA, di glutine e dei film multistrato Hot press induce cristallizzazione in PLA, e conseguentemente aumenta le sue proprietà barriera complessive, approssimativamente al 40 % all’acqua e al 60 % all’ossigeno (...)
Los materiales plásticos tradicionales son utilizados en todos los campos de nuestra vida y en particular modo como embajales de productos alimenticios; los cuales después de ser utilizados contaminan y dañan nuesto medio ambiente. Materiales plásticos derivados de recursos naturales y biodegradables, como el ácido poliláctico (PLA) se encuentran actualmente disponibles en el mercado a pesar de sus menores performances. Este proyecto de doctorado está orientado 1) al estudio de la estabilidad de películas de PLA bajo diferentes condiciones como temperatura, humedad relativa, pH o exposición a vapores o gases, 2) comprender los efectos en las propiedades de las películas de PLA de algunos procesos industriales como el tratamiento corona y hot press, 3) desarrollar complejos multicapas de PLA y gluten que tengan propiedades barrera mejores que las de las películas individuales.Los embalajes a base de PLA han sido producidos por Taghleef Industries, productor líder en el sector y dotado de las infraestructuras industriales adaptadas a los tratamientos superficiales como el tratamiento corona. Las películas de gluten y los coatings han sido desarrollados a escala de laboratorio, así como los complejos tricapa PLA-gluten-PLA.Las propiedades físicas y químicas de las películas de PLA han sido investigadas a nivel de superficie así como a nivel de bulk. Diferentes técnicas de análisis, frecuentemente utilizadas en los campos de las ciencias de los materiales y de las ciencias de los alimentos, han sido empleadas en este proyecto como calorimetría diferencial de barrido (DSC), análisis termogravimétrico (TGA), cromotagrafía de exclusión por tamaño (SEC), microscopía de fuerza atómica (AFM), microscopía electrónica de barrido (SEM), espectroscopía de infrarrojos por transformada de Fourier con reflectancia total atenuada (ATR-FTIR) y espectroscopía fotoelectrónica de rayos X (XPS).Las propiedades funcionales de los embalajes como las permeabilidades al vapor de agua, al oxígeno (O2), al dióxido de carbono (CO2) o al helio (He) han sido investigadas, asi como la absorción de gases/vapores, las propiedades mecánicas y las propiedades superficiales. A pesar de que las películas de PLA absorven linealmente CO2 a presiones mayores, la absorción del gas es reducida a bajas presiones y no modifica las propiedades físicas del PLA, como contrariamente sucede cuando el PLA es expuesto a altas presiones de CO2. Por lo tanto, su influencia en las propiedades funcionales del PLA es mínima en las normales aplicaciones alimentarias. De todos modos cuando los embalajes de PLA son expuestos a ambientes húmedos o cuando son sumergidos en agua, procesos de hidrólisis los degradan significativamente después de dos meses de conservación a 50 °C (test acelerado). Este deterioramiento químico ha sido evidenciado por una significativa reducción del peso molecular del PLA, que en consecuencia induce una pérdida de transparencia y un aumento de su cristalinidad. Además, se ha observado que el pH no influye en la velocidad de hidrólisis. Esta información tiene una importancia práctica para posibles usos del PLA como embalajes de alimentos a alta humedad. El gluten ha sido elegido por sus altas propiedades barrera cuando es protegido de ambientes a alta humedad. La incorporación de lípidos en las películas de gluten no han mejorado sus performances. Pero la tecnología de la homogenización a altas presiones ha permitido mejorar la dispersión del gluten, obteniendo películas más homogéneas y con mejores propiedades funcionales. Esta tecnología ha sido, por lo tanto, elegida para producir los complejos multicapa, intercalando las películas de gluten entre dos de PLA, utilizando el tratamiendo hot press (10 MPa, 130 °C, 10 min) (...)
Feng, Yaqing [Verfasser]. "Biopolymer- Keratin- Filme als Substrat für Augenoberflächenrekonstruktion in vitro / Yaqing Feng." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2014. http://d-nb.info/1059252074/34.
Full textBooks on the topic "Biopolymer Film"
Lipid and biopolymer monolayers at liquid interfaces. New York: Plenum Press, 1989.
Find full textPlackett, D. V. Biopolymers: New materials for sustainable films and coatings. Chichester, West Sussex, UK : Hoboken, NJ: Wiley, 2011.
Find full textPlackett, David, ed. Biopolymers - New Materials for Sustainable Films and Coatings. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119994312.
Full textBirdi, K. S. Self-assembly monolayer structures of lipids and macromolecules at interfaces. New York: Kluwer Academic/Plenum Publishers, 1999.
Find full textBirdi, K. S. Self-assembly monolayer structures of lipids and macromolecules at interfaces. New York: Kluwer Academic, 2002.
Find full textBiopolymer Membranes and Films. Elsevier, 2020. http://dx.doi.org/10.1016/c2018-0-02693-6.
Full textSpirk, Stefan, Tiina Nypelö, and Eero Kontturi, eds. Biopolymer Thin Films and Coatings. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-333-3.
Full textPlackett, David. Biopolymers: New Materials for Sustainable Films and Coatings. Wiley & Sons, Incorporated, John, 2011.
Find full textPlackett, David. Biopolymers: New Materials for Sustainable Films and Coatings. Wiley & Sons, Incorporated, John, 2011.
Find full textBook chapters on the topic "Biopolymer Film"
Šuput, Danijela, Senka Popović, Jovana Ugarković, Nevena Hromiš, Ljiljana Popović, Milica Aćimović, and Lato Pezo. "Investigation on Plant Distillation Products Addition on Biopolymer Film Properties." In 10th Central European Congress on Food, 117–27. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04797-8_11.
Full textUgarković, Jovana, Danijela Šuput, Nevena Hromiš, Jelena Čakarević, Milica Aćimović, and Senka Popović. "The Effect of Plant Variety and Addition of Plant Distillation Products on Biopolymer Film Properties." In 10th Central European Congress on Food, 522–34. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04797-8_44.
Full textArfat, Yasir Ali. "Plasticizers for Biopolymer Films." In Glass Transition and Phase Transitions in Food and Biological Materials, 159–82. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118935682.ch6.
Full textMartín-Closas, Lluís, and Ana M. Pelacho. "Agronomic Potential of Biopolymer Films." In Biopolymers - New Materials for Sustainable Films and Coatings, 277–99. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119994312.ch13.
Full textGontard, N., H. Angellier-Coussy, P. Chalier, E. Gastaldi, V. Guillard, C. Guillaume, and S. Peyron. "Food Packaging Applications of Biopolymer-Based Films." In Biopolymers - New Materials for Sustainable Films and Coatings, 211–32. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119994312.ch10.
Full textAulin, Christian, and Tom Lindström. "Biopolymer Coatings for Paper and Paperboard." In Biopolymers - New Materials for Sustainable Films and Coatings, 255–76. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119994312.ch12.
Full textFernández-Saiz, Patricia, and José M. Lagaron. "Chitosan for Film and Coating Applications." In Biopolymers - New Materials for Sustainable Films and Coatings, 87–105. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119994312.ch5.
Full textBirdi, K. S. "Diverse Applications of Monomolecular Films." In Lipid and Biopolymer Monolayers at Liquid Interfaces, 279–92. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2525-1_10.
Full textPlackett, David, and Vimal Katiyar. "Functionalized Biopolymer Films and Coatings for Advanced Applications." In Biopolymers - New Materials for Sustainable Films and Coatings, 301–15. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119994312.ch14.
Full textRouf, Tahrima B., and Jozef L. Kokini. "Natural Biopolymer-Based Nanocomposite Films for Packaging Applications." In Bionanocomposites for Packaging Applications, 149–77. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67319-6_8.
Full textConference papers on the topic "Biopolymer Film"
Glazacheva, Ekaterina. "CHITOSAN-BASED BIOPOLYMER FILM MATERIALS FOR MEDICAL APPLICATIONS." In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/6.1/s25.080.
Full textVu, Chau Hai Thai, Nan Young Jang, and Keehoon Won. "Biopolymer-coated Redox Dye Film for Oxygen Detection." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_647.
Full textKo, Jieun, and Wei Lin Leong. "Biopolymer based gate dielectrics for high performance organic thin film transistors." In 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2020. http://dx.doi.org/10.1109/edtm47692.2020.9117869.
Full textUmar, Muhammad, Kyungtaek Min, and Sunghwan Kim. "An optically transparent, flexible, patterned and conductive silk biopolymer film (Conference Presentation)." In Organic Photonic Materials and Devices XIX, edited by Christopher E. Tabor, François Kajzar, Toshikuni Kaino, and Yasuhiro Koike. SPIE, 2017. http://dx.doi.org/10.1117/12.2250690.
Full textUspenskaya, Kseniia. "THE STUDY OF POLYMER COMPOSITES BASED ON POLYVINYLCHLORIDE FILM AND BIOPOLYMER FILLER." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/41/s18.029.
Full textSitnikova, Vera. "THERMAL PROPERTIES OF POLYMER COMPOSITES BASED ON POLYVINYLCHLORIDE FILM AND BIOPOLYMER FILLERS." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/5.1/s20.127.
Full textDe Oliveira, Rafael Augustus, Gislaine Ferreira Nogueira, and Farayde Matta Fakhouri. "Effect of incorporation of blackberry particles obtained by freeze drying on physicochemical properties of edible films." In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7807.
Full textHalim, Al Luqman Abdul, and Azlan Kamari. "Active biopolymer film based on carboxymethyl cellulose and ascorbic acid for food preservation." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EDUCATION, MATHEMATICS AND SCIENCE 2016 (ICEMS2016) IN CONJUNCTION WITH 4TH INTERNATIONAL POSTGRADUATE CONFERENCE ON SCIENCE AND MATHEMATICS 2016 (IPCSM2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4983898.
Full textHossain, Mohammad K., Samira N. Shaily, Hadiya J. Harrigan, and Terrie Mickens. "Fabrication and Characterization of Bio-Based Poly Lactic Acid/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blend With Nanoclay." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67813.
Full textVasilenko, Irina, Nataliya Kil'deeva, Vladislav Metelin, Nikita Sazhnev, Vasilina Zakharova, and Nina Shikhina. "The potential of laser interferometry for a non-invasive assessment of biopolymer film structure and biological properties." In Advances in Microscopic Imaging, edited by Francesco S. Pavone, Emmanuel Beaurepaire, and Peter T. So. SPIE, 2019. http://dx.doi.org/10.1117/12.2527207.
Full textReports on the topic "Biopolymer Film"
Karnesky, Richard A., Raymond William Friddle, Josh A. Whaley, and Geoffrey Smith. Permeation of "Hydromer" Film: An Elastomeric Hydrogen-Capturing Biopolymer. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1234933.
Full textCha, Jennifer. Rigid Biopolymer Nanocrystal Systems for Controlling Multicomponent Nanoparticle Assembly and Orientation in Thin Film Solar Cells. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1330467.
Full text